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AN APPROXIMATION SCHEME
FOR THE OPTIMAL CONTROL
OF DIFFUSION PROCESSES (*)

by Fabio CAMILLI (!) and Maurizio FALCONE (%)

Communicated by P - Lions

Abstract — We present a numerical approximation scheme for the infinite horizon problem
related to diffusion processes The scheme is based on a discrete version of the dynamic
programming principle and converges to the viscosity solution of the second order Hamilton-
Jacobi-Bellman equation The diffusion can be degenerate The problem in R" is solved in a
bounded domain 2 using a truncation technique and without imposing invariance conditions on
0 We prove explicit estimates of the error due to the truncation technique

Résumé — Nous étudions un schema numérique d’ approximation pour un probléme de
contréle optimal a horizon infint pour un processus de diffusion Le schéma est construit a partir
d’une version discrete du principe de la programmation dynamique et conver ge vers la solution
de viscosité de I équation d’Hanulton Jacobi-Bellman associée La diffusion peut dégénérer
dans le domaine Le probléme dans R" est resolu sur un borné 2 en utilisant une techmque de
troncature et sans imposer des conditions d’invariance sur £2 On donne aussi des estimations
de I'erreur due a la techmique de troncature utilisée

Keywords Hamilton-Jacobi-Bellman equations, viscosity solutions, stochastic control, numeri-
cal methods
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1. INTRODUCTION

We are interested in the approximation of the following discounted
optimal control problem for a diffusion process. Let (2, F, P, {F,} ,0) D€

a complete filtered probability space and suppose that given a progressively
measurable processes « (¢) there exists a unique (progressively measurable)
process X (¢) satisfying the controlled stochastic differential equation :

{dX(t) =bX(@), a@)dt + o (X@), a(t))dW(t) (1.1)
X0) =x. ’

(*) Manuscnpt recerved January 21, 1994
(') Dipartimento di Matematica, Umversita di Roma «La Sapienza», P A Moro 2,
00185 Roma, Italy
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98 F CAMILLI M FALCONE

The process X () represents the state of a system evolving in R”, the process
a (¢) 1s the control applied to the system at time ¢ with values 1n the compact
metric space A, W(¢) 1s a d-dimensional Wiener process

We consider the cost functional related to the infinite horizon problem

J(a)=E {J+mf(X(t), a(t))e Mdt|X0) = x} (12)
0

where f R” x A - R 1s the running cost and A 1s a positive parameter, the
discount factor The set of admissible control laws will be given by the
progressively measurable processes which take values 1n A, and will be
denoted by &/

Under the above assumptions, the value function of the problem
v(x)=mf {J(a) a(t)e A} (13)

1s (Lions [L2]) the unique viscosity solution of the Hamilton-Jacobi-Bellman
equation

(HJIB) Au(x) = mf {L@a)u(x)+ f(x,a);, xeR"

a€eA

where

n / 4 \ n
Y \Z Tim .,a)am(.,a)) 3, + ) b(.,a)s, (14)

[

L(a) =

N =

=1 \m-—1

Several authors have studied approximation schemes for (HJB) using
different techmques Kushner has proposed algorithms based on probabilistic
methods the key tool of these techmiques 1s the approximation of the
diffusion by proper Markov chains 1n finite dimensional spaces In this way
(see [K], [KD] and references therein) one can obtain, via probabilistic
arguments, convergence results for the value function of the optimal Markov
problem to v but 1t 1s quite hard to establish a precise order of convergence
Also Menald1 [M] has studied the problem mixing probability and analytic
methods and obtaiming a convergence result (to classical solutions) for a
scheme derived by the dynamic programming principle More recently, Sun
[Su] worked on an exit time problem using similar techniques coupled with a
domain decomposition method

Numerical methods for (HJ/B) when the diffusion 1s non degenerate, 7 e
1n the case when 1t admuts classical solutions, have been considered 1n Lions-
Mercier [LM], Quadrat [Q] More recently, Akian [A] and Hoppe [H]
worked on exit time problems using multigrid technmques 1n order to speed-
up the convergence
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AN APPROXIMATION SCHEME.. 99

