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Set-Based SAT-Solving

Bernd Steinbach and Christian Posthoff

Abstract: The 3-SAT problem is one of the most important and interesting NP-complete
problems with many applications in different areas. In several previous papers we
showed the use of ternary vectors and set-theoretic considerations as well as binary
codings and bit-parallel vector operations in order to solve this problem. Lists of or-
thogonal ternary vectors have been the main data structure,the intersection of ternary
vectors (representing sets of binary solution candidates)was the most important set-
theoretic operation. The parallelism of the solution process has been established on
the register level, i.e. related to the existing hardware, by using a binary coding of
the ternary vectors, and it was also possible to transfer thesolution process to a hier-
archy of processors working in parallel. This paper will show further improvements
of the existing algorithms which are easy to understand and result in very efficient
algorithms and implementations. Some examples will be presented that will show the
recent results.

Keywords: SAT-problem, ternary vector, intersection, difference.

1 Introduction

Boolean problems combine practical and theoretical aspects in a special way. Kon-
rad Zuse [7] revealed the practical importance that two different values of a binary
variable can be safely distinguished in a physical system. This understanding led
to the breakthrough of modern computer science. The first fully functional electro-
mechanical digital computer in the world (the Z3) was completed by Zuse in 1941.
Recently, the binary representation and processing of information is used in more
and more areas of our life. Computers can process 64-bit numbers directly in a
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single step. Programs, data, music and movies are stored on CDs or DVDs using
binary values. Phone calls, faxes, files and pictures are transmitted as sequences of
binary values using ISDN or the Internet, and the traditional analogous technolo-
gies of radio or TV will be substituted by digital systems having a much higher
quality and requiring less resources.

In addition to the theories of Boolean Algebras and the Boolean Differential
Calculus [5], certain Boolean problems appear as a key in complexity theory [6].
The Boolean satisfiability problem (SAT)was the first knownNP-complete prob-
lem. A decision problem is in the complexity class NP if a non-deterministic Tur-
ing machine can solve it in polynomial time. A decision problem is NP-complete
if it is in NP and every problem in NP can be reduced [3] to it by apolynomial-
time reduction. Stephen Cook proved that the Boolean satisfiability problem is
NP-complete [1]. This theorem was independently proven by Leonid Levin [4]
at about the same time, therefore it is called Cook-Levin theorem. NP-complete
problems are the most interesting problems in NP. In the context of the practical
importance mentioned above we suggest in this paper an approach to solve large
SAT-problems as efficient as possible.

2 Preliminaries

In order to make this note independently readable, we summarize the concepts that
have been used previously. Let

x = (x1, · · · ,xn),xi ∈ {0,1,−}, i = 1, . . . ,n.

Thenx is called aternary vectorwhich can be understood as an abbreviation of a
set of binary vectors. When we replace each− by 0 or 1, then we get several binary
vectors generated by this ternary vector. In this way, the vector (0−1−) represents
four binary vectors(0010), (0011), (0110) and(0111). A list (matrix) of ternary
vectors can be understood as the union of the corresponding sets of binary vectors.

A Boolean expression is said to besatisfiableif binary values 0 or 1 can be
assigned to its variables in a way that makes the expression equal to 1 (true). Both a
variable and its negation are calledliterals. A disjunction of literals is calledclause.
A Boolean expression is given inconjunctive formif it only consists of clauses
connected by AND-operators. The check for satisfiability (SAT) is NP-complete if
the Boolean expression is given in conjunctive form with three or more variables
in its clauses. In the special case of the 3-SAT problem each clause includes three
literals. This problem is particularly important because (by increasing the number
of variables) each SAT-problem can be transformed into a 3-SAT-problem.

If we consider now one clause of a 3-SAT problem, such asC = x2 ∨ x3∨ x4,
then we find all solutions ofC = 1 in the following way:
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• If x2 = 1, thenC = 1 independent on the other variables. Hence,(−1−−)
describes a set of solutions.

• If x2 = 0, thenx3 = 1, i.e. x3 = 0 gives more solutions that are not covered
by the previous case and described by(−00−).

• Finally, if x2 = 0 andx3 = 1, thenx4 must be equal to 1. Thus,(−011) is
another set of solutions.

The three solution sets do not have common elements, the intersections of al-
ways two of these sets is empty, i.e. we havedisjoint solution sets. This property
can easily be seen from the representing ternary vectors: inat least one of the com-
ponents of the two representing vectors we find the combination of values 0 and
1.

