FACTA UNIVERSITATIS (Nlé)
SER.: ELEC. ENERG. vol. 20, no. 3, December 2007, 395-414

Set-Based SAT-Solving
Bernd Steinbach and Christian Posthoff

Abstract: The 3-SAT problem is one of the mostimportant and intergftiR-complete
problems with many applications in different areas. In salvprevious papers we
showed the use of ternary vectors and set-theoretic canagidies as well as binary
codings and bit-parallel vector operations in order to sdhis problem. Lists of or-
thogonal ternary vectors have been the main data struchadntersection of ternary
vectors (representing sets of binary solution candidates)the most important set-
theoretic operation. The parallelism of the solution psxckas been established on
the register level, i.e. related to the existing hardwaseusing a binary coding of
the ternary vectors, and it was also possible to transfesohgion process to a hier-
archy of processors working in parallel. This paper will shiorther improvements
of the existing algorithms which are easy to understand asdlt in very efficient
algorithms and implementations. Some examples will begoriesl that will show the
recent results.

Keywords: SAT-problem, ternary vector, intersection, difference.

1 Introduction

Boolean problems combine practical and theoretical aspee special way. Kon-
rad Zuse [7] revealed the practical importance that tweedéfit values of a binary
variable can be safely distinguished in a physical systehs tinderstanding led
to the breakthrough of modern computer science. The firgt fuhctional electro-

mechanical digital computer in the world (the Z3) was cortealeby Zuse in 1941.
Recently, the binary representation and processing ofrimdi¢ion is used in more
and more areas of our life. Computers can process 64-bit atsntirectly in a

Manuscript received August 4, 2007.

B. Steinbach is with Institute of Computer Science, Uniitgrof Mining and Tech-
nology Freiberg, Bernhard-von-Cotta-Str. 2, D-09596 Beej, Germany (e-mail:st ei nb
@nformatik.tu-frei berg.de). C. Posthoff is with the Department of Mathemat-
ics & Computer Science, University of The West Indies, Tdad & Tobago, (e-mail:
Chri sti an. Post hof f @t a. uwi . edu).

395

396 B. Steinbach and Ch. Posthoff:

single step. Programs, data, music and movies are storedsroCDVDs using
binary values. Phone calls, faxes, files and pictures ansindted as sequences of
binary values using ISDN or the Internet, and the traditi@malogous technolo-
gies of radio or TV will be substituted by digital systems imgva much higher
quality and requiring less resources.

In addition to the theories of Boolean Algebras and the BaolBifferential
Calculus [5], certain Boolean problems appear as a key inpbexity theory [6].
The Boolean satisfiability problem (SAWas the first knowrNP-complete prob-
lem A decision problem is in the complexity class NP if a nonedeitinistic Tur-
ing machine can solve it in polynomial time. A decision peshlis NP-complete
if it is in NP and every problem in NP can be reduced [3] to it bgalynomial-
time reduction. Stephen Cook proved that the Boolean saiify problem is
NP-complete [1]. This theorem was independently proven bgnid Levin [4]
at about the same time, therefore it is called Cook-Levirothe. NP-complete
problems are the most interesting problems in NP. In theectrdf the practical
importance mentioned above we suggest in this paper an agpto solve large
SAT-problems as efficient as possible.

2 Preliminaries

In order to make this note independently readable, we suimentire concepts that
have been used previously. Let

X=(Xg,--*, %), % € {0,1,—},i=1....n

Thenx is called aternary vectorwhich can be understood as an abbreviation of a
set of binary vectors. When we replace eachy 0 or 1, then we get several binary
vectors generated by this ternary vector. In this way, tretoré0— 1—) represents
four binary vector§0010, (0011), (0110 and(0111). A list (matrix) of ternary
vectors can be understood as the union of the correspondiagbinary vectors.

A Boolean expression is said to katisfiableif binary values 0 or 1 can be
assigned to its variables in a way that makes the expresgioal & 1 (true). Both a
variable and its negation are calli#grals. A disjunction of literals is calledlause
A Boolean expression is given igonjunctive formif it only consists of clauses
connected by AND-operators. The check for satisfiabilit)k{pis NP-complete if
the Boolean expression is given in conjunctive form wittethor more variables
in its clauses. In the special case of the 3-SAT problem eklse includes three
literals. This problem is particularly important becaubyg {ncreasing the number
of variables) each SAT-problem can be transformed into &B48oblem.

