
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

FABIO CAMILLI

MAURIZIO FALCONE
An approximation scheme for the optimal
control of diffusion processes
Modélisation mathématique et analyse numérique, tome 29, no 1
(1995), p. 97-122
<http://www.numdam.org/item?id=M2AN_1995__29_1_97_0>

© AFCET, 1995, tous droits réservés.

L’accès aux archives de la revue « Modélisation mathématique et analyse
numérique » implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/legal.php). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1995__29_1_97_0
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


f T f ^ T ) MATWMATH^MOOeUJMGAHOWMEWCAlANALYStS
l , M / \ f j MOOÉUSATIOHMATMÉMATKKJE ET ANALYSE HOMÉRWUC

(Vol 29, ns 1, 1995, p 97 à 122)

AN APPROXIMATION SCHEME
FOR THE OPTIMAL CONTROL

OF DIFFUSION PROCESSES (*)

by Fabio CAMILLI (*) and Maunzio FALCONE (2)

Commumcated by P -L LIONS

Abstract -— We present a numerical approximation scheme for the infinité horizon problem
related to diffusion processes The scheme is based on a discrete version of the dynamic
programming principle and converges to the viscosity solution of the second order Hamilton-
Jacohi-Bellman équation The diffusion can be degenerate The problem in W is solved in a
bounded domain fl using a truncatwn technique and without imposing invariance conditions on
O We prove exphcit estimâtes of the error due to the truncatwn technique

Résumé — Nous étudions un schema numérique d'approximation pour un problème de
contrôle optimal a horizon infini pour un processus de diffusion Le schéma est constr uit à partir
d'une version discrete du principe de la programmation dynamique et converge vers la solution
de viscosité de l'équation d'Hamilton Jacobi-Bellman associée La diffusion peut dégénérer
dans le domaine Le problème dans IR" est résolu sur un borné fl en utilisant une technique de
troncature et sans imposer des conditions d'invariance sur fl On donne aussi des estimations
de Veneur due à la technique de troncature utilisée

Keywords Hamilton-Jacobi-Bellman équations, viscosity solutions, stochastic control, numeri-
cal methods

Mathemattcs Subject Classification Pnmary 49L20, 65N12 , Secondary 65U05, 60J60

1. INTRODUCTION

We are mterested in the approximation of the following discounted
optimal control problem for a diffusion process. Let (12, F, P, {F t] f >Q) be

a complete filtered probability space and suppose that given a progressively
measurable processes a (t) there exists a unique (progressively measurable)
process X(t) satisfying the controlled stochastic differential équation :

\ a(t))dW(t)
I X ( O ) = J C .
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98 F CAMILLI M FALCONE

The process X(t) represents the state of a System evolvmg in R'\ the process
a (t ) is the control apphed to the System at time t with values m the compact
metric space A, W(t) is a <i-dimensional Wiener process

We consider the cost functional related to the infinité horizon problem

+ 00 1

f(X(t\ a(t))e~At dt\X(O) = x\ (12)
0 J

where ƒ M.n x A -> IR is the running cost and A i s a positive parameter, the
discount factor The set of admissible control laws will be given by the
progressively measurable processes which take values m A, and will be
denoted by s&

Under the above assumptions, the value function of the problem

v(x) = mf {JA(a) a(t)ejtf} (13)

is (Lions [L2]) the unique viscosity solution of the Harnilton-Jacobi-Bellman
équation

{HJB) Aw(x)=inf {L(a)u(x) + ƒ(*, a)} , x e Un

a e A

where

1 + Ybt(.,a)èt ( 1 4 )