If we consider now two clausesC1C2 = 1, then we build the solution sets of
C1 = 1 andC2 = 1 and find the solution ofC1C2 = 1 as intersection of the respective
solution sets.

The intersection will be computed according to Table 1 whichhas to be applied
in each component. /0 indicates that the intersection is empty and can be omitted.

Table 1. Intersection of Ternary Values

xi 0 0 0 1 1 1 − − −
yi 0 1 − 0 1 − 0 1 −

xi ∩yi 0 /0 0 /0 1 1 0 1 −

A sophisticated coding of the three values 0, 1 and− allows the introduction
of binary vector operations that can be executed on the levelof registers (32, 64 or
even 128 bits in parallel). We use the coding of Table 2.

Table 2. Binary Code of Ternary Values

ternary value bit1 bit2
0 1 0
1 1 1
− 0 0

When the three-valued operations for the intersection are transferred to these
binary vectors, then the empty intersection can be determined by

bit1(x)∧bit1(y)∧ (bit2(x)⊕bit2(y)) 6= 0.

If the intersection is not empty, then it can be determined bythe following bit
vector operations:
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bit1(x∩y) = bit1(x)∨bit1(y), bit2(x∩y) = bit2(x)∨bit2(y).

Hence, by using some very fast and very simple bit vector operations, we can
find the solution sets of any SAT-equations, and especially of 3-SAT-equations.
In [2] this could be done for a maximum of up to 280 variables inabout 10 minutes.

3 Analysis

One problem, however, occurred for some SAT-problems related to the representa-
tion of intermediate results (sets of solution candidates). The number of solution
candidates can and will get smaller and smaller, particularly when we assume a
small set of final solutions. The number of intermediate ternary vectors, however,
can be very large and require large amounts of memory space and computing time
to process these sets of ternary vectors.

In the following we will see that the overlap of the variables, i.e. the number
of common variables, in different disjunctions will be important for the growth of
intermediate results. At first we want to see the frequency ofthese overlaps.

Let us considern variables, then we will find

(

n
3

)

different combinations of

variables:

(

n
3

)

=
n(n−1)(n−2)

6
≈ n3

.

In order to determine the chances for an overlap, we consider

Ω(n) =

(

n
3

)(

n
3

)

=
n(n−1)(n−2)n(n−1)(n−2)

6·6
≈ n6

possible pairs of disjunctions.

A. No overlap
In order to get disjoint sets of variables in the two disjunctions, we must have

n≥ 6, and then we find

Ω0(n) =

(

n
3

)(

n−3
3

)

=
n(n−1)(n−2)(n−3)(n−4)(n−5)

6·6
≈ n6

different combinations. In order to generalize this analysis we introduce
(

n
0

)

= 1
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in this formula and get for no overlap

Ω0(n) =

(

n
0

)(

n
3

)(

n−3
3

)

.

B. One overlap
We haven single positions for the overlap, the remainingn− 1 positions are

available for 2 variables, hence,n

(

n−1
2

)

first disjunctions. The second dis-

junction must use the same position for the overlap, 2 more positions are forbidden,

hence,

(

n−3
2

)

possible second disjunctions. Altogether we have

Ω1(n) = n

(

n−1
2

)(

n−3
2

)

=
n(n−1)(n−2)(n−3)(n−4)

4
≈ n5

possible pairs of disjunctions overlapping in one variable. In order to continue the
generalization we use

(

n
1

)

= n

in this formula and get for one overlap

Ω1(n) =

(

n
1

)(

n−1
2

)(

n−3
2

)

.

C. Two overlaps

We have

(

n
2

)

possible combinations for the overlapping positions, the third

variable can use(n− 2) positions. In the second disjunction the overlapping po-
sitions are the same, the third variable can use(n− 3) positions. Therefore we
get

Ω2(n) =

(

n
2

)

(n−2)(n−3) =
n(n−1)(n−2)(n−3)

2
≈ n4

possible pairs overlapping in two variables. Using
(

n−2
1

)

= n−2 and

(

n−3
1

)

= n−3

we get for two overlaps

Ω2(n) =

(

n
2

)(

n−2
1

)(

n−3
1

)

.
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Table 3. Distribution of Overlapping

n=10 percentage n=20 percentage

Ω(n) 14,400 100.00 1,299,600 100.00
Ω0(n) 4,200 29.17 775,200 59.65
Ω1(n) 7,560 52.50 465,120 35.79
Ω2(n) 2,520 17.50 58,140 4.47
Ω3(n) 120 0.83 1,140 0.09

D. Three overlaps
Each combination of three variables can overlap only itself, hence we have

Ω3(n) =

(

n
3

)

=
n(n−1)(n−2)

6
≈ n3

pairs of disjunctions with three overlapping variables. Inorder to find a general
solution we use

(

n−3
0

)

= 1

twice and get for three overlaps

Ω3(n) =

(

n
3

)(

n−3
0

)(

n−3
0

)

.

