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Abstract: Dependency structure in recommender systems has been widely
adopted in recent years to improve prediction accuracy. In this paper, we
propose an innovative tensor-based recommender system, namely, the Ten-
sor Factorization with Dependency (TFD). The proposed method utilizes
shared factors to characterize the dependency between different modes, in
addition to pairwise additive tensor factorization to integrate information
among multiple modes. One advantage of the proposed method is that
it provides flexibility for different dependency structures by incorporating
shared latent factors. In addition, the proposed method unifies both binary
and ordinal ratings in recommender systems. We achieve scalable compu-
tation for scarce tensors with high missing rates. In theory, we show the
asymptotic consistency of estimators with various loss functions for both
binary and ordinal data. Our numerical studies demonstrate that the pro-
posed method outperforms the existing methods, especially on prediction
accuracy.
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1. Introduction

A recommender system aims to provide recommendations for items users might
prefer, which has been widely used in market boosting by targeting different
people for different products and giving personalized recommendations. Tradi-
tionally, a recommender system can be formulated into a matrix of user-item
interactions, such as movie ratings, sales of products, and the frequency of users
visiting certain locations.

Nowadays, high-order information beyond user-item pairs is collected, such
as time, location, and product features [34, 25, 5], and incorporating such infor-
mation can increase predictive power. The additional information defining the
underlying situation in which a recommendation is provided is referred to as a
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Fig 1. An illustration of a third-order tensor. This tensor represent the brewery rating under
different beer style. The element Xijk represents the rating on beer style k of brewery j given
by user i.

context. Recommender systems with contextual information are called context-
aware recommender systems (CARS) [2]. The applications of CARS include
personalized marketing strategies for retail stores, product recommendations for
different seasonalities, and individualized medical therapies. Ignoring context in-
formation may result in a loss of predictive power. For example, the preferences
of customers buying new clothes can be significantly different between summer
and winter [2].

Tensor representation and decomposition are newly developed tools to han-
dle context information in recommender systems [17, 4, 36, 37]. Tensors are
generalizations of matrices for higher-order relational data and provide useful
high-order data representation formats [4]. In recommender systems, a tensor
is effective and efficient for incorporating or utilizing contextual information for
CARS. Specifically, in addition to user and item, CARS can be formulated as a
tensor X illustrated in Figure 1.

One advantage to utilizing tensor representation is capturing complex user-
item-context interactions through tensor decompositions such as CANDECOM-
P/PARAFAC (CP) decomposition [16] and Tucker decomposition [33]. Tensor
decompositions can be viewed as higher-order latent factor modeling, where a
set of latent factor vectors is used to encode users, items and contexts, and
capture the relations in a latent space.

The existence of dependency structures is quite common in recommender
systems [4, 36]. A dependency may be induced from the tensor entries which
are not necessarily independent, as users may be influenced by other users who
share similar preferences. Existing methods mainly focus on a specific depen-
dency structure. For example, the recommendation engine of multi-layers [4] and
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the double core tensor factorization model [32] consider the heterogeneity across
subgroup structures in each mode. For other example when time is regarded as
contextual information, the recommender system often exhibits strong temporal
patterns, which also introduces a dependency structure among user and item
interactions over time. Accordingly, the temporal dynamics factor models [18]
and the Bayesian probabilistic tensor factorization method [36] aim to solve
this issue. However, in many real-world applications, dependence can also exist
among users, items, and other contextual variables. For example, in beer rec-
ommendation, the beer style is entirely controlled by the brewery, and users’
preference of brewery highly depends on the beer styles the brewery produces.
In tag recommendation, tags are highly associated with items, as users select
similar tags for a specific item. Therefore, between-modes dependence occurs fre-
quently, and developing a tensor-based method to capture dependency among
user, item, and context is very necessary in practice.

A key feature of recommender systems is that the utilities of matrix or tensor
are commonly in a binary or ordinal form to represent yes or no, or ratings of
products. Studies considering high-order binary or rating data include link func-
tion approaches [20, 24, 35, 12, 19], or Boolean tensor decomposition, through a
binary tensor decomposition into a series of binary factors without a population
assumption [22, 11, 28, 13, 10]. However, for a model-free approach such as the
Boolean tensor decomposition, no distribution assumption is specified for the
tensor entries. In contrast to the Boolean tensor decomposition, methods uti-
lizing link function take advantage of a population model assumption [35, 28],
which can distinguish the algorithm error from statistical error [35].