Several authors have studied approximation schemes for (HJB) using
different techniques Kushner has proposed algonthms based on probabilistic
methods the key tooi of these techniques is the approximation of the
diffusion by proper Markov chains in fimte dimensional spaces In this way
(see [K], [KD] and références therem) one can obtain, via probabilistic
arguments, convergence results for the value function of the optimal Markov
problem to v but it is quite hard to estabhsh a précise order of convergence
Also Menaldi [M] has studied the problem mixing probability and analytic
methods and obtaining a convergence resuit (to classical solutions) for a
scheme denved by the dynamic programming pnnciple More recently, Sun
[Su] worked on an exit time problem using similar techniques coupled with a
domain décomposition method

Numerical methods for (HJB) when the diffusion is non degenerate, i e
in the case when ît admits classical solutions, have been considered in Lions-
Mercier [LM], Quadrat [Q] More recently, Akian [A] and Hoppe [H]
worked on exit time problems usmg multigrid techniques in order to speed-
up the convergence
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AN APPROXIMATION SCHEME.. 99

In this paper we present a method for approximating the weak (viscosity)
solution of {HJB ). The scheme is based on a discretization of the équation
both in the time and in the space variable and in this respect is similar to the
one proposed in [M]. We should also mention that our method extends to the
optimal control of diffusion processes the dynamic programming approach
developed for deterministic problems in Capuzzo-Dolcetta [C], Capuzzo-
Dolcetta and Ishii [CI], Capuzzo-Dolcetta and Falcone [CDF] and Falcone
[FI]. The main feature of our method is the convergence to the weak
solution (in the viscosity sensé) also when the diffusion is degenerate, i.e,
when L{a) becomes a first order operator. This property guarantees the
robustness of the scheme (see Test 3 in Section 4). As it is well known, a
diffusion leaves any bounded domain with probability 1. Therefore any
direct approximation of {HJB ) is impossible since it would require the
discretization of an unbounded domain. We propose hère a truncation
technique to restrict the problem to an arbitrary bounded domain il (where a
numerical approximation becomes feasible) obtaining an error bound for the
différence between v restricted to O and the solution of the truncated
problem. We refer to [FiF] for a similar technique applied to the study of an
economie model.

Finally, we point out that the method provide approximate feed-back
controls at any point of the grid without extra computations.

The paper is organized as follows.
In Section 2 we introducé our basic assumptions, we build the time

discretization and establish the main convergence theorem. Section 3 is
devoted to the space discretization and to the truncation technique. Section 4
describes the numerical results on some test problems. In particular we
present the expérimental errors, the approximate feed-back controls and the
approximate solutions when the diffusion tends to degenerate (vanishing
viscosity).

2. DISCRETIZATION IN TIME AND BASIC ASSUMPTIONS

Let b : Rn x A -> Uf\ <r : R* x A — if {Ud ; Un) and ƒ : R x A -> R. We
shall assume in the sequel that b, a and ƒ are continuous and, for ail
aeA9 xeUn

We

vol.

also

29, n°

\g{x, a)-

assume that

1, 1995

\9(x,a)\

a)-fiy
I/U

A

^Mg

,a)\ ^

> 0 .

c — y |

for g = a,

Lf\x-y\*

b
(2.1)

(2.2)

(2.3)
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Assumptions (2 1), (2,2) and (2 3) guarantee that the strong solution of (1 1)
is unique Let h e ( 0, — be a parameter and consider the following

approximation of (HJB)

(HJBh) uh(x) = min {(1 - Xh) nh(a) uh{x) + kf(x9 a)}
a e A

where nh(a) is the operator

IJh(a) <f> (x) ~ ^ [<f> (x + hb(x9 a) + \Jh <rm(x, a)) +
m = 1

+ 0 (* + tó(x, a) - Vh <rm(x, a))] (2 4)

and am is the /n-th row of cr
Following the same ideas in [M] and [BeS] we can give a control

interprétation of (HJBh) thinking to it as the charactenzation of the value
function of a discrete-time optimal control problem In fact, let us consider
the Markov cham X„

n, an) + Jh X am(Xn, an) èV\ Xo = x
m 1

where gn + 1 is a séquence of n d randorn vanables m IRd such that

2d

and

/ d \
P[ M {€?¥>0} n { ^ 0 } = 0

\ ( , i /

then

This implies that (HJBh) is the dynamic programming équation related to the
optimal control problem of {Xn} with the infinité horizon cost functional