As general distribution of possible combinations of clauses overlapping inm
variables, 0≤ m≤ 3, for solving a 3-SAT-problem we get

Ωm(n) =

(

n
m

)(

n−m
3−m

)(

n−3
3−m

)

. (1)

For smallern the overlap is quite remarkable. For largern we can see in Table
3 that the overlap more and more will be a rare case. This observation takes into
account the comparison of exactly two clauses. For a large number of clauses and
a large number of variablesn, there is still a significant number of overlaps.

Now we will explore the effect of the overlap.

A. Two disjunctions, no overlap: nine orthogonal solution vectors.

f (a,b,c,d,e, f ) = (a∨b∨c)(d∨e∨ f )
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







a b c d e f
1 − − − − −
0 1 − − − −
0 0 1 − − −









⋂









a b c d e f
− − − 1 − −
− − − 0 1 −
− − − 0 0 1









⇒



































a b c d e f
1 − − 1 − −
1 − − 0 1 −
1 − − 0 0 1
0 1 − 1 − −
0 1 − 0 1 −
0 1 − 0 0 1
0 0 1 1 − −
0 0 1 0 1 −
0 0 1 0 0 1



































This is the crucial situation for the large increase of intermediate lists of vectors.

B.1 Two disjunctions, one overlap, the overlap variable either non-negated
in both disjunctions or negated in both disjunctions: five orthogonal solution
vectors.

f (a,b,c,d,e) = (a∨b∨c)(c∨d∨e)









a b c d e
− − 1 − −
1 − 0 − −
0 1 0 − −









⋂









a b c d e
− − 1 − −
− − 0 1 −
− − 0 0 1









⇒

















a b c d e
− − 1 − −
1 − 0 1 −
1 − 0 0 1
0 1 0 1 −
0 1 0 0 1

















f (a,b,c,d,e) = (a∨b∨c)(c∨d∨e)

This case can be reduced to the previous case using the substitution c= x which
results in

f (a,b,x,d,e) = (a∨b∨x)(x∨d∨e),

with exactly the same results. For the minimal set of solution vectors the overlap
variable has to be used first, the other variables can follow in any order.
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B.2 Two disjunctions, one overlap, the overlap variable once negated and
once non-negated: four orthogonal solution vectors.

f (a,b,c,d,e) = (a∨b∨c)(c∨d∨e)









a b c d e
− − 1 − −
1 − 0 − −
0 1 0 − −









⋂









a b c d e
− − 0 − −
− − 1 1 −
− − 1 0 1









⇒













a b c d e
− − 1 1 −
− − 1 0 1
1 − 0 − −
0 1 0 − −













For the orthogonal representation the overlap variable hasto be used first, the
other variables can follow in any order.

C.1 Two disjunctions, two overlaps, the overlap variables both non-negated
(or both negated): three orthogonal solution vectors.

f (a,b,c,d) = (a∨b∨c)(b∨c∨d)








a b c d
− 1 − −
− 0 1 −
1 0 0 −









⋂









a b c d
− 1 − −
− 0 1 −
− 0 0 1









⇒









a b c d
− 1 − −
− 0 1 −
1 0 0 1









For the orthogonal representation the overlap variables have to be used first.
If the two overlap variables are both negated, an appropriate substitution, such as
b = x, c = y, has to be used.

C.2 Two disjunctions, two overlaps, one overlap variable negated and non-
negated, the second variable negated or non-negated twice: four orthogonal
solution vectors.

f (a,b,c,d) = (a∨b∨c)(b∨c∨d)









a b c d
− 1 − −
− 0 1 −
1 0 0 −









⋂









a b c d
− 0 − −
− 1 1 −
− 1 0 1









⇒













a b c d
− 1 1 −
− 1 0 1
− 0 1 −
1 0 0 −













For the orthogonal representation the overlap variables have to be used first. If
the second overlap variable is negated in both disjunctions, an appropriate substi-
tution, such asc = x, has to be used.
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D.1 Two disjunctions, three overlaps, all three variables non-negated or all
three variables negated: three orthogonal solution vectors.

