Maxwell’s equations
based on S-54

Our next task is to find a quantum field theory description of spin-|
particles, e.g. photons.

Classical electrodynamics is governed by Maxwell’s equations:

V-E=p
VxB-—E=1J]
VXxE+B =0

V-B=20 ]

can be solved by writing fields in terms of
a scalar potential and a vector potential

E=-Vp—A,
B=VxA.




E=-Vp—A,

B=VxA.
The potentials uniquely determine the fields, but the fields do not uniquely
determine the potentials, e.g.

o =p+T,

A’=A—VI‘,]\

: : , gauge transformation
result in the same electric and magnetic fields.

(a change of potentials that
does not change the fields)

More elegant relativistic notation:
gauge field

At = (p,A)

FH = 9HAY — 9 AH T

in components: N .
F°" = E*",

FU = giukp,




FOi — Ei
’ VxB-E=1J
-
FY = ¢g¥ Bk. VXxE+B=0
, - : B =0
The first two Maxwell’s equations can be written as: v
o, FH = JH
JH = (p,J)
taking the four-divergence:
[ —
0,0, F* = 0,J*
FHv — _Fvu
we find that the electromagnetic current is conserved: o,JF =0
HEV-I=0

The last two Maxwell’s equations can be written as:

automatically satisfied!




90,=(10+1:‘a
A= A—VT,

The gauge transformation in four-vector notation:

A* = (¢, A) A — AM _ GET

The field strength transforms as:
Flp,u — apAlu _ 6UAI;,L
F'W = P — (9H9Y — 8¥O*)T

= 0 (derivatives commute)

FI/_W — F[.I.V

the field strength is gauge invariant!

Next we want to find an action that results in Maxwell’s equations as the
equations of motion; it should be Lorentz invariant, gauge invariant, parity
and time-reversal invariant and no more than second order in derivatives;

the only candidate is: 1 S=[daL
v
L=—3F"Fy, + JA,




S=[dzL
L=—LF"F, + J',

JH(AL — A,) = —J*8,T
= —(8,J*)T — 8,(J*T)

9, J" =0

In terms of the gauge field:
Fr = gHAY — 97 A

L =—10'AY9, A, + 307AY0, A, + JHA, o total divergence
_ AP - VA, + A, - O,

K, = 3 A¥(8,A4,—08,4,)
equations of motion:
(¢"0* — 8"8")A, + J* =0
equivalent to the first two Maxwell’s equations!
O,FF = §,(0FAY — B¥AF) = (0*0¥ — g"v0?)A,




Electrodynamics in Coulomb gauge
based on S-55

Next step is to construct the hamiltonian and quantize the electromagnetic
field ...

E - —%FNVF,;V + JIJ'A”
= —301AY0, A, + 50*AV0, A, + JFA,
Which Ay should we quantize? o
too much freedom due to gauge invariance

There is no time derivative of A%and so this field has no conjugate
momentum (and no dynamics).

To eliminate the gauge freedom we choose a gauge, e.g.
V-A(z) =0
Coulomb gauge

an example of a manifestly relativistic gauge is Lorentz gauge:

0HA, =




V-A(z) =0
We can impose the Coulomb gauge by acting with a projection operator:
ViV,
Ai(z) — (%‘ - V—2]> Aj(z)

in the momentum space it corresponds to
multiplying 4i(k) by the matrix &; — kik;/k?,
that projects out the longitudinal component.
(also known as transverse gauge)

the lagrangian in terms of scalar and vector potentials:
L =—-1F"F,, +J'4,

= —30MAY8, A, + 50*AY8, A, + JFA,
AP = (p, A ..
) L=1AA; — VAV A + J A

+ %ViAjVin -} A,;V,-c,o
1
2




L

LA -

%VjAz'VjAz‘ + J; A;

+ %VZ'AJ'VJ‘A,; - A,;Vz‘cp

0
V;4; =0

Vi(Vi4;)

integration by parts

—pV2p = pp

we get the lagrangian:

L=3AA -

/

V;A;
V,A; =0

Poisson’s equation
unique solution:

B p(y,t)

%VinVin -+ JA - Ecoul
_ p(x,t)p(y, 1)
Lcou = 9 / dg AT x—y|




L=34;A; — IV AV A + JiAi + Leou
the equation of motion for a free field (J; = 0):

—0%4;(z) = 0
massless Klein-Gordon equation
the general solution:

A@)=Y / dk [e3(K)ax (k)€ + e (k)a] (K)e 7]
dk = d3%/(2r)32w
(orthogonal to k)

we can choose the polarization vectors to correspond to right- and left-handed
circular polarizations:

e (k) = %(1’ —1,0) k= (0’ 0, k)
e_(k) = %(1,+z’,0)
in general:
k-E)\(k) = 0,
EA/(k)'ER(k) = JX)\ y
* kzk
Y enk)ein(k) = 65 — k_zj :

A==*




A(x) — Z /E’E [Ei(k)a)‘(k)eikx 1 EI\(k)aR(k)e—ikz]
A==

following the procedure used for a scalar field we can express the
operators in terms of fields:

ax(k) = +i e,\(k)-/d3:v e_ik“’BHOA(x)

aym=—ummjﬁﬁam%A@)
f8u9 = £(8u9) — (8uf)g

to find the hamiltonian we start with the conjugate momenta:

L= %AzAz o %VinVin + Jz'Ai + Ccoul
oL

O A;

i i

the hamiltonian density is then
H=1ILA;,— L

= LILIL; + 5V, AV A; — JiAi + Heoul
Hcoul — _LCOU.I




we impose the canonical commutation relations: Az) = (8- o7 ) 4@

with the projection operator

A0, T3, )] = (85— oy )8 — 9)

N k:k;
=/ ()

[Ai, Aj] = [I;, L] = 0

these correspond to the canonical commutation relations for creation and
annihilation operators: (the same procedure as for the scalar field)

ax(k),ax (k)] =0,
a} (k), al, (K)] =0,

ax(k),al, (k)] = (27)%2w 83 (K — K)éxn .




now we can write the hamiltonian in terms of creation and annihilation
operators: H=1ILA, - L

= %Hznz + %VJAzVJAZ — JiAi + Heou

(the same procedure as for the scalar field)

H = z /(’179 w al(k)a/\(k) + 26V — /d3:1: J(z)-A(z) + Heoul
A==

s A / &z d% p(x,t)p(y,t)
dm|x—yl|

&y = %(27!‘)—3f d% w

this form of the hamiltonian of electrodynamics is used in calculations of
atomic transition rates, .... in particle physics the hamiltonian doesn’t play a
special role; we start with the lagrangian with specific interactions, calculate
correlation functions, plug them into LSZ to get transition amplitudes ...




LSZ reduction for photons
based on S-56

Next step is to get the LSZ formula for the photon.The derivation closely follows the
scalar field case; the only difference is due to the presence of polarization vectors:

For a scalar field we found that in order to obtain a transition amplitude we simply
replace the creation and annihilation operators in the transition amplitude by:

! (K = i [ dl €5 (<0 mP)p(an)
a(k )out — i/d 20 €7 *22 (5% 4 m?)p(22)

similarly, for an incoming and outgoing photon we simply replace:
A@) =Y / dk [e3(K)ax (k)€™ + ex(k)a (k)e i+

A==

a/\(k) = —i s",{(k)-/d3a: e+ik$60A(:z:)

ax(k) = +iex(k)- /d3x e_ikzgoA(x)

ol (K)im — i €% (K) / d'z "% (—5%) A, (x)

eQ(k) =0

(K)o — 1€4(K) [ dio e 5 (~0%) A, (0)




A(z)= ) f dk [Eﬁ(k)a)\(k)eikmr ex(k)al (k)e—ikz]
A==
the LSZ formula is then valid if the field is normalized according to the free

field formulae:
(0]4*(z)[0) = 0,
(k, M| A'(z)|0) = e} (k)™

where a single photon state is normalized according to:

(K, XN |k, A) = (27)%2w 83 (k' — k)dx

and the renormalization of fields results in the Z-factors in the lagrangian:

L =—1Z3FE,, + ZJA,

we will discuss this next semester...