If we consider now one clause of a 3-SAT problem, suclCasx, VX3V Xa,
then we find all solutions o = 1 in the following way:

Set-Based SAT-Solving 397

e If X, =1, thenC = 1 independent on the other variables. Herleel — —)
describes a set of solutions.

e If X, =0, thenxz =1, i.e. x3 = 0 gives more solutions that are not covered
by the previous case and described(by0—).

e Finally, if x, = 0 andxs = 1, thenxs must be equal to 1. Thu$;-011) is
another set of solutions.

The three solution sets do not have common elements, thvsaoteons of al-
ways two of these sets is empty, i.e. we hdisgoint solution sets. This property
can easily be seen from the representing ternary vectoed:l@ast one of the com-
ponents of the two representing vectors we find the comlinadf values 0 and
1.

If we consider now two clauses;C, = 1, then we build the solution sets of
C; =1 andC, = 1 and find the solution &;C, = 1 as intersection of the respective
solution sets.

The intersection will be computed according to Table 1 wiiiak to be applied
in each component. 0 indicates that the intersection igyanm can be omitted.

Table 1. Intersection of Ternary Values
Xi 0 0 0|1 1 1
yi |01 —|0 1
XNy; |0 0 0|0 1

o|lo |
Pl

1

A sophisticated coding of the three values 0, 1 andllows the introduction
of binary vector operations that can be executed on the t#welgisters (32, 64 or
even 128 bits in parallel). We use the coding of Table 2.

Table 2. Binary Code of Ternary Values

ternary value| bitl bit2
0 1 0
1 1 1
- 0 0

When the three-valued operations for the intersection raresterred to these
binary vectors, then the empty intersection can be detexniy

bit1(x) A bit1(y) A (bit2(x) @ bit2(y)) # O.

If the intersection is not empty, then it can be determinedheyfollowing bit
vector operations:

398 B. Steinbach and Ch. Posthoff:

bitl(xNy) = bit1(x) Vv bitl(y), bit2(xNy) = bit2(x) Vv bit2(y).

Hence, by using some very fast and very simple bit vectoraifmers, we can
find the solution sets of any SAT-equations, and especidllg-8AT-equations.
In [2] this could be done for a maximum of up to 280 variableatout 10 minutes.

3 Analysis

One problem, however, occurred for some SAT-problemsedlad the representa-
tion of intermediate results (sets of solution candidatd$)e number of solution
candidates can and will get smaller and smaller, partibulahen we assume a
small set of final solutions. The number of intermediatedeyrvectors, however,
can be very large and require large amounts of memory spateanputing time
to process these sets of ternary vectors.

In the following we will see that the overlap of the variahles. the number
of common variables, in different disjunctions will be inrtant for the growth of
intermediate results. At first we want to see the frequenah@$e overlaps.

Let us considen variables, then we will finc(n

3) different combinations of

variables:

(n) ~nin-1)(n-2) o

3 _ Y

6
In order to determine the chances for an overlap, we consider

Q) = < n > < n > _ n(n—1)(n—2)n(n—1)(n—2) 8

3 3 6-6

possible pairs of disjunctions.

A. Nooverlap
In order to get disjoint sets of variables in the two disjumes, we must have
n> 6, and then we find

Qo(n) = < n) < n—3 > _ n(n—1)(n—2)(n-3)(n—4)(n—5) 6

3)7 66 ~

different combinations. In order to generalize this anialyge introduce

(2)-

Set-Based SAT-Solving 399

in this formula and get for no overlap
n n n—3
w0 -(5)(5) (")
B. Oneoverlap

We haven single positions for the overlap, the remaining- 1 positions are

available for 2 variables, hence,(N~ first disjunctions. The second dis-

2
junction must use the same position for the overlap, 2 moséipas are forbidden,

n_
hence,< 5

Ql(n):n< n;l > (n;3 > _ n(n—l)(n—231(n—3)(n—4) o rf

3) possible second disjunctions. Altogether we have

possible pairs of disjunctions overlapping in one varialteorder to continue the
generalization we use
(1)-
1)="

in this formula and get for one overlap
n n—1 n—3
am-(1)("27)("")