In this case the two disjunctions are equal to each other, thesecond disjunction
can be deleted, the first disjunction will have three orthogonal solution vectors.

D.2 Two disjunctions, three overlaps, one variable negated and non-negated:
four orthogonal solution vectors.

f (a,b,c) = (a∨b∨c)(a∨b∨c)









a b c
1 − −
0 1 −
0 0 1









⋂









a b c
0 − −
1 1 −
1 0 1









⇒













a b c
1 1 −
1 0 1
0 1 −
0 0 1













Here the result is very simple, the second and the third vector of the two initial
matrices will be taken in combination with the first of the other initial matrix.

D.3 Two disjunctions, three overlaps, two variables negated and non-negated:
four orthogonal solution vectors.

f (a,b,c) = (a∨b∨c)(a∨b∨c)









a b c
1 − −
0 1 −
0 0 1









⋂









a b c
0 − −
1 0 −
1 1 1









⇒













a b c
1 0 −
1 1 1
0 1 −
0 0 1













Here we get the same number of solution vectors as before. Thesolution itself
has changed slightly.

D.4 Two disjunctions, three overlaps, three variables negated and non-
negated: four orthogonal solution vectors.

f (a,b,c) = (a∨b∨c)(a∨b∨c)









a b c
1 − −
0 1 −
0 0 1









⋂









a b c
0 − −
1 0 −
1 1 0









⇒













a b c
1 0 −
1 1 0
0 1 −
0 0 1












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Here we get the same number of solution vectors as before. Thesolution itself
has again changed slightly.

4 Implementation Aspects

4.1 Restriction-based approach

In the set-based approach for solving the 3-SAT problem as introduced above par-
tial solution sets for each clause are generated directly using an iterative or recursive
algorithm. Intersections of these partial solution sets produce the wanted solution.

Alternatively an efficient restriction-based approach canbe used. The 3-SAT
problem f (x) = 1 is given in a conjunctive form which can be expressed by a TVL
where the form is indicated by the letter ’C’. As example the equation

f (a,b,c,d,e) = (a∨b∨c) · (a∨b∨c) · (a∨b∨e) · (a∨b∨d) · (c∨d∨e) = 1

of a 3-SAT problem is depicted by

C( f ) =

















a b c d e
1 1 0 − −
1 0 1 − −
0 0 − − 1
0 1 − 1 −
− − 1 1 1

















= 1.

Since these ternary vectors express disjunctions, there isno direct mapping to
sets. In order to overcome this disadvantage, the negation according to the rule of
de Morgan can be applied. In case of the above example we get

f (a,b,c,d,e) = abc∨abc∨abe∨abd∨cde= 0.

The execution of the negation according to de Morgan (NDM [5]) with a TVL is
very simple and fast. The values 0 and 1 will be exchanged, andthe form predicate
changes from ’C’ to ’D’ (’D’ with the meaning of a disjunctiveform):

D( f ) =

















a b c d e
0 0 1 − −
0 1 0 − −
1 1 − − 0
1 0 − 0 −
− − 0 0 0

















= 0.

In a TVL in disjunctive form each ternary vector can be interpreted in two ways:
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1. the elements describe the literals of the associated conjunction,

2. the whole vector describes a set of binary vectors.

In case of an homogeneous restrictive equationD( f ) = 0 each ternary vector
describes a restriction set: all binary vectors expressed by the set of a ternary vec-
tor do not belong to the solution set of the original equation. The valuesa = 0,b =
0,c = 1, for instance, result ina∨b∨ c = 0 which is not a solution of the original
equation, or inabc= 1 which is not a solution ofD( f ) = 0. A complement op-
eration transforms such a partial restriction set into a required partial solution set.
There are two algorithms that achieve this complement operation and the intersec-
tion of the partial solution set with the global solution. These algorithms will be
explored in the next two subsections.

