DETERMINATION OF DISTRIBUTION COEFFICIENT OF CATECHIN IN ARECA CATECHU USING SUPERCritical CARBON DIOXIDE EXTRACTION

NURUL AKHMA BINTI YATIM

A report submitted in partial fulfillment of the requirement for the award of the degree of Bachelor in Engineering (Chemical)

FACULTY OF CHEMICAL ENGINEERING
UNIVERSITI TEKNOLOGI MALAYSIA

JANUARY 2013
ABSTRACT

Areca Catechu is better known in Malaysia as ‘buah pinang’ is one of the plant in this region that is useful for the pharmaceutical, medicine and textile industries. This study is carried out since there is no research yet has been studied on distribution coefficient of catechin in Areca Catechu oil from Areca Catechu. The aim of this study is mainly to determine and to analyze the distribution coefficient of catechin from Areca Catechu. This study is also aim to study the effect of operating temperature of the supercritical fluid extraction on the distribution coefficient of catechin. The determination of distribution coefficient, K of catechin in Areca Catechu is done by using the supercritical fluid extraction by using carbon dioxide as the solvent. The extraction process is done extraction temperature of 40°C, 50°C and 60°C as the parameter. A preliminary stage of Soxhlet extraction is done to obtain the suitable and best particle size, Dpi to be used for the SFE extraction and to obtain the total amount of extract in the sample, y. Gas chromatography is used in the quantification process of catechin in the oil extracted from Areca Catechu. Analysis of the results shows that the distribution coefficient decrease with the increase of extraction temperature in SFE. Distribution coefficient is parameter that can be use as an optimization parameter to obtain a higher yield of oil from the extraction process since higher distribution coefficient shows higher selectivity of the solute and higher rate of extraction. Therefore, for commercial use in industries, the best extraction temperature to be used is 40 °C.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background | 1
1.2 Problem Statement | 3
1.3 Objectives of the Study | 3
1.4 Scope of the Study | 4
1.5 Significant of the Study | 4

2 LITERATURE REVIEW

2.1 Background of Areca Catechu | 5
2.1.1 Uses of Areca Catechu | 7
2.1.2 Active Compound of Areca Catechu 7

2.2 Extraction Process 9
 2.2.1 Absorbtion/Stripping 9
 2.2.2 Solvent Extraction 10
 2.2.3 Solid-Liquid Extraction 10
 2.2.4 Soxhlet Extraction 11
 2.2.5 Supercritical Fluid Extraction 13
 2.2.5.1 Supercritical Fluid 16
 2.2.5.2 Properties of Supercritical Fluid 17

2.3 Parameter of Soxhlet Extraction 18
 2.3.1 Temperature of Extraction 18
 2.3.2 Particle Size of Solid 19
 2.3.3 Time of Extraction 19
 2.3.4 Solvent of Extraction 20
 2.3.5 Weight of Solvent 21
 2.3.6 Volume of Solvent 22

2.4 Distribution Coefficient, K 23

3 METHODOLOGY 28
 3.1 Introduction 28
 3.2 Sample Preparation 30
 3.3 Soxhlet Extraction 30
 3.3.1 Chemicals 31
 3.3.2 Apparatus 31
 3.3.3 Procedure 31
 3.4 Rotary Vacuum Evaporator 32
 3.4.1 Chemicals 32
 3.4.2 Apparatus 32
 3.4.3 Procedure 33
 3.5 Supercritical Carbon Dioxide Extraction 33
 3.5.1 Chemicals 33
3.5.2 Apparatus 34
3.5.3 Procedure 34
3.6 GC Analysis 35
3.6.1 Chemicals 35
3.6.2 Apparatus 35
3.6.3 Parameter of GC 35
3.6.4 Procedure 36
3.7 Determination of K 36
3.8 Expression of Result 37
3.8.1 Percentage Oil Yield 37
3.8.2 Total Amount of Catechin in the Sample 37
3.8.3 Distribution Coefficient of Catechin 38

4 RESULTS AND DISCUSSIONS 40
4.1 Introduction 40
4.2 Determination of Particle Size 41
4.2.1 Effect of Particle Size in the Percent Oil Yield 42
4.3 Determination of Total Amount of Catechin in The Sample 44
4.4 Supercritical Carbon Dioxide Extraction 45
4.4.1 Effect of Operating Temperature on the Percent Oil Yield 45
4.5 Determination of Distribution Coefficient of Catechin 47
4.5.1 Effect of Operating Temperature on Distribution Coefficient of Catechin 48

5 CONCLUSION 51
5.1 Conclusion 51
5.2 Recommendation 52
REFERENCES

Chapin, E.D.(1915).The Revival of Natural Dyestuffs.*The Journal of Industrial and Engineering Chemistry.*7(7), (625-628)

Chiu, C.W., Goff, M.J., Suppes, G.J., Distribution of Methanol and Catalysts between Biodiesel and Glycerin Phases

Persistence of Their Potency Upon Storage. *International Biodeterioration and Biodegradation.* 65,(212-216)

Soxhlet, F. (1874). *Diglers’ Polyt.* 232, 461