In this paper we present a method for approximating the weak (viscosity)
solution of (HJB). The scheme is based on a discretization of the equation
both in the time and in the space variable and in this respect is similar to the
one proposed in [M]. We should also mention that our method extends to the
optimal control of diffusion processes the dynamic programming approach
developed for deterministic problems in Capuzzo-Dolcetta [C], Capuzzo-
Dolcetta and Ishii [CI], Capuzzo-Dolcetta and Falcone [CDF] and Falcone
[F1]. The mam feature of our method is the convergence to the weak
solution (in the viscosity sense) also when the diffusion is degenerate, i.e.
when L(a) becomes a first order operator. This property guarantees the
robustness of the scheme (see Test 3 in Section 4). As it is well known, a
diffusion leaves any bounded domain with probability 1. Therefore any
direct approximation of (HJB) is impossible since it would require the
discretization of an unbounded domain. We propose here a truncation
technique to restrict the problem to an arbitrary bounded domain 2 (where a
numerical approximation becomes feasible) obtaining an error bound for the
difference between v restricted to {2 and the solution of the truncated
problem. We refer to [FiF] for a similar technique applied to the study of an
economic model.

Finally, we point out that the method provide approximate feed-back
controls at any point of the grid without extra computations.

The paper is organized as follows.

In Section 2 we introduce our basic assumptions, we build the time
discretization and establish the main convergence theorem. Section 3 is
devoted to the space discretization and to the truncation technique. Section 4
describes the numerical results on some test problems. In particular we
present the experimental errors, the approximate feed-back controls and the
approximate solutions when the diffusion tends to degenerate (vanishing
viscosity).

2. DISCRETIZATION IN TIME AND BASIC ASSUMPTIONS

Let b:R"xASR", 0 :R"x A - Z (R R and f: R x A > R. We
shall assume in the sequel that b, o and f are continuous and, for all
aeA, xeR"

lg9(x,a) - g, a)] sLj|lx—y]|

lg(x,a)l <M, for g=o0,b @.1)
|f(x: a)*f(y,a)|SLf|x—y|‘? (22)
|[f &, a)| =M. :
We also assume that
A=0. 2.3)

vol. 29, n° 1, 1995



100 F CAMILLI, M FALCONE
Assumptions (2 1), (2.2) and (2 3) guarantee that the strong solution of (1 1)
1s unique Let k€ (O, /\l] be a parameter and consider the following

approximation of (HJB)

(HJB)) u,(x) =mm {(1 - Ah) II,(a) u,(x) + hf (x, a)}

a€A

where II,(a) 1s the operator

d
I, (a) ¢ (x) = z 21_d [d(x + hb(x, a) + N o,(x, a)) +

+é(x+hb(x,a)—Vho,(x,a)] 24)

and o,, 1s the m-th row of o

Following the same 1ideas in [M] and [BeS] we can give a control
interpretation of (HJB,) thinking to 1t as the characterization of the value
function of a discrete-time optimal control problem In fact, let us consider
the Markov chamn X,

d
Xn+1 = Xn + hb(Xn’ an) + \/Z Z Um(Xn’ an) frrrlz+1 s XO =X
m 1

where ¢£"*! 1s a sequence of 11 d random vanables in R? such that
Pen = 1) = P(¢h = — 1) =

z 2d

and
d
P(\J (g4 0) 0 {20} ) =0

vty 1

then

I, (a) ¢ (x) =EX, 1 Xy = x)

This imphes that (HJB),) 1s the dynamic programming equation related to the
optimal control problem of {X,} with the infinite horizon cost functional

We recall that the viscosity solution of (HJB) belongs to C° 7(R") N
L® (R") (Lions [L1]) where v 1s such that

D y=11f A =24,

n) ye 0,1)1f A =2,

111)'y=i if A <A
Ao

M? AN Modelisation mathematique et Analyse numerique
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AN APPROXIMATION SCHEME... 101

and
tr(a(x, a)ﬁ_ U(.y? a)’ Ut(xs a)_ ‘7[0’, a)) +
Ag= sup 1 +2(b(x, a) = b(y, @), x— y)
x#y acA 2 \x_y\'l

We will denote by B, the Banach space of bounded, Holder continuous
functions on R", endowed with the norm

vl s = ol + |v1,
where
[v]l o= sup |v(x)]
xeR"
lof,= sup @) v}

x, yeR", x #y |x—y|6

PROPOSITION 2.1 : Let A = Ay O. Then, for every h € (0, % ] (HJB))

has a unique solution u, € By and

My
lunll o = == (2.5)
Ly
lanlls < =505 - (2.6)

Proof :

i) Let us define the operator :