We recall that the viscosity solution of (HJB) belongs to C° 7(Un) n
L°°(Rn) (Lions [Ll]) where y is such that

l ) y = 1 l f À ; > À 0

ii) y e (0, 1) if A = Ao

m ) y = — i f A < : A 0

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Numerical Analysis



AN APPROXIMATION SCHEME... 101

and

tr(cr(x, a) - a {y, a), cr^x, a) - <rl{y, a)) +
c, a)-b(y9a\x-y)A 0 = sup

x ^ y, a e A

We will dénote by B# the Banach space of bounded, Hölder continuous
functions on Un, endowed with the norm

= ll»ll«+ M«
where

M L - SUP
1ER"

ML = SUP
\»(x)-v(y)\

I

I X ~~

PROPOSITION 2.1 : Lef A > Ao &. Then, for every h e (0, — 1, (HJBh)

has a unique solution uh s B# and

A - An t?

(2.5)

(2.6)

i) Let us define the operator :

r* »(*)= inf { ( l -

We shall prove that Th is contraction map on Lco(Rn). Let w, t? be two
bounded functions on Un and â s Abe the control such that the minimum for
Th v(x) is attained. Then

(Thu-Thv)(x)*£ (1 -Ah)

2~^ [M(x + tó(x, â) + 4ham(x, â))- »(x + tó(x, â) +

crm(x, à))] -h — [u(x + Aè(jc, â) - y/h crm(x, â)) -

v(x + AÔ(JC, â)-y/h <rm(x, â))]}

vol. 29, n° 1, 1995
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Reversing the rôle of u and v we get,

\Thu(x)-Thv(x)\ ^ (1 - A h ) || u - v \\ ^ , for all x e Un .

Since h G ( 0, — , Th is a contraction map on L 0 0 ^ " ) and there exists a

unique bounded function w;i such that Th uh = u}v

ii) For every h e ( 0, — ,

\uh(x)\ = \Th uh{x)\ « (1 - A A ) || «A || ̂  + AW,

then

and this gives (2.5).
iii) Let us show now that uh belongs to B#. Given u e f i ^ w e prove that

Th v belongs to B#. Let â be a control (not unique in gênerai) where the
minimum for Thv(y) is attained, then

Thv(x)-Thv(y)^ (1 - AA)f £ J^ [»(*

y, â ) + yjh <rm(y, â))] +

T3 [u(x
2 a

^mCv, â))] + h(f(x, â)~f(y, a))}

= 1

, â) - o-m(y, â))|*

, â)-b(y, â)) - y/h(trm(x, â) - <rm(y,

2
By applying the inequality (a + /3 ) ^ 2°"" l)/p(ap + Pp)llp, for p = — ̂  2

and

a ^ ö lx ~ y + h(b(x, â) — b(y, â)) + \fh(am(x, â) - crm(y, â)) |

yg = — |x — y + h(b(x, â) — b(y, â)) — \/h{crm(x, â) — am(y, â)) |

M2 AN Modélisation mathématique et Analyse numérique
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we get

+ hLf\x-y\*>e(l - AA)(1

Hence, by symmetry,

for ail x and j in Rw. Therefore

Let us define,

Ch^hLf/[l - (1 - AA)(1 + A0A)*] .

Since A r > A 0 # , Ch is strictly positive, by (2.8) \v\^^Ch implies

\Thv\^^C h. Then, for any h e (0, — , the solution uh of the équation

(HJBh) belongs to B# and vérifies \uh\û^Ch, Since Ch is a decreasing
function of h > 0, we have

K | ^ lim CA

and this proves (2.6). •
The next theorem shows that the séquence uh converges to the viscosity

solution of (HJB).