We have 2 possible combinations for the overlapping positions, Hielt

variable can usén— 2) positions. In the second disjunction the overlapping po-
sitions are the same, the third variable can use- 3) positions. Therefore we
get

C. Two overlaps

Qy(n) = (’ > (n-2)n-3 ="V 20 e

possible pairs overlapping in two variables. Using

n-2 n-3
< 1 >_n—2 and < 1 >_n—3

we get for two overlaps

wan-(1)("5%)("5°)

400 B. Steinbach and Ch. Posthoff:

Table 3. Distribution of Overlapping
n=10 | percentage n=20 percentage
Q(n) | 14,400| 100.00 | 1,299,600, 100.00
(n) | 4,200 29.17 775,200 59.65
(n) | 7,560 52.50 465,120 35.79
Qz(n) | 2,520 17.50 58,140 4.47
(n)

120 0.83 1,140 0.09

D. Three overlaps
Each combination of three variables can overlap only it¢eifice we have

Qg(n):<2>:WQn3

pairs of disjunctions with three overlapping variables. ohder to find a general

solution we use
n-—3
(")

twice and get for three overlaps

n n—3 n—3
o =(5)("°) (")
As general distribution of possible combinations of clauseerlapping irm
variables, 0< m < 3, for solving a 3-SAT-problem we get

n n—m n—3
= () (30) (55) @
For smallem the overlap is quite remarkable. For largewe can see in Table
3 that the overlap more and more will be a rare case. This vhten takes into
account the comparison of exactly two clauses. For a larggbeu of clauses and

a large number of variablas there is still a significant number of overlaps.
Now we will explore the effect of the overlap.

A. Two digunctions, no overlap: nine orthogonal solution vectors.

f(a,b,c,d,e f) =(avbvc)(dvevf)

Set-Based SAT-Solving 401

a b c d e f a b ¢c d e f
1 - - — — — - - -1 - -
01 - - — |- - 201 |7
o0 1 - — — - — — 0 0 1

a b c d e f

1 - -1 - -

1 - -0 1 —

1 - - 0 0 1

o1 -1 — —

01 — 0 1 -

01 - 00 1

0 0 1 1 —

0 0 1 0 1 —

0 0 1 00 1

This is the crucial situation for the large increase of intediate lists of vectors.
B.1 Two digunctions, one overlap, the overlap variable either non-negated
in both digunctions or negated in both disunctions: five orthogonal solution

vectors.

f(a,b,c,d,e) = (avbvc)(cvdVe)

a b c d e
a b c d e a b c d e - -1 - -
__1__ﬂ__1__:>1_01_
1 0o - - - - 0 1 - 1 0 0 1
0 1 0 - - - — 0 0 1 0 1 0 1 —
0O 1 0 0 1

f(a,b,c,d,e) = (avbvc)(tvdVve)

This case can be reduced to the previous case using thetstibst = x which
results in

f(a,b,x,d,e) = (avbvx)(xvdVe),

with exactly the same results. For the minimal set of sofutiectors the overlap
variable has to be used first, the other variables can folioany order.

402 B. Steinbach and Ch. Posthoff:

B.2 Two digunctions, one overlap, the overlap variable once negated and
once non-negated: four orthogonal solution vectors.

f(a,b,c,d,e) = (avbvc)(cvdve)

a b c d e a b c d e a b cd e
—— 1 = = e - -1 1 -
1—0——0——11—$1:é(_)_1
0O 1 0 — -— - — 1 0 1 01 0 — —

For the orthogonal representation the overlap variablethdé® used first, the
other variables can follow in any order.

C.1Twodigunctions, two overlaps, the overlap variablesboth non-negated
(or both negated): three orthogonal solution vectors.

f(a,b,c,d) = (avbvc)(bvecvd)
ab c d a b c d a b c d
-1 - - -1 - - -1 - -
o1 - M- 01 - |7 -0 -
1 0 0 — - 0 0 1 1 0 0 1

For the orthogonal representation the overlap variable® ba be used first.
If the two overlap variables are both negated, an apprapsabstitution, such as
b=x,T=Yy, has to be used.