In this paper, we propose a new tensor factorization with dependency (TFD)
model. The main novelty of our method is to incorporate the dependency struc-
tures among modes by utilizing shared latent factors across pairwise interac-
tions. Furthermore, the proposed method unifies the binary and ordinal ratings
in recommender systems and is scalable in computing through imposing the
scarcity of the observed utility tensor. In addition, we establish the asymptotic
consistency and convergence rate of the proposed estimator for both binary and
ordinal cases.

The proposed tensor factorization method has the following advantages. First,
our method is able to incorporate a wide range of dependency structures and
requires no additional assumptions on latent factors or variables. In contrast,
existing methods generally target a specific dependency structure such as the
Markov chain on temporal data or the multivariate copula [36, 15]. In addition,
by introducing the shared latent factor, the proposed model can accommodate a
weak dependency among modes, therefore improving on the prediction accuracy.
Here, weak dependency indicates that there are only a few latent factors shared
between user-item interaction and item-context interaction. This also implies
that the latent factors corresponding to user-item interaction would not affect
the item-context interaction.

Second, the proposed model is effective for high-order CARS with a high
observation missing rate. By utilizing a summation of pairwise interactions, we
can capture most of the information of the user-item interaction and depen-
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dency with other interactions via a parsimonious model. Our method is less
stringent on sample size requirements for recovering the tensor compared to
existing tensor decomposition methods under the same framework. Pairwise in-
teraction tensor factorization (PITF) has been applied in tag recommendations
and movie recommendations [27, 8]. However, the PITF is not able to model
the dependency structure among interactions, where the latent factors model-
ing interactions across different modes are assumed to be independent with each
other.

In addition, we propose a mode-wise coordinate descent (MCD) algorithm to
reduce the computational cost via utilizing the sparsity of the observed tensor.
In both of our simulations and real data applications, the proposed method
outperforms the competing methods on prediction accuracy.

The rest of the paper is organized as follows. Section 2 provides the back-
ground of CARS and tensor factorization. Sections 3 and 4 introduce the pro-
posed method and the optimization algorithm. Theoretical properties are pro-
vided in Section 5. Section 6 presents simulation studies to investigate the per-
formance of our method. In Section 7, we apply the proposed method to two real
data applications: User-Location-Activity data and Beer Review data. Section
8 concludes with a discussion.

2. Background and notation

In this section, we introduce the notation, the background of tensor representa-
tion and the related tensor decompositions.

A tensor is a multidimensional array, a generalization of vector and matrix,
where the order of a tensor is the number of dimensions of the array, and is
also known as the mode. For example, the vector and matrix can be viewed as
a 1-order and 2-order tensor, respectively. In this paper, vectors are denoted by
boldface letters, e.g., a, matrices are denoted by boldface capital letters, e.g.,
A, tensors are denoted by boldface Euler script letters, e.g., X .

Traditional recommender systems can be formulated by a utility matrix
X ∈ R

n1×n2 representing user-item interactions, such as ratings or purchase
status, where the element Xij indicates the interaction between user i and item
j. For example, in brewery recommendations, the element Xij represents the
rating of brewery j given by user i. However, more sophisticated recommender
systems also collect other potential useful contextual information, such as time
of year or beer style. Instead of using a utility matrix X to represent user-item
interactions, a tensor structure X ∈ R

n1×n2×n3 is widely adopted to incorpo-
rate additional contextual information, as illustrated in Figure 1. The element
Xijk of a third-order tensor indicates the interaction among user i, item j, and
context k. For instance, in previous brewery recommendations, the element Xijk

represents the rating on beer style k of brewery j given by user i. By fixing the
last index,

Xk =

⎛⎝X11k ... X1n2k

...
Xn11k ... Xn1n2k

⎞⎠
n1×n2
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represents the utility matrix under context k.

Tensor representation and decomposition are newly developed tools to deal
with context-aware recommender systems (CARS) [2, 4, 6], due to its capability
of reducing model complexity through utilizing a low-rank structure. One com-
monly used tensor decomposition is Canonical Polyadic Decomposition (CPD)
[16], which factorizes a tensor into a sum of r rank-one tensors. For example,
the CPD for a third-order tensor X ∈ R

n1×n2×n3 is:

X =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ a(3)
r + E, (1)

where ◦ represents the vector outer product, E = {εijk} is a noise tensor with
independent and identical distributed (i.i.d.) entries, and the latent factor a(k)

r ∈
R

nk×1 (r = 1, ...., R; k = 1, 2, 3) corresponds to the k-th mode. The rank of a

tensor is defined as rank(X ) = min{R : X ≈
∑R

r=1 a
(1)
r ◦ a(2)

r ◦ a(3)
r }. We

denote A(k) = (a
(k)
1 , ...,a(m)

r )nm×R,m = 1, 2, 3 as factor matrices where each
row of A(1) represents the r-dimentional latent factor for each user, and each
row of A(2) and A(3) is a latent factor for an item and a contextual variable,
respectively.