THEOREM 2.2 : Let u be the viscosity solution of (HJB). Then, for
h -> 0+ , M/j —> u locally uniformly in W\

Proof : From (2.5), (2.6) and the Ascoli-Arzelà theorem, there exist a sub-
sequence hp -• 0

+ and a function u e B# such that uh -+ u locally uniformly
in [Rn. We shall prove that u is the viscosity solution of (HJB). Let
<f> 6 C2(Un) and assume that x0 is a local maximum point for u — <j>. There
exists then a closed bail B (JC0, R ) such that

( u - <t> ) ( x 0 ) ^ (u - 4> ) ( x ) f o r a n y x e B ( x 0 , R ) .

Let xp be a local maximum point for uh in B(x0, R). Since [uh } converges

locally uniformly to w, we have *p-> jcn as p^oo. Since £> and cr are

voL 29, n° 1, 1995
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bounded , the points xp + hp b(xp, a)± ^fhp o-m(xp, a), m = 1, ... , d, belong

to B(x0, R) for p large enough, so that

(uhp ~ <p )(xp) as {uhp - <f> )(xp + hp b(xp9 a) ± yjhp <rm(xp9 a))

m =» 1, ..., öf.

Since M^ is the solution of (HJBh ), we have :

0 = max {- (1 - khp) nhp{a)uhp(xp) - *!,ƒ(*,, a)} + uh(xp) =
a e A

d

= max \ £ -— [uh(xp) - uhp(xp + fcp &(xp, a ) + ^ / ^ crm(xp, a))]

-h V ^—; [uh (Xp) — Ufj {Xp + hp b(XQ, a) — \V"p °"m^xp^ a ) ) ]
m = 1

+ A^> ̂ A / Û ) %(^p) - Ap ƒ (V «)} **

s* m a x ^ ^ -3 [<f> (xp) ~ <j> (xp + A, 6(xp , a ) + ^/hp <rm(xp, a))]

aeA [m = \

d |

+ y —
^ 2 d

m = 1

+ Âhp nhp{a) uhp(xp) - hpf(xp9 a)) .

Since ^ e C2(R / I), the above inequality gives

f i , 1 JL
0 ^ max < - > -— > 8, <î> (xn + /i« d, (*„• a ) 4

+ y/hp^imiXp, a))[hpbt(xp, a) +

+ hpbt(xp,a)]- t Yd t ^dv <f>(xo + P™; + (a)(hpb(xp, a) +

+ s/hp^miXp* <*)))[hpbt(xp9 a) + yjhpo-im(xp, a)]

[hp bj(xp9 a) + ^ / / ^ CT-^C ,̂ a)] -

- I 2 l I | 9 , ^ ( ^ + pJÇ"(û)(Ap6(^p.fl))+N/^^m(Vfl))
m = 1 iy = 1

[hp bt(xpi a) - y ^ o-im{xp, a ) ] [^ ^(x^, a ) - -sjhp o-jm(xp, a)] +

+ A/îp i7^(a) M^(xp) - hpf(xpi a)}

for some p ^ l + ( a ) , pjj*~ (a) e (0, 1). Dividing the above relation by
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hp and passing to the limit as p -• oo, we get

f 1 d

j - £ £ <rim(x0, a)<Tjm(xo,a)dlJ<f>(x0) +aeA

n

+ £ bx (x0, a) dt <f> (x0) + A u(x0) - f (x09 a)} = -

= max {-L(a)<f>(xo)~ /(x0, a) + Aw(x0)} .
o e A

Repeating the same argument for the minimum of u — <f> one can easily
complete the proof. The convergence of uh to u follows from the uniqueness
of the viscosity solution of (HJB ). •

Remark 2.1 : The proof of the above theorem can also be obtained by
applying the gênerai convergence resuit (Theorem 2.1) in Barles-Souganidis
[BS] which does not require the estimate (2.6) (see also [FS]). Since (2.6)
will be used to prove the estimate (3.10), we preferred to give a direct proof.