Now we want to calculate correlation functions (the derivation again
closely follows the scalar field case).

Alz)= )" / dk [Ei(k)a,\(k)eikz+ ex(k)al (k)e—ikx]
pys

the propagator for a free field theory:

(0T A*(2) A7 (y)|0) = ;A% (z — y)

di% etk(z—v)

AY(z —y) = (2m)t K2 —ic S aezey (K)e) (k)

correlation functions of more fields given in terms of propagators...

Next we want to calculate the path integral for the free EM field:

Z0(7) = (00); = [ DA S #el-AF Bt s




Zo(7) = (0/0)y = [ DA ¢ del-3F Bt
In the Coulomb gauge we integrate over those field configurations that

satisfy V-A(z) = 0; in addition the zero’s component is not dynamical we can
replace it by the solution of the equation of motion

_ l 3 p(xst)p(Yst)
Lcou = 2/dy AT x—y|

JO(2)I°(y)
dm|x—y]|

Scoul = _% /d4$ ddy 6("1:0_3/0)

and for the rest of the path integral we will guess the result based on the
result we got for a scalar field:

Zo(J) = exp liScoul + % /d4a: dy J; (x)Aij (z —y)J;(y)




Zo(J) = exp [z'Scou] + % /ddx dly Ji(:z:)Aij(x - y)Jj(y)]

J0(z)J°(y)

Gl o) —
pp— A% (z —y)

/ dk eik(:v—y)

1 4 0_,0 i '
Scoul = _5 /d4$ d ) 5(:1? -y ) (271_)4 kz — e 2)\=i€)\ (k)E&(k)

we can make it look better:

Z0() = exp| 5 [ dladly J,(2) A% (@~ 4)1,(0)]

where
v d4k ik(z— A LV
A (x —y) = 2m) ek ==v) Arv (k)
Auu(k) —— - i 5#05110 + 1 E ek* (k)&‘” (k)
K2 k2 — e TATEA A

. eQ(k) =0
and the Coulomb term is reproduced thanks to:

o A0
/+ dk e_iko(xo_yo) _ 5(:1:0 _yo)

oo 2T

/ e N |
(2m)3 k2 Amx -y




1 1

A“V(k) — F 5”06,/0 + k2 _ de 2/\=:i:€5\t*(k)8x(k)
We can simplify the propagator further...
Let’s define:
t* = (1,0)
and Zas a unit vector in the k direction: bk =~k
(0,K) = k¥ + (£-k)
1 k* + (t-k)tH P2 1
k2 + (t-k)2]1/2 k2 = k2 4 (i-k)?
now we can replace:
Z b (k)ed (k) = 6;; — kk'? —_— O (RS (k) = g+ B — 25
A==
and thus we get:
tHv gHv + A — zRzY

Xy
AT (k) k% + (t-k)2 + k2 — e




trgv L9 ey — z1zv
k? + (i-k)? k? — e

AP (k) = —

this looks better but we can simplify the propagator fu

)
ZolJ) = —/d4 d*y J, A (x —y)J,
o(J) exP[z zdy Ju(@) A (@~ 4)u(y) the momentum can be replaced

A (z —y) = % cik(@—y) AF (k) by the derivative with respect to x#
acting on the exponential, and then integrate
by parts to obtain 0*J.(Z) which vanishes.
ZH — (t~lf7)t“
k2 + (-k)2]1/2
and we get:

- 1 k? (t-k)2 .
A (k) = — g™ + (- - 1— 2 tHEY
)= [g - ( k2 + (t-k)? ey (t-k)?




We obtained a very simple formula for the photon propagator:

AR (p — ) = _d% ik(z—y) AM (L
(:L' y) (27]')4 € ( )
. pv
AW (k) =
() k2 — ie

Feynman gauge

(it would still be in the Coulomb gauge if we
had kept the terms proportional to momenta)