C.2 Two digunctions, two overlaps, one overlap variable negated and non-
negated, the second variable negated or non-negated twice: four orthogonal

solution vectors.
f(a,b,c,d) = (avbvc)(bvecvd)

a b c d a b c d a b c d
—1 = _ — 0 — = -1 1 -
—01—ﬂ—1l—$:é(1)_1
1 0 0 — -1 0 1 100 —

For the orthogonal representation the overlap variables lmbe used first. If
the second overlap variable is negated in both disjunctiansappropriate substi-
tution, such ag = x, has to be used.

Set-Based SAT-Solving 403

D.1 Two disunctions, three overlaps, all three variables non-negated or all
three variables negated: three orthogonal solution vectors.

In this case the two disjunctions are equal to each othegebend disjunction
can be deleted, the first disjunction will have three orthm@d@olution vectors.

D.2 Two digunctions, three overlaps, onevariable negated and non-negated:
four orthogonal solution vectors.

f(a,b,c) =(avbvc)(@avbvece)

a b c a b c ab c
1 = = O 11 -
01—011—;¥é(1)_1
0 0 1 1 0 1 00 1

Here the result is very simple, the second and the third vedttine two initial
matrices will be taken in combination with the first of the @tlmitial matrix.

D.3 Twodigunctions, threeoverlaps, two variables negated and non-negated:
four orthogonal solution vectors.

f(a,b,c) = (avbvc)(avbve

~

a b c a b c abc
1 — 0= = 1 0 —
o1 - |M10-]7 sl
0 0 1 1 1 1 00 1
Here we get the same number of solution vectors as beforesdlb#on itself

has changed slightly.

D.4 Two digunctions, three overlaps, three variables negated and non-
negated: four orthogonal solution vectors.

f(ab,c) = (avbvc)(@avbve

~=

a b c a b c ab c
S - 1 0 -
01—ﬂ10—:318
0 0 1 1 1 0 00 1

404 B. Steinbach and Ch. Posthoff:

Here we get the same number of solution vectors as beforesdlb#on itself
has again changed slightly.

4 Implementation Aspects

4.1 Restriction-based approach

In the set-based approach for solving the 3-SAT problem tagdaced above par-
tial solution sets for each clause are generated direcihgu iterative or recursive
algorithm. Intersections of these partial solution setglpce the wanted solution.

Alternatively an efficient restriction-based approach banused. The 3-SAT
problemf(x) = 1is given in a conjunctive form which can be expressed by a TVL
where the form is indicated by the letter 'C’. As example theation

f(a,b,c,d,e) = (avbvc)-(avbvc)-(avbve)-(@avbvd) - (cvdve) =1

of a 3-SAT problem is depicted by

a b ¢ d e

1 1 0 — —

1 0 1 — —
C(f)= 0 0 — - 1 =1

0O 1 — 1 -—

- -1 1 1

Since these ternary vectors express disjunctions, there direct mapping to
sets. In order to overcome this disadvantage, the negatiord@ing to the rule of
de Morgan can be applied. In case of the above example we get

f(a,b,c,d,e) =abcvabcvabevabdvcde=0.

The execution of the negation according to de Morgan (NDNI\bih a TVL is
very simple and fast. The values 0 and 1 will be exchangedthantbrm predicate
changes from 'C’ to 'D’ ('D’ with the meaning of a disjunctivierm):

a b ¢ d e

0O 0 1 — —

0O 1 0 — -—
D(f)= 1 1 — — 0 =0.

1 0 - 0 —

- — 0 0 O

Ina TVL in disjunctive form each ternary vector can be intetpd in two ways:

Set-Based SAT-Solving 405

1. the elements describe the literals of the associatediccipn,
2. the whole vector describes a set of binary vectors.

In case of an homogeneous restrictive equabdii) = O each ternary vector
describes a restriction set: all binary vectors expressetthd set of a ternary vec-
tor do not belong to the solution set of the original equatibhe valuesa=0,b =
0,c =1, for instance, result iaVv b\t = 0 which is not a solution of the original
equation, or irebc= 1 which is not a solution ob(f) = 0. A complement op-
eration transforms such a partial restriction set into aiiregl partial solution set.
There are two algorithms that achieve this complement djperand the intersec-
tion of the partial solution set with the global solution. €éBe algorithms will be
explored in the next two subsections.