4.2 ISC-based algorithm

The ISC-based algorithm realizes basically the method described in section 3 and
uses the restriction-based approach. After a single NDM-operation of the TVL
given in conjunctive form we use the partial restriction set(prs) to create in a loop
partial solution sets (pss) by means of a complement operation (CPL [5]) which
then can immediately be used to calculate the intersection (ISC [5]) with the previ-
ous intermediate solutionSi−i :

Si = Si−1∩ pssi = Si−1∩ prsi. (2)

Thus, the core of the ISC-based algorithm is

S[i] = ISC(S[i −1],CPL(prs[i])) (3)

whereS0 = 1, represented by a single ternary vector with dashes only.
An advantage of the orthogonal ternary representation of a partial solution set

is the possibility that eight partial binary solution vectors are expressed by three
disjoint ternary vectors. A disadvantage of this representation is the asymmetry
of the columns. This asymmetry is observable by different numbers of dashes,
precisely 0, 1, and 2, in the columns of the variables given inthe clause. Due to the
results of the analysis in Section 3 a controlled complementoperation is required
which creates zero dashes in that column of the partial solution set fitting to the
column of the intermediate solution matrix having the smallest number of dashes.

A further disadvantage of a partial solution set is the a priori segmentation of
the set into three subsets. The disadvantageous effects of this segmentation are:

1. The time for the combination of these three subsets with each vector of the
intermediate solution is three times higher than the processing of a single set.
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2. There is an unnecessary segmentation of the intermediatesolution matrix
which requires more time and space in the following calculation steps.

The second effect can be explained using the example that hasbeen introduced
in subsection 4.1. The intermediate solution that takes into account the first four of
five clauses is equal to

S4 =













a b c d e
1 0 − 1 −
1 1 − − 1
0 1 1 − −
0 0 0 − −













,

and the remaining fifth clause is(c∨d∨e).
Based on (2) and (3) we get

S5 = S4∩









a b c d e
− − 1 − −
− − 0 1 −
− − 0 0 1









=





























a b c d e
1 0 1 1 −
1 0 0 1 −
1 1 1 − 1
1 1 0 1 1
1 1 0 0 1
0 1 1 − −
0 0 0 1 −
0 0 0 0 1





























.

It can be seen that the first row ofS4 builds solution vectors with the first and
second row of the partial solution set. The created two solution sets may be ex-
pressed by a single ternary vector. The second vector ofS4 builds even three so-
lution vectors with all three rows of the partial solution set. These three solution
vectors may be expressed by a single ternary vector too. A significant reduction
from 8 to 5 solution vectors is possible.

It should be mentioned that in this example each one of the sixpossible permu-
tations of the representation of the partial solution set leads to the same number of
solution vectors.

4.3 DIF-based algorithm

Another even more fundamental change of the solution philosophy arises when
we merge the complement and intersection operation of (2) and (3) into difference
operations (DIF [5]). Instead of using the intersection with the partial solution set
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of three vectors we exclude the partial restriction set fromthe intermediate solution
matrix.

Si = Si−1\ prsi . (4)

Thus, the core of the DIF-based algorithm is

S[i] = DIF (S[i −1], prs[i]) (5)

whereS0 = 1 is represented again by a single ternary vector that includes only
dashes. The exclusion of the non-solution vectors by means of the DIF-operation
is quite easy, the vectors of the first matrix will be orthogonalized with regard to
the vector to be eliminated and the common vectors are thrownaway.

The disadvantages of the ISC-based algorithm change into advantages of the
DIF-based algorithm. Instead of three vectors in a partial solution set there is a
single vector in a partial restriction set (prs). This reduces the time for comparison
for the set by a factor of three. Of cause, there is no asymmetry in the representation
of prs so that no decision about the order of the columns is necessary. Finally,
it is especially important that unnecessary segmentationsof solution sets in the
intermediate solution matrix are omitted.

This very important effect can be illustrated by solving thesame task as in
the ISC-based algorithm. The partial restriction set for the clause(c∨ d∨ e) is
prs= (−−000), because if each of the variables is equal to 0, then the clause is
equal to 0 - no solution exists in this case. Based on (4) and (5), we get

S5 =













a b c d e
1 0 − 1 −
1 1 − − 1
0 1 1 − −
0 0 0 − −













\ (−−000) =

















a b c d e
1 0 − 1 −
1 1 − − 1
0 1 1 − −
0 0 0 1 −
0 0 0 0 1

















.