Remark 2.2 : It is rather easy to use the above discretization to construct
an approximation scheme for the évolutive problem related to a non
autonomous dynamics and the finite horizon cost functional

f(yx(O,
t

The time-discrete scheme is

— (x9 0 + s u p \-l-Tr[<r(x9 a9 t)<r(x, a9 tf D2 u{x, t)] ~
dt aeA ^ 2

-b(x, a9 t)Du(x, t)-f(x, a, t)} = 0 Qc9 t) e Un x [0, T)

u(x, T)= tff(x) j c e R " .

Under assumptions on the coefficients analougous to (2.1) and (2.2), for any
tf/ e C®1 û (Rn) there exists a unique viscosity solution u of (HJBE) and
u e C°b^(Un x [0, T]) (see [IL]). By a simple adaptation of the approxi-
mation technique described above, we obtain the following explicit scheme

wh(x9 n) = inf i - — £ [wh(x + hb(x, a, nh) +
a e A [ m _ )

+ \Jh o-m(x, a, nh), (n + 1) h)]

~wh{x + hb(x, a, nh) - \fh cm(x, a, nh\ in + \)h)

+ hf(x,a,nh)} x e Un , n = 0, ..., N - l

vol. 29, n° 1, 1995



106 F CAMILLI M FALCONE

where Nh — T The tunction nh satisties

\\wh(. , n ) \ \ L t o < H ^W* | |L . ( R } + (N - n ) hMf (2 9)

(210)

with fî defmed as m Proposition 2 1 The convergence of tins scheme is
guaranteed smce the discrete scheme, defmed by

uh(x, t) - w A ( \ , n) if f e [rt/i, {n + 1 ) A ) , « = 0 , 1 , , N - 1

satisfies the basic assumptions of the gênerai convergence theorem m [BS]
In fact, stabihty follows from (2 9), whereas the proof of the monotomcity
and consistency properties is straightforward Smce a comparison prmciple
holds true for the contmuous problem, uh(x, t ) - • u(x, t) locally umformly m
Rn x [0, T]

3 DISCRETIZATION IN THE SPACE VARIABLE

As we have seen m Section 2, the discretization m the time variable gives
the approximatmg équation (HJBh) where the state variable x is still
contmuous We will make the discretization m the state variable by means of
piecewise affme finite éléments In order to obtain a timte dimensional
approximation of the Hamilton-Jaeobi-Bellman équation we must restnct our
problem to a bounded subset of Utl

One can of course assume that the System (11) vérifies an invariance
condition, f e that there exists a polyhedron Ü such that

cr(x, a) = 0
for all x e è£2 , a e A

b(x, a). n(x) «= c0 < 0

This condition is veiy restrictive smce it corresponds to the degeneracy of the
diffusion er on èïl (see also Remark 3 3 for the construction of an
approximation scheme m this situation and [F] for the results related to the
corresponding determmistic problem) Even more gênerai invariance con-
ditions such as

lD<p(x)Y cr(x, a) = Q
for all \ e d/2 , a e A

— Tr(cr(x, a) o-̂ (x, a) D2 <p (x)) + b(x, a) D<p(x) 3= c > 0
2

are unsatisfactory (see the Appendix for a proof of (IC2Ï)
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We will focus our attention on a truncation technique which leads to a new
approximation. This technique is more adequate to obtain approximate
solutions since does not require supplementary assumptions on the diffusion
and on the dynamics (1.1).

We introducé a eut-off function, restricting the problem to an arbitrary
bounded set. Let us fix a parameter /JL, JU, > 0, and define 7M ==

{xe Un: \x\ < — }. Let

£ M :R B -> [0, 1 ] , £M = 1 for x e 1 ̂  and £M e C$(Un) (3.1)

we consider a new truncated control problem setting

o-M»fM(x)o-(jt , a ) , & M 3 S f £(*)*(*, a ) . (3-2)

Since & ,̂ <xM are bounded and Lipschitz continuous, there exists a unique
viscosity solution wM of the équation

(HJB)^ \u(x) = mïn {LM (a) u(x) + ƒ (je, a)} , x e Rfl ,
Ö G A

where

Notice that, by définition, the solution u^ of the truncated problem satisfies

u^ - y min ƒ(*, a ) , Vx ̂  supp (f^) . (3.3)

We look for an estimate of | u - u^ \.