4.2 1SC-based algorithm

The ISC-based algorithm realizes basically the methodribestin section 3 and
uses the restriction-based approach. After a single NDratpn of the TVL
given in conjunctive form we use the partial restriction §&¥t) to create in a loop
partial solution setsps9 by means of a complement operation (CPL [5]) which
then can immediately be used to calculate the interseck®@ [5]) with the previ-
ous intermediate solutio§_;:

S=S.1Npss=3J-1NPrs. 2)
Thus, the core of the ISC-based algorithm is

Sfi| = 1SC(S]i — 11,CPL(prsii) 3)

whereS = 1, represented by a single ternary vector with dashes only.

An advantage of the orthogonal ternary representation @frégb solution set
is the possibility that eight partial binary solution vest@re expressed by three
disjoint ternary vectors. A disadvantage of this represiion is the asymmetry
of the columns. This asymmetry is observable by differenhbers of dashes,
precisely 0, 1, and 2, in the columns of the variables givahénclause. Due to the
results of the analysis in Section 3 a controlled complenopetation is required
which creates zero dashes in that column of the partial isolget fitting to the
column of the intermediate solution matrix having the sestlhumber of dashes.

A further disadvantage of a partial solution set is the arpgegmentation of
the set into three subsets. The disadvantageous effedts segmentation are:

1. The time for the combination of these three subsets with @actor of the
intermediate solution is three times higher than the preingsof a single set.

406 B. Steinbach and Ch. Posthoff:

2. There is an unnecessary segmentation of the intermesiidition matrix
which requires more time and space in the following calcoasteps.

The second effect can be explained using the example thaeeasintroduced
in subsection 4.1. The intermediate solution that takesawstount the first four of
five clauses is equal to

ab c d e
10 - 1 -
=111 - — 1],
01 1 - -
00 0 — —

and the remaining fifth clause s\ dV e).
Based on (2) and (3) we get

ab c d e

101 1 -

1 00 1 -

abedey fag
%:&m__OI_zlloll
_ _ 00 1 110 0 1
01 1 —

0 00 1 -

0 00 0 1

It can be seen that the first row 8f builds solution vectors with the first and
second row of the partial solution set. The created two mEwiutets may be ex-
pressed by a single ternary vector. The second vect&®; dlilds even three so-
lution vectors with all three rows of the partial solutiort.s&hese three solution
vectors may be expressed by a single ternary vector too. éifgignt reduction
from 8 to 5 solution vectors is possible.

It should be mentioned that in this example each one of thpassible permu-
tations of the representation of the partial solution seti$eto the same number of
solution vectors.

4.3 DIF-based algorithm

Another even more fundamental change of the solution phylog arises when
we merge the complement and intersection operation of (@)aninto difference
operations (DIF [5]). Instead of using the intersectionhvitie partial solution set

Set-Based SAT-Solving 407

of three vectors we exclude the partial restriction set ftbmintermediate solution
matrix.

S=S5-1\prs. (4)

Thus, the core of the DIF-based algorithm is

Sli] = DIF (Si - 1], prsli]) (5)

where S = 1 is represented again by a single ternary vector that iesluzhly
dashes. The exclusion of the non-solution vectors by mebtiedIF-operation
is quite easy, the vectors of the first matrix will be orthoglired with regard to
the vector to be eliminated and the common vectors are theavay.

The disadvantages of the ISC-based algorithm change inantabes of the
DIF-based algorithm. Instead of three vectors in a partéition set there is a
single vector in a partial restriction sqir§). This reduces the time for comparison
for the set by a factor of three. Of cause, there is no asynyrirethe representation
of prs so that no decision about the order of the columns is negesanally,
it is especially important that unnecessary segmentatidrsolution sets in the
intermediate solution matrix are omitted.