T,v(x)= inf {(1 - Ah) D (a)v(x)+ hf(x,a)}.

acA

We shall prove that T, is contraction map on L®(R"). Let u, v be two

bounded functions on R" and a € A be the control such that the minimum for
T, v(x) is attained. Then

(Tyu—Tyv)x) =< (1 — Ah)

{ Y ﬁ [u(x + hb(x, @) + \/ﬁam(x, a))—v(x+ hb(x, a) +

m=1

+Vho,x, a))l +ﬁ [u(x+ hb(x, @) — \/Z o,.x, a))—

—v(x + hb(x, @) — Vh o, (x, anl} =
< -m)u—v]|,.

vol. 29, n® 1, 1995



102 F CAMILLI, M FALCONE
Reversing the role of # and v we get,

|Tyu@x)—T,vx)| <=1 —-Ah)||Ju-v]|_, forall xeR".

Since h € (O, /\l}, T, is a contraction map on L®(R") and there exists a

unique bounded function u, such that T}, u;, = u,,
ii) For every h € (0, %],
|, ()| = | Ty u(x)| < (1 - /\h)lluhllw + hM
then

lunll, = = A unll, + BM,

and this gives (2.5).
iii) Let us show now that u, belongs to By. Given v € B3 we prove that
T, v belongs to By. Let @ be a control (not unique in general) where the

minimum for 7, v(y) is attained, then

T,o(x)—T,v() =< (1 — /\h){ y 21_d [v(x + hb(x, @) + Nh o, (x, @) +

m—1

+o(y + hb(y, @)+ Vh o, (, @)] +
+ ﬁ [v(x + hb(x, @) — Vh o, (x, @) +

_ Vot s g . . —\\
+v(y+hb(y, a)— Vho,(y, a)l+n(fx a)-f, a)); =

d
< —/\h)|v|0{ 3 EIE [|x —y + h(b(x, @) - b(, @) +

m=1

+Vh(o, & a) - 0,0, a)|’
+|x—y+ h&, @) - bO, @) — Vh(o,(x, @) - 0,0, a)| 1}

By applying the inequality (a + 8)<2@ P (a? 4+ BP)P, for p = = =2

SIS

and
a = % |x —y+h®&x, a)—>b(y, a)) + \/E(O'm(x, a)— o,(, a))|"
B = % X~y + h(b(x, @)~ b(y, @) ~ Vh(o,(x @) - 0,0, @)’

M? AN Modélisation mathématique et Analyse numérnique
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we get

To(x) —T,v(y) =<
1 < 2 | 2,21%72
<A-amzlvl, ¥ x| 1+2h<EL,,+L,,>+L,,h +

m=1

+th|x—y]1’s(1—/\h)(1+/\0h)" [v]s [x—y|? + AL |x—y]?.
Hence, by symmetry,
|Tyo(x) =T, v()| = (1 —Ah)A + Agh)’ |v], |x—y|® +hLs|x —y]?
for all x and y in R". Therefore
|Thv|,< (1= Ah)A + Agh) |v], + ALy . (2.8)

Let us define,

Cr=hL/[1 — A —AR)(1 + Agh)’].

Since A >A,9, C, is strictly positive. By (2.8) |v|,<C, implies
|T, v|19 =< C,,. Then, for any & € (0, i— ], the solution u, of the equation

(HJB,) belongs to B, and verifies |u,| < C,. Since C, is a decreasing
function of 2 > 0, we have

|uh|1’$ lim Cthf/(A — 19)\0)
h—0*

and this proves (2.6). O

The next theorem shows that the sequence u, converges to the viscosity
solution of (HJB).

THEOREM 2.2 : Let u be the viscosity solution of (HJB). Then, for
h - 0", u, - u locally uniformly in R".

Proof : From (2.5), (2.6) and the Ascoli-Arzela theorem, there exist a sub-
sequence h, — 0 and a function u € B, such that up, — u locally uniformly

in R". We shall prove that u is the viscosity solution of (HJB). Let
¢ € C*(R") and assume that x, is a local maximum point for u — ¢. There
exists then a closed ball B(x,, R) such that

(u—9d)xp)= (u—¢)x) forany xeB(xp R).