PROPOSITION 3.1 : Assume (2.1)-(2.3) ató (3.1), (3.2). Then there exists a
positive constant C such that

\u(x)-ufX(x)\ ^ C / x 2 ( l + | x | 2 ) , X G / M . (3.4)

Proof : Let us dénote by X^(t) the solution of the stochastic differential

équation

\dX{t) = bfl(X(t)9 a{t))dt + a^{X{t\ a(t))dW(t)
\X(0) = x

and define rM » inf (r > 0 : ̂ ( f ) ̂  7M}, T^ = inf {? > 0 :

vol 29, n° 1, 1995
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(where X(t ) still dénotes the solution of (1.1)). By the results in [L2] we have

{ [* f(X(t\ a
s ! [Jo

t\ a(t))e~Àt dt + U^X^T^))

Since r^ = r^ and X(t) = X^{t) for t =s r (P = 1 ), we get

In order to obtain an estimate for E (e~ Tf* ) in terms of yu,, we observe that, for
any x G I ̂

sup \X(s)\ ^ l//xl =sC! M2(1 + |x|2)max [r, t2]

where C] is a constant depending on Ma, Mb. Then,

E [ e M ] = A e - X t P [ r ^ ^ t ] d t ^ C 2 ( l + \ x \ 2 ) f x 2

Jo

which gives
2 l + \x\2) f o r i e / M

where C is a constant depending on MŒ, Mh, A and M y. D
We remark that the term (1 + \x\2) in the estimate gives the dependence

from d{x, 6/3 ), whereas the term /JL 2 says how the estimate dépends from the
radius of the truncation domain. Obviously we can center /M at any point
xe Un,

The approximation scheme described in Section 2 can be applied to the
truncated problem. We get the foliowing équation

uh^(x)= inf {(1 -AA)J7AïM(û)iiAfM(jc) + A/(jc, a)} , x G Rn

aeA

where the operator IJh M is obtained replacing in (2.4) a and b by
aM and b^. As we have shown in Section 2, the above équation has a unique
bounded and Hölder continuous solution, ukft, and the séquence [uh }

converges locally uniformly to MA, as h -> 0+ . It is important for the sequel to

M2 AN Modélisation mathématique et Analyse numérique
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AN APPROXIMATION SCHEME.. 109

notice that, for any positive h,

«A,* (x) = u^ (x) , x $ supp (ip ) .

Remark 3.1 : The truncation technique has a control interprétation. In
fact, it is known that one can approximate the problem over Un by a séquence
of stopping time problems defined over Qn c Un with diam (f2n) -• oo. We
point out that the définition of g^ guarantees the regularity of u^ in
Rn and the fact that it is the solution of an (HJB) type problem in
(fêw. This choice corresponds to a stopping time problem on fl = supp Ç^
with a stopping cost on 8/2 given by (3.3).

We want to construct the discretization of (HJBhpL ) in the space variable in
the domain ft == int supp (£M).

Let {Sj} be a family of simplices which set up a regular triangulation of
Un such that

diam(S ;)*s£, V/\ (3.5)

Let {xt : i e /} be the set of vertices of the triangulation and {xt : i e 7°} be
the finite set of the vertices belonging to fi.

Let Wk be the family of the functions which are continuous in
R" and affine on the simplices of the triangulation. We look for a solution in
Wk of the following problem,

(HJBk
hfÂ)

w(xt) = min {(1 - kh) nh(X{a)w{xt) + hf(xl9 a)} for i e 1°
aeA

w(xt) = — min f(xt, a) for i e /\/° .