This very important effect can be illustrated by solving gamne task as in
the 1ISC-based algorithm. The partial restriction set far thause(cv dVe) is
prs = (— —000), because if each of the variables is equal to 0, then theeliaus
equal to 0 - no solution exists in this case. Based on (4) anavbget

ab c d e ab c d e
10 - 1 -

10 - 1 — 11 - - 1

S=111- — 1 |[\(—-000=

o011 — —

01 1 —

00 0 — - 00 0 1 —
00 0 0 1

The DIF-based algorithm creates directly the minimal sofutin the example
the partial restriction set is orthogonal to the first threeters of the intermediate
solution matrix - these vectors remain unchanged. Onlyabsiedector must change,
it will be replaced by the two vector®001-) and (00001). The vector(00000
has been excluded. The representation of the matri&fer S;\ (— — 000) only
needs 5 lines instead of 8. The efficiency of this 'tiny’ stelfl e seen when we
look at the experimental results.

408 B. Steinbach and Ch. Posthoff:

44 Order of the clauses

In addition to the restriction-based approach it helps tortkize the intermediate
solution matrix when the clauses are used in a well ordereg \Wde analysis

showed that the overlap of two disjunctions in at least omeakbke reduces the
number of required ternary vectors from nine to three, faufive. This property

can now be used to make the intermediate matrices as smatisatle. A very

efficient strategy can be designed as follows:

1. Determine the frequency of each variable in the diffecdauses.
2. Sort the set of clauses according to these frequencies.

We call the implemented algorithm based on this strategyt 0. The applica-
tion of sor t 0 for an example of 50 variables and 218 clauses, for instaimeyed
the following frequencies faxy, ..., Xso:

X14: 22, Xa9: 20, X3: 18 Xp0: 18 X35: 18 Xx7: 17,...

Hence, the clauses have been sorted according to theseffi@gsi first all clauses
with xy4 followed by all clauses containingyg etc. Due to the overlapping all
rows have been sorted after 42 of the 50 variables have beesideved. The
experimental results in the next section will show an enarsnimcrease of the
efficiency.

Two clauses that overlap in one variable include 4 otheatées into the inter-
mediate matrix. If all variables of a clause are covered bgthadditional variables,
it restricts the remaining search space. More generallg, an advantage when a
clause is included into the ordering if all of its variablee aovered by the vari-
ables of the ordered matrix created so far. Hence, a moreegiffistrategy can be
designed as follows:

1. Determine the frequency of each variable in the diffectatises.

2. Sort the set of clauses according to these frequenciesnahdie clauses
independent on these frequencies, if they are covered etemplby the or-
dered matrix created so far.

We call the implemented algorithm based on this extendedegtysort 1.
Table 4 shows that the applicationgdr t 1 to the same example of 50 variables
and 218 clauses uses much more clauses for the same restrigteber of vari-
ables. Due to the overlapping all rows have been sortesidryt 1 after six of the
50 variables have been considered.

Set-Based SAT-Solving 409

Table 4. Number of variables and clauses in the sorted maiiex consideration
of the selected variable

variable X1a | Xa9 | X3 | X32 | X35 | X7
covered variables 27| 37| 44| 49| 50| 50
clauses taken byortQ | 22| 42| 59| 71| 86| 97
clauses taken byort 1l | 26 | 81| 136 | 180 | 213 | 218

5 Experimental Results

The experiments have been very interesting and successfatder to be compa-
rable, two examples given in [8] that allow to demonstrate riflationships have
been chosen at random. All experiments were executed ontauPePC of 3 GHz.
15 msec were the smallest time interval that has been usebdaneasurements.
We made 2 GB memory available for the storing of clauses amddmputation of
the solution.

The Example uf20-91. This example has 20 variables and 91 clauses.

Intersection
Maximum number of intermediate clauses: 4391.
Maximum at clause: i=22.
Computing time: 31 msec.

Difference
Maximum number of intermediate clauses: 2245.
Maximum at clause: i=22.
Computing time: 15 msec.

Figure 1 shows the size of the intermediate TVLs after themasation of each
clause for both algorithms using a linear scale.

The Example uf50-218 This example has 50 variables and 218 clauses.

Intersection
Maximum number of intermediate clauses: 54,860,864.
Memory overflow at clause= 27.
Computing time until overflow: 40,781 msec.

Difference
Maximum number of intermediate clauses: 87,418,986.