The DIF-based algorithm creates directly the minimal solution. In the example
the partial restriction set is orthogonal to the first three vectors of the intermediate
solution matrix - these vectors remain unchanged. Only the last vector must change,
it will be replaced by the two vectors(0001−) and(00001). The vector(00000)
has been excluded. The representation of the matrix forS5 = S4 \ (−−000) only
needs 5 lines instead of 8. The efficiency of this ’tiny’ step will be seen when we
look at the experimental results.
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4.4 Order of the clauses

In addition to the restriction-based approach it helps to downsize the intermediate
solution matrix when the clauses are used in a well ordered way. The analysis
showed that the overlap of two disjunctions in at least one variable reduces the
number of required ternary vectors from nine to three, four or five. This property
can now be used to make the intermediate matrices as small as possible. A very
efficient strategy can be designed as follows:

1. Determine the frequency of each variable in the differentclauses.

2. Sort the set of clauses according to these frequencies.

We call the implemented algorithm based on this strategysort0. The applica-
tion ofsort0 for an example of 50 variables and 218 clauses, for instance,showed
the following frequencies forx1, ...,x50:

x14 : 22, x49 : 20, x3 : 18, x22 : 18, x35 : 18, x7 : 17, . . .

Hence, the clauses have been sorted according to these frequencies: first all clauses
with x14 followed by all clauses containingx49 etc. Due to the overlapping all
rows have been sorted after 42 of the 50 variables have been considered. The
experimental results in the next section will show an enormous increase of the
efficiency.

Two clauses that overlap in one variable include 4 other variables into the inter-
mediate matrix. If all variables of a clause are covered by these additional variables,
it restricts the remaining search space. More generally, itis an advantage when a
clause is included into the ordering if all of its variables are covered by the vari-
ables of the ordered matrix created so far. Hence, a more efficient strategy can be
designed as follows:

1. Determine the frequency of each variable in the differentclauses.

2. Sort the set of clauses according to these frequencies andinclude clauses
independent on these frequencies, if they are covered completely by the or-
dered matrix created so far.

We call the implemented algorithm based on this extended strategysort1.
Table 4 shows that the application ofsort1 to the same example of 50 variables
and 218 clauses uses much more clauses for the same restricted number of vari-
ables. Due to the overlapping all rows have been sorted bysort1 after six of the
50 variables have been considered.
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Table 4. Number of variables and clauses in the sorted matrixafter consideration
of the selected variable

variable x14 x49 x3 x32 x35 x7

covered variables 27 37 44 49 50 50
clauses taken bysort0 22 42 59 71 86 97
clauses taken bysort1 26 81 136 180 213 218

5 Experimental Results

The experiments have been very interesting and successful.In order to be compa-
rable, two examples given in [8] that allow to demonstrate the relationships have
been chosen at random. All experiments were executed on a Pentium PC of 3 GHz.
15 msec were the smallest time interval that has been used forthe measurements.
We made 2 GB memory available for the storing of clauses and the computation of
the solution.

The Example uf20-91. This example has 20 variables and 91 clauses.

Intersection
Maximum number of intermediate clauses: 4391.
Maximum at clause: i=22.
Computing time: 31 msec.

Difference
Maximum number of intermediate clauses: 2245.
Maximum at clause: i=22.
Computing time: 15 msec.

Figure 1 shows the size of the intermediate TVLs after the computation of each
clause for both algorithms using a linear scale.

The Example uf50-218 This example has 50 variables and 218 clauses.

Intersection
Maximum number of intermediate clauses: 54,860,864.
Memory overflow at clausei = 27.
Computing time until overflow: 40,781 msec.

Difference
Maximum number of intermediate clauses: 87,418,986.
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Fig. 1. Comparison of the number of ternary vectors in the intermediate TVL using the ISC- and the
DIF-based algorithm for the solution of the SAT benchmark uf20-01 that depends on 20 variables
and 91 clauses, on a linear scale of the rows.

Maximum at clause: i=57.
Computing time: 92,312 msec.

The comparison between the two examples above shows that that the benefit of
the DIF-based algorithm grows with the increased number of variables. The ISC-
based algorithm needs for the example with 20 variables approximately 2 times the
peak memory of the DIF-based algorithm. A memory overflow occurs in case of the
50 variables example for the ISC-based algorithm at clause 27 where 54,860,864
intermediate solution vectors have been created. The DIF-based algorithm repre-
sents the same intermediate solution by 2,807,324 vectors after 921 msec. Hence,
the ISC-based algorithm needs for the example of 50 variables before the memory
overflow approximately already 20 times the memory of the DIF-based algorithm.
Figure 2 shows the size of the intermediate TVLs after the computation of each
clause for both algorithms using a logarithmic scale of rows.