THEOREM 3.2 : Let h € ( 0, — . Then, for every k e R+, there exists a

unique solution w e Wk of {HJBk
hfx ).

Proof : Let us remark that {HJBk
hfJL) is equivalent to a finite dimensional

non linear problem. In fact, let us define

ytm(a) = *i + **M(*i. a)± \A°Vm(**> a) i e I ' m = 1, ..., öf

(crMm is the m-th row of cr^).
Let M+ (m, ^ ) , M" (m, a) , m = 1, ..., «i, be the matrices such that

^Mfjim, Ö ) = 1 , 0 « M j ( m , û ) « l for m = 1 , ..., d and / e ƒ (3.6)

vol. 29, n° 1, 1995
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and

The matrices Mfj are the baricentric coordinates of y f m(a) with respect to the
vertices of triangulation. It is a simple check to show that for i e 7\/° ,
Mfj (m, a) = ôlj and that Mfj (m, a) ^ 0 for at most n + 1 indices. Let us
observe first that for x e U" such that x = Y, ^J XJ anc* w G ^ ' w e c a n

w(x) = £ /uj w(Xj ). This allows to reduce (HJB^ ) to the search for a vector

U e IR7 such that

/. = min \ (1 — \h) Y -—- [M.+ (m, <a) + MT (m, a) l [/ + HF, (a)

a e A l m _ ] -^ "

for ƒ G 7° (3.7)

Jt = j min ƒ (*„ a ) for / E 7\7°

where Ft(a) = f (xn a).
Let us define

48T. = U7 e IR7 : Ut = - m i n f(xn a) for / e / \ / ü [ (3.8)

and the operator Tk
h : °U^-> °U^,

\J\ W], =

l — À/î) > —— [M. (w, Ö ) + M, (m, a)] U +

for iel° (33a)

[TlUl^U^ for iel\l°. (3.9b)

In order to prove that Tk
h is a contraction map in IR7 it clearly suffices to

show that it is a contraction in U1 .

In fact, let U, W e % ̂  and assume that â e A is a control such that the
minimum in (3.9a) is attained. We have,

ut ui ~ [7* vn *

^ / n i j ; [M^m, 5) + M" (m, «>]
j e J
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Since V Mfj (m, a ) = 1 for any a, by symmetry :

\\TiU -T^WW ^ (1 - Xh)\\U -WW^

where || U - W \\^ = max | Ut - Wt \ .D
l € ƒ

The following theorem shows that w converges to uhfX as k tends to zero.

THEOREM 3.3 : Let A > #A 0. TTzerc, /^r every A e ^0, — j ,

- ^ - (3-10)K ^ ) ( ) | ^ Ç
xeU" A (A - V-Ao) n

Proof : Let x G Un and x = £ /^OO-X, where 0 =e ̂ y ( z ) ^ 1 and
j e /

/*/*,)= 1. Then,

uhft(x)- w(x)\ ^

; | ^ y ; | . (3.11)
j e / j e /

Since /t (x) ^ 0 if and only if ^ is a vertex of the simplex containing x and
W/1A e ^ , we have

Since w;ï/£ and w are solutions of the équations (HJBhfi) and (HJBk
hfx), it is

easy to check that

M->v||LW(RJI). (3.13)

Substituting (3.12) and (3.13) in (3.11), we get

\uh^(x)-w(x)\ a S ( l _ A A ) | | M ^ - w | | o o + [L/(A - # À 0 ) ] * *

and this proves (3.10).D

Remark 3.2 : Let the invariance conditions (ICI) or (ÏC2) be verified. The
above approximation scheme applies without truncating the coefficients
since we can build directly the triangulation of the invariant set. Equation
(HJBk

hyc ) is now valid for all the vertices of triangulation and the proofs of
Theorem 3.2 and Theorem 3.3 remain valid without changes.
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