410 B. Steinbach and Ch. Posthoff:

5000 I I |
ISC-based - - - --
4500 |- : DIF-based——

4000 : i
3500 - . i
3000 S .
rows 2500 - .
2000 | '
1500
1000 |
500 -

0 ! ! 1 1 -| I ! !
0 10 20 30 40 50 60 70 80 90 100

clause number

Fig. 1. Comparison of the number of ternary vectors in therimediate TVL using the ISC- and the
DIF-based algorithm for the solution of the SAT benchmarR0401 that depends on 20 variables
and 91 clauses, on a linear scale of the rows.

Maximum at clause: i=57.
Computing time: 92,312 msec.

The comparison between the two examples above shows th#béhaenefit of
the DIF-based algorithm grows with the increased numbeiagbbles. The ISC-
based algorithm needs for the example with 20 variablesoppately 2 times the
peak memory of the DIF-based algorithm. A memory overflonuns@n case of the
50 variables example for the ISC-based algorithm at claWsetiere 54,860,864
intermediate solution vectors have been created. The B#ed algorithm repre-
sents the same intermediate solution by 2,807,324 veclimis®1 msec. Hence,
the 1ISC-based algorithm needs for the example of 50 vasdixéore the memory
overflow approximately already 20 times the memory of the-b#sed algorithm.
Figure 2 shows the size of the intermediate TVLs after themaation of each
clause for both algorithms using a logarithmic scale of rows

Now we apply the algorithnsor t O in order to find the solution faster using
less memory.

Intersection and sorting by algorithsor t O
Maximum number of intermediate clauses: 68,644,688.

Set-Based SAT-Solving 411

1e+008¢

ISC-blased R
DIF-based——

1e+007}
1e+006}
100000F
rows 10000}
1000 ¢

100}

10}

1 [1 1 1 1
0 50 100 150 200 250

clause number

Fig. 2. Comparison of the number of ternary vectors in therimtediate TVL using the ISC-based and
the DIF-based algorithm for the solution of the SAT benchm#d60-01 that depends on 50 variables
and 218 clauses, on a logarithmic scale of the rows withatitgp

Memory overflow at clause= 79.
Computing time until overflow: 121,750 msec.

Difference and sorting by algorithmor t 0
Maximum number of intermediate clauses: 658,418.
Maximum at clause: i=83.

Computing time: 968 msec.

The comparison between the examples without sorting and satting by
sort 0 shows a gigantic improvement. The required memory for thE-Based
algorithm is reduced by applying the algoritteor t O by more than two orders
of magnitude. A memory overflow occurs for the ISC-based rétlgm with sort-
ing by sort 0 at clause 79 where 68,644,688 intermediated solution k&ebttave
been created. The DIF-based algorithm represents the sdemméediate solution
by 631,078 vectors after 390 msec. Hence, usiagt 0 the ISC-based algorithm
needs for the example of 50 variables before the memory ovedlready more
than 100 times the memory of the DIF-based algorithm.

412 B. Steinbach and Ch. Posthoff:

1e+008¢

ISC blased R
DIF based——

1e+007}

1e+006}
100000F
rows 10000
1000F .

100f
10 [/

1 [1 1 1 1
0 50 100 150 200 250

index of used clause

Fig. 3. Comparison of the number of ternary vectors in therimtediate TVL using the ISC-based and
the DIF-based algorithm for the solution of the SAT benchm#d60-01 that depends on 50 variables
and 218 clauses, on a logarithmic scale of the rows withrsphiysor t 0.

Figure 3 shows the size of the intermediate TVLs after themaation of each
clause for both algorithms applyirgpr t 0 using a logarithmic scale of rows.

Finally we apply the algorithnsort 1 in order to evaluate further improve-
ments with regard of time and space.

Intersection and sorting by algorithisior t 1
Maximum number of intermediate clauses: 2,184,865.
Maximum at clause: i=90.

Computing time: 10,531 msec.

Difference and sorting by algorithmor t 1
Maximum number of intermediate clauses: 81,741.
Maximum at clause: i=90.

Computing time: 250 msec.

The comparison between the examples with sorting byt 0 and bysort 1
shows again a significant improvement. The ISC-based #igorsolved the ex-

Set-Based SAT-Solving 413

1e+008¢

ISC blased R
DIF based——

1e+007}

1e+006}
100000F
rows 10000
1000F .

