
Code Obfuscation against
Static and Dynamic
Reverse Engineering

Sebastian Schrittwieser
Stefan Katzenbeisser

Information Hiding 2011, Prague

Agenda

• Software Protection

• Static vs. Dynamic Code Analysis

• Obfuscation against Static Analysis
- Branching Function

• Obfuscation against Dynamic Analysis
- Control Flow Diversification

- Path Signature

- Code Block Diversification

• Evaluation

• Conclusion

Software Protection

• Today, software is usually distributed in binary form

• Reverse engineering aims at restoring a higher-level
representation of software in order to analyze its
structure and behavior

• In some applications there is a need to protect
software against reverse engineering:
- Intellectual property (e.g. proprietary algorithms)

contained in software

- confidentiality reasons

- copy protection mechanisms

Reverse Engineering

Static Dynamic

Approach analyzing code without
actually executing it

analyzing code during
execution

Pro fast, automated, analyzes
entire code

allows deeper
understanding of the
program’s behavior

Con
difficult to rebuild

control flow (e.g. follow
conditional jumps)

slow, mostly done by
humans, only one trace

at a time

Approach

• Prevent static code analysis

• Shift attacker’s effort to dynamic analysis
- more time consuming

- less tool support

- difficult to automate

• Make dynamic analysis more time consuming

Branching Function

• First introduced by Linn and Debray1

• Idea: Replace CALL and JMP instructions with
calls to a generic function, which decides at
runtime where to jump

• For a static analyzer it is difficult to calculate
jump target without executing the software

• Problem: Large code sections between calls
allow local analysis

1 C. Linn and S. Debray. Obfuscation of Executable Code to
Improve Resistance to Static Disassembly. CCS 2003

Code Splitting

• Code is split into small blocks (gadgets)

• Branching function

• The calculation of the next jump target depends
on all predecessors of the current block

• Static analysis of a code block reveals only
limited local information

• Difficult to obtain a complete view of the
software

!"#$%&'($%)*
&+,$%&'($-.
/00$01",0$2&'34($5*55678-98
:!;$<),/=>+

/=0$%0'($5*??
!"#$%0'($2@%-A%0'B.4
/00$01",0$2&'34($5*555559.7
:!;$<),/=>+

*",$%&'($%0'
*",$%&'($2%);4
/00$%);($.
/00$01",0$2&'34($5*555C-D.E
:!;$<),/=>+

2!!!4

_branch:
save flags on stack
save registers on stack
EAX <= [sig]
ADD lookupTable to EAX
target <= [EAX]
restore registers
restore flags
jump to [target]

Gadgets Branching Function (pseudocode)

1

2

3

4

5

6

Code Blocks Branching Function

calculate next jump target
jump to target code block

Dynamic Analysis

• Problem: Dynamic analysis reveals all code
blocks used in a single invocation of the
software as well as their order.

• Easy to remove the jumps to the branching
function by just concatenating called gadgets in
their correct order.

• Idea: control flow diversification

gadget branch gadget branch ...

Control Flow
Diversification

• Applying the concept of software diversification
to the control flow graph of a program

• Each copy contains exactly the same code

• Control flow depends on the program’s 	

input data

Path Signature
• The path signature

uniquely identifies a
gadget and all its
predecessors

• The branching function
decides, based on the
path signature and the
program’s input, where
to jump next

• Graph representation:
Lookup table

-1|-2

5|4|79|8

4

-3

0

3-3 1

31-3

2

610

Gadget Diversification

• All paths through the graph are valid and
semantically equal traces of the program

• Gadget Diversification: one specific path yields
correct computation only for a specific input of
the program

Evaluation

• No provable security

• Two state-of-the-art reverse engineering tools
(IDA Pro & Jakstab) for evaluation of the static
part

• Collberg’s classification for the dynamic part
- Resilience: strong

- Potency: high

Information Gap

• Aim: increasing the information gap between
developer and attacker

• Obfuscated software does not contain an
explicit representation of the graph’s structure

• Attacker's perspective:
- Reconstruct the entire graph

- Remove diversity of a single trace

size aes movs
1 218,00 18,166666666667 1 28 112
2 113 9,4166666666667 2 14 56
3 77 6,4166666666667 3 8 32
4 57 4,75 4 6 24
5 47 3,9166666666667 5 4,8 19,2
10 27 2,25 10 2,6 10,4
20 19 1,5833333333333 20 1,2 4,8
50 15 1,25 50 0,5 2
Original 12 Original 2,5

1 18,166666667 1 112
2 9,4166666667 2 56
3 6,4166666667 3 32
4 4,75 4 24
5 3,9166666667 5 19,2
10 2,25 10 10,4
20 1,5833333333 20 4,8
50 1,25 50 2

0

40

80

120

0 5 10 15 20 25 30 35 40 45 50

ov
er

he
ad

number of instructions per gadget

AES
MOV benchmark

Performance

• Heavily depends on code block size

Conclusion

• Novel code obfuscation method, based on
control flow diversification

• By splitting code in to small portions, local
analysis can only reveal very limited local
information of the program

• Future work: inter-gadget diversification