Now we apply the algorithmsort0 in order to find the solution faster using
less memory.

Intersection and sorting by algorithmsort0
Maximum number of intermediate clauses: 68,644,688.
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Fig. 2. Comparison of the number of ternary vectors in the intermediate TVL using the ISC-based and
the DIF-based algorithm for the solution of the SAT benchmark uf50-01 that depends on 50 variables
and 218 clauses, on a logarithmic scale of the rows without sorting.

Memory overflow at clausei = 79.
Computing time until overflow: 121,750 msec.

Difference and sorting by algorithmsort0
Maximum number of intermediate clauses: 658,418.
Maximum at clause: i=83.
Computing time: 968 msec.

The comparison between the examples without sorting and with sorting by
sort0 shows a gigantic improvement. The required memory for the DIF-based
algorithm is reduced by applying the algorithmsort0 by more than two orders
of magnitude. A memory overflow occurs for the ISC-based algorithm with sort-
ing bysort0 at clause 79 where 68,644,688 intermediated solution vectors have
been created. The DIF-based algorithm represents the same intermediate solution
by 631,078 vectors after 390 msec. Hence, usingsort0 the ISC-based algorithm
needs for the example of 50 variables before the memory overflow already more
than 100 times the memory of the DIF-based algorithm.
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Fig. 3. Comparison of the number of ternary vectors in the intermediate TVL using the ISC-based and
the DIF-based algorithm for the solution of the SAT benchmark uf50-01 that depends on 50 variables
and 218 clauses, on a logarithmic scale of the rows with sorting bysort0.

Figure 3 shows the size of the intermediate TVLs after the computation of each
clause for both algorithms applyingsort0 using a logarithmic scale of rows.

Finally we apply the algorithmsort1 in order to evaluate further improve-
ments with regard of time and space.

Intersection and sorting by algorithmsort1
Maximum number of intermediate clauses: 2,184,865.
Maximum at clause: i=90.
Computing time: 10,531 msec.

Difference and sorting by algorithmsort1
Maximum number of intermediate clauses: 81,741.
Maximum at clause: i=90.
Computing time: 250 msec.

The comparison between the examples with sorting bysort0 and bysort1
shows again a significant improvement. The ISC-based algorithm solved the ex-
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Fig. 4. Comparison of the number of ternary vectors in the intermediate TVL using the ISC-based and
the DIF-based algorithm for the solution of the SAT benchmark uf50-01 that depends on 50 variables
and 218 clauses, on a logarithmic scale of the rows with sorting bysort1.

ample of 50 variables and 218 clauses in about 10 seconds after sorting bysort1
in contrast to memory overflows after 2 minutes and 79 clausesin case ofsort0
or after 40 seconds and 27 clauses without sorting. The required memory for the
DIF-based algorithm is reduced by applying the algorithmsort1 in comparison
to the algorithmsort0 by about one order of magnitude.

Figure 4 shows the size of the intermediate TVLs after the computation of each
clause for both algorithms applyingsort1 using a logarithmic scale of rows.

6 Conclusions

Two sources were consequently used in this paper to improve the power of set-
based SAT solvers. At first, a systematic analysis of the elementary task to be
solved by a set-based SAT solver revealed the potential of ordering and require-
ments for the representation of the partial solution sets. Secondly, the analysis of
the restriction-based approach indicated the advantages of the DIF-based algorithm
in opposition to the classical ISC-based algorithm.
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The experimental results are overwhelming. Depending on the number of vari-
ables, an improvement of up to two orders of magnitude in memory space was
observed for the DIF-based algorithm in comparison to the ISC-based algorithm.
An additional factor of two orders of magnitude has been achieved when the algo-
rithm sort0 is used as preprocessor. The algorithmsort1 improves the effect
of the algorithmsort0 by one more order of magnitude. Altogether, an improve-
ment by a factor of about 105 in memory requirements for set-based SAT solvers
has been achieved. The achieved speed-up has approximatelythe same value.

It should be mentioned that the required time for sorting is negligible. It is very
easy now to see and to understand the advantage of sorting theclauses according to
the frequency of the variables in different clauses and according a general coverage.
And there can be no doubt at all that in all these SAT-related problems the use of
the difference and even more the use of the difference together with the sorting of
the clauses will increase the efficiency in a way that is very hard to imagine.

Further experiments will be published as soon as possible. The transfer of these
methods to a system of processors working in parallel also has to be considered as
soon as possible.
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