Let x, be a local maximum point for Uy, in B (xy, R). Since {”h,,},, converges

locally uniformly to u, we have x, » x, as p —» 0. Since b and o are

vol. 29, n°® 1, 1995



104 F CAMILLI, M. FALCONE

bounded, the points X, + hp b(xp, a) =+ \/Z; T (Xps a), m =1, ..., d, belong
to B(x,, R) for p large enough, so that

(up, — &)%) = (u, — ) (x, + 1y b(x, @) = \/h: T (X, @))

Since Uy, is the solution of (HJB,,p), we have :

0 = max {~ (1 = Ak,) 1L, (@) uy (x,) = b, f (5 @)} + 1, (x,) =

ae A

=m:1;({2512[uh( ) = up (x, + hy b(xp,a)+fam X, a))] +

+ Z %[uh(x)-uh(x + h, b(xo,a)—\/'a- (xp, a))] +

m=1

+ Ahy 0T, (@) wy (x,) = h, f (x,, @)} =

(b (x,) — & (%, + b, b(x, @) + \/h, Tp(x,, a))] +

M&
n.l”

il

amax{
aeA

m

|~

+ X 55106~ b6+ hybG, . @) =/, 0 (5, a))] +

Ahy, I, (@) uy, (x,) = h, f (%, a)} .

QU

Since ¢ € C*(R"), the above inequality gives

_ 10X
Uamaxi L-—dlla,¢(xp+hpb,(xp,a)+

a€eA

+ S Hy Oy @R, b, (x,, a)+

+ h, b,(x,, a)] — Z 2d Z a,,qs(x +ph (@) (h, b(x,, a) +

m=1

+ Vhy 7 (x, @R, b, (x,,, a) + /hy 0\ @)]
(A, b, (x,, a) + \/Z; (X @)] —
- z = S 28,604+ ol @0y by, @)+l 7 (5 @)

ty =1
[y B, Ky @) = /1y T oy @) 1TRy b, (s @) = Sy 0 (5 @)] +
+ Ahy, IT, (@) uy, (x5,) = hy f (%, a)}
for some p ZL+ (a), p ;Z’ “(a)e (0, 1). Dividing the above relation by

M? AN Modélisation mathématique et Analyse numérique
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h, and passing to the limit as p —» o0, we get

d n
0 = max {_ ! Z Z Uzm(XO’ a) a-jm(x()’ a) az]¢(x0) +

aeA

[\SJ

+ Z b,(XO, a) az¢(x0) + /\M(XO) —f(xo, a)} =

=max {— L(a) ¢ (xo) — f(xp, @) + Au(xp)} .

acA

Repeating the same argument for the minimum of u — ¢ one can easily
complete the proof. The convergence of Uy, to u follows from the uniqueness

of the viscosity solution of (HJB). O

Remark 2.1 : The proof of the above theorem can also be obtained by
applying the general convergence result (Theorem 2.1) in Barles-Souganidis
[BS] which does not require the estimate (2.6) (see also [FS]). Since (2.6)
will be used to prove the estimate (3.10), we preferred to give a direct proof.

Remark 2.2 : 1t is rather easy to use the above discretization to construct
an approximation scheme for the evolutive problem related to a non
autonomous dynamics and the finite horizon cost functional

T
S (@)= fExU FO), a() 1)+ t//@(T))} .
The time-discrete scheme is

ou
— (x, t) + su
5, (6 1)+ sup

acA

{—%Tr[a(x, a,t)o(x,a, t) D*>u(x, t)] —
—bx,a,t)Du(x,t)— f(x,a,t)} =0 (x,1)e R"x [0, T)
ux, Ty= ¢ (x) xeR".

Under assumptions on the coefficients analougous to (2.1) and (2.2), for any
% € C2 ?(R") there exists a unique viscosity solution u of (HJBE) and
ue C??(R" x [0, T]) (see [IL]). By a simple adaptation of the approxi-
mation technique described above, we obtain the following explicit scheme

. 1 ¢
wy,(x, n) = inf {— ﬁ;. [w,(x + hb(x, a, nh) +

aea
+Vh o, a, nh), (n+ 1) )]