100f
10 [/

1 [1 1 1 1
0 50 100 150 200 250

index of used clause

Fig. 4. Comparison of the number of ternary vectors in therimtediate TVL using the ISC-based and
the DIF-based algorithm for the solution of the SAT benchm#d60-01 that depends on 50 variables
and 218 clauses, on a logarithmic scale of the rows withrsphiysort 1.

ample of 50 variables and 218 clauses in about 10 secondsaftag bysort 1
in contrast to memory overflows after 2 minutes and 79 clausease ofsort 0
or after 40 seconds and 27 clauses without sorting. The nedjmemory for the
DIF-based algorithm is reduced by applying the algorithar t 1 in comparison
to the algorithmsor t 0 by about one order of magnitude.

Figure 4 shows the size of the intermediate TVLs after themaation of each
clause for both algorithms applyirgpr t 1 using a logarithmic scale of rows.

6 Conclusions

Two sources were consequently used in this paper to imptoweower of set-
based SAT solvers. At first, a systematic analysis of the efgany task to be
solved by a set-based SAT solver revealed the potentiald#rimg and require-
ments for the representation of the partial solution setxo8dly, the analysis of
the restriction-based approach indicated the advantdgbe DIF-based algorithm
in opposition to the classical ISC-based algorithm.

414 B. Steinbach and Ch. Posthoff:

The experimental results are overwhelming. Depending emtimber of vari-
ables, an improvement of up to two orders of magnitude in nrgrspace was
observed for the DIF-based algorithm in comparison to th@-based algorithm.
An additional factor of two orders of magnitude has beenaad when the algo-
rithm sort 0 is used as preprocessor. The algoriteor t 1 improves the effect
of the algorithmsor t O by one more order of magnitude. Altogether, an improve-
ment by a factor of about 2an memory requirements for set-based SAT solvers
has been achieved. The achieved speed-up has approxirtreeigme value.

It should be mentioned that the required time for sortingagligible. It is very
easy now to see and to understand the advantage of sortiotatises according to
the frequency of the variables in different clauses andraicg a general coverage.
And there can be no doubt at all that in all these SAT-relatethlpms the use of
the difference and even more the use of the difference tegeitth the sorting of
the clauses will increase the efficiency in a way that is vemglho imagine.

Further experiments will be published as soon as possilhle tfinsfer of these
methods to a system of processors working in parallel alsaddae considered as
soon as possible.

References

[1] St. Cook: The Complexity of Theorem Proving ProceduRrsceedings of the third
annual ACM symposium on Theory of computing, Shaker HeigBtsio, United
States, 1971, pp. 151-158.

[2] M. Johnson, Ch. Posthoff: TRISAT - A SAT - solver usingrtary-valued logics.
14th International Workshop on Post-Binary ULSI Systenag@ry, Canada, 2005.

[3] R.M. Karp. Complexity of computer computations. In RN&ller and J.W. Thatcher
(editors): Reducibility Among Combinatorial Problems,viN&ork, Plenum Press.
1972, pages 85-103.

[4] L. Levin: Universal’'nye perebornye zadachi. Problemgrédachi Informatsii 9 (3),
1973, pp. 265-266. English translation: Universal Searcoems. in B.A. Trakht-
enbrot: A Survey of Russian Approaches to Perebor (Bruted-8earches) Algo-
rithms. Annals of the History of Computing 6 (4), 1984, pp43300.

[5] Ch. Posthoff, B. Steinbach: Logic Functions and Equatie Binary Models for
Computer Science. Springer, Dordrecht, The Netherlar@i34} 2

[6] 1. Wegener: Complexity Theory - Exploring the Limits offfi€ient Algorithms.
Springer, Dordrecht, The Netherlands, 2005.

[7]1 K. Zuse: The Computer My Life. Springer-Verlag, Berligidelberg, Germany,
1993. (translated from the original German edition: Der @ater Mein Lebenswerk.
Springer, 1984)

[8] SATLIB - Benchmark Problems.
http://www.intellektik.informatik.tu-darmstadt.deXSLIB/benchm.html