Pairwise interaction tensor factorization (PITF) has gained considerable at-
tention due to its simplicity and high quality in prediction, and has been applied
in tag recommendation, sequential recommender systems and movie recommen-
dation [26, 27, 8]. Here, tag recommendation refers to a recommender system
that suggests useful tags on a specific item, while a sequential recommender
system predicts what a user would purchase based on their previous purchases
experience. PITF models multi-way interactions through a summation of series
of two-way interactions. For example, to model a user’s ratings for brewery over
different beer styles, the PITF model assumes that each rating is determined by
three two-way interactions: the user’s inherent preference on a certain brewery,
the brewery’s specific recipes for different beer styles, and the user’s preference
over different beer styles. That is, each entry xijk of tensor X is modeled by:

xijk =

R∑
r=1

a
(b)
ir b

(a)
jr +

R∑
r=1

b
(c)
jr c

(b)
kr +

R∑
r=1

a
(c)
ir c

(a)
kr + εijk. (2)

For each mode, two factors are modeled to count for interactions with other two

modes. For example, latent factor a
(b)
ir characterizes the i-th user’s interaction

with items, while a
(c)
ir represents i-th user’s interactions with contexts. One ad-

vantage of the PITF is that it only requires O{nr log2(n)} observations to fully
recover the tensor [8], while CP tensor factorization requires O{r5n3/2 log4(n)},
where n is the maximum size of mode dimensions and r is the dimension of
latent vectors [14]. The explicit form of tensor structure in (2) ensures that the
parameter space of the latent factor is smaller than the regular CP decomposi-
tion, and therefore the prediction accuracy can be improved [27]. However, the
PITF does not consider the dependency among pairwise interactions of user,
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item and context since two latent factors are used for each mode. Therefore, the
user-item interaction is independent from the user-context interaction. However,
in practice, the user-item interaction is highly associated with item-context in-
teraction. For example, in brewery recommendation, the user’s preference for a
certain brewery also depends on the main beer style of the brewery.

Another well-known tensor factorization method is the high-order singular
value decomposition, also referred as Tucker decomposition (TD) [33], which
decomposes a tensor into a core tensor corresponding to each mode. In con-
trast to CP decomposition, the rank of tensor in the Tucker decomposition is
not as well defined as in the matrix rank for singular value matrix decompo-
sition. However, in the recommender systems application, the tensor rank is
essential in achieving dimension reduction of original tensor data and providing
interpretability on latent factors [4]. Another drawback of the TD is that the
theoretical computational complexity of TD is O(R3), while the CP decompo-
sition is only O(R). Thus, CP decompostiion is more popular in recommender
systems [22, 4, 12]. More details on the tensor can be found in [17, 4].

3. General methodology

3.1. Tensor factorization with dependency

In this section, we introduce the proposed tensor dependency modeling and the
corresponding factorization method. The dependency between user-item relation
and item-context relation is very common in practice. Therefore, we model a
context-aware rating tensor via a series of two-way interactions among latent
factors corresponding to user, item and context, respectively. Specifically, we
propose

xijk =

R∑
r=1

airbjr +

R∑
r=1

bjrckr, (3)

where air is the r-th latent factor for user i, and bjr and ckr are the corresponding
latent factors for item j and context k.

The underlying dependency among different modes in the tensor is incorpo-
rated via sharing mode-specific latent factors across the two-way interactions,
e.g., {bjr} are shared in both interaction terms in (3). The proposed method
differs from existing tensor modeling of recommender systems such as the PITF
[27], in that the proposed model imposes a latent-factor-sharing structure, which
incorporates a multi-way interaction among user, item, and context through a
summation of two-way interactions. In model (3), user i’s preference under con-
text k is implicitly encoded into the dependency between airbjr and bjrckr via
the shared latent factor bjr of an item, which serves as a “bridge” between user
i and context k. Sharing latent