—wy(x + hb(x, @, nh) — \/h o ,,(x, @, nh), (n + 1) k)
+ hf(x,a,nh)} xeR", n=0,..,N -1
wp(t, N) = ¢ (x), for xeR"

vol. 29, n° 1, 1995



106 F CAMILLI M FALCONE

where N4 — T The tunction u, satisties

”wh(' > n)”Lw(R )S “dluL”(R )+ (N _n)hMj (2 9)
: L

[wiC.s m)] = L+ Agh) 'l(|¢|ﬂ+7\i) (2 10)
0

with & defined as in Proposition 2 1 The convergence of this scheme 1s
guaranteed since the discrete scheme, defined by

upx, t)=wy(x,n) 1f telnh, m+1)h), n=0,1, . N-1
u, (x, T) = ¢ (x)

satisfies the basic assumptions of the general convergence theorem 1n [BS]
In fact, stability follows from (2 9), whereas the proof of the monotonicity
and consistency properties 1s straightforward Since a comparison principle
holds true for the continuous problem, u,(x, t) — u(x, t) locally uniformly n
R” x [0, T']

3 DISCRETIZATION IN THE SPACE VARIABLE

As we have seen in Section 2, the discretization 1n the time variable gives
the approximating equation (/JB,) where the state variable x 1s still
continuous We will make the discretization in the state variable by means of
piecewise affine finite elements In order to obtain a finite dimensional
approximation of the Hamilton-Jacobi-Bellman equation we must restrict our
problem to a bounded subset of R”

One can of course assume that the system (1 1) verifies an invaniance
condition, f e that there exists a polyhedron {2 such that

ox,a)=0
acy forall xeof2, a€A
b(x,a).n(x)=<cy<0

This condition 1s very restrictive since 1t corresponds to the degeneracy of the
diffusion o on 342 (see also Remark 3 3 for the construction of an
approximadtion scheme 1n this situation and [F] for the results related to the
corresponding deterministtc problem) Even more general invariance con-
ditions such as

Do) o(x,a)=0
forall ve o2, ue A

(fory] ]
Tr(oc@, a)oc'(x,a)D?> ¢ (x))+ b(x, a) Do (x)=c =0

2
are unsatistactory (see the Appendix for a proof of (/C,))

M’ AN Modelisation mathematique et Analyse numerique
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We will focus our attention on a truncation technique which leads to a new
approximation. This technique is more adequate to obtain approximate
solutions since does not require supplementary assumptions on the diffusion
and on the dynamics (1.1).

We introduce a cut-off function, restricting the problem to an arbitrary
bounded set. Let us fix a parameter u, @ =0, and define I, =

(xeR": |x| <%} Let
¢,:R"-[0,1], §,=1 for xel, and &, € CP(R™ (3.1)
we consider a new truncated control problem setting
c,=£, )0 a), b,=£.)b(kx a). (3.2)

Since b,, o, are bounded and Lipschitz continuous, there exists a unique
viscosity solution u, of the equation

(HJB), Aux)=min {L, (a)ux)+ f(x,a)}, xeR",

aeA
where
L,(a)=
n d n
E% (Z crlm(.,a)O'jm(.,a)) E2(.)08,+ Y b(.,a)€EL(. )0, .

Notice that, by definition, the solution u, of the truncated problem satisfies

uﬂ=%minf(x,a), Vx ¢ supp (£,) - (3.3)

aeA
We look for an estimate of |u —u,|.

PROPOSITION 3.1 : Assume (2.1)-(2.3) and (3.1), (3.2). Then there exists a
positive constant C such that

lu(x) —u, )| =Cp?* + |x|?), xel (3.4)

w e

Proof : Let us denote by f(# (t) the <olution of the stochastic differential
equation

{dX(r) =b,X(@), a(®))dt + o, X (), a(t))dW(t)
X0)=x

and define 7,=inf {t=0:X,()¢1,}, 7,=inf {t=0:X()¢1,)}

vol 29, n° 1, 1995



108 F CAMILLI, M FALCONE

(where X (¢) still denotes the solution of (1.1)). By the results in [L2] we have

M(-x) = lnfE{JT“f(X(t), a(t))e_).[ d[ + u(X(’T'u)) 6—)\1“]
£ 0

Uy () = inf[E{Jmf(f(ﬂ(t), a())e *dt+ M#(X,L(?#))e—/\h} _
A 0

Since 7, = 7, and X(¢) =)~(M(t) fort=s7r (P=1), we get

‘)‘7u -AT“

2M;
[u(x) —u, )] = [luGx)—u, ) Ele ]s-—/\—[E[e ].
In order to obtain an estimate for E (e A "*Yin terms of u, we observe that, for
any xel,

Plr,<t]l= P[ sup |X(s)] = 1/,u] <C, p2(1 + |x|*) max [1, 2]
[0, ¢)

where C, is a constant depending on M,, M,. Then,

oo
Ele ™) = J AeMPlr, <tldi<Cy(1+ |x]|*)p?
0

which gives
fu(x) —u, (x)| <Cp?(1 + |x|?) for xel,

where C is a constant depending on M,, M,, A and M,. O

We remark that the term (1 + |x|?) in the estimate gives the dependence
from d(x, 842 ), whereas the term u 2 says how the estimate depends from the
radius of the truncation domain. Obviously we can center /, at any point
x e R"

The approximation scheme described in Section 2 can be applied to the
truncated problem. We get the following equation

(HJB,,)
up ,(x)=inf {(1 —Ah) 1, ,(a)u, ,(x)+hf(x,a)}, xeR"

a€A

where the operator II, , is obtained replacing in (2.4) o and b by
o, and b,. As we have shown in Section 2, the above equation has a unique

bounded and Holder continuous solution, u,, and the sequence {u, },

converges locally uniformly to u,,, as & — 0* . It is important for the sequel to

M2 AN Modélisation mathématique et Analyse numérique
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notice that, for any positive #,

uhp. (x) = ll“ (-x) > X ¢ supp (é:p.) .

Remark 3.1 : The truncation technique has a control interpretation. In
fact, it is known that one can approximate the problem over R” by a sequence
of stopping time problems defined over {2, < R” with diam (£2,) » 0. We
point out that the definition of ¢, guarantees the regularity of u, in
R" and the fact that it is the solution of an (HJB) type problem in
R”". This choice corresponds to a stopping time problem on 2 = supp &,
with a stopping cost on 32 given by (3.3).

We want to construct the discretization of (HJ/B,,, ) in the space variable in
the domain {2 = int supp (£,).

Let {S,} be a family of simplices which set up a regular triangulation of
R”" such that

diam (S)) <k, Vj. 3.5

Let {x, : i € I} be the set of vertices of the triangulation and {x, : i € [ 0} be
the finite set of the vertices belonging to (2.

Let W* be the family of the functions which are continuous in
R" and affine on the simplices of the triangulation. We look for a solution in
W* of the following problem,

(HJB},)
w(x,) = min {(1 — Ah) I, (a) w(x,) + hf (x,, a)} for i € I°
aeA
w(x,):%minf(xl,a) for i e I\I°.
aeA

THEOREM 3.2: Let h € (0, % ] Then, for every k € R, , there exists a

unique solution w € W* of (HJBZ# ).

Proof : Let us remark that (HJBﬁ,L) is equivalent to a finite dimensional
non linear problem. In fact, let us define

Yem@) =x, +hb, (%, )= Nh o, a) i€l, m=1,..,d

(o, is the m-th row of o ,).
Let M* (m, a), M~ (m, a), m = 1, ..., d, be the matrices such that

ZME(m,a):l, O<M;(ma)<l form=1,..,dandiel (3.6)

1€l
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and
yim(@)=3Y M (m, a)x, .

jel

The matrices M;, are the baricentric coordinates of y; ,(a) with respect to the

vertices of triangulation. It is a simple check to show that for i € 7\I°,

Mﬁ (m. a) = 8, and that M;, (m, a) # O for at most n + 1 indices. Let us

observe first that for x € R” such that x = Z M, x,and w € W*, we can write
jel

w(x) = Z #, w(x,). This allows to reduce (HJB;‘,’# ) to the search for a vector
jel

U € R’ such that
Cmin ld—am ¥ L e .
U, —:lnsl;l l(1 )\h)m§]2d[M, (m, a) + M; (m, a)]U + hF,(a)
for iel® (3.7
U, =%minf(x,,a) for iel\I°

aeA

where F,(a)=f (x,, a).
Let us define

u, = {U €R':U, = < minf(x,a) for i el G
J

L Y'aeA

ko
and the operator T, : %, — U ,,

[TEW], =
d
= mn: {(1 — ,\h)m; 2—13 M} (m, a) + M; (m, a)] U + hF,(a)}
for iel’ (3.9a)
(T, U1, =U,, for iel\°. (3.9p)

In order to prove that T} is a contraction map in R’ it clearly suffices to
show that it is a contraction in R'".

In fact, let U, W € % , and assume that @ € A is a control such that the
minimum in (3.9q) is attained. We have,

(T, U], - [Ty W], =

d
1 - -
< (= ARy m = ¥ M} (m, @) + My, (m, )] |U, = W, | .
1 1€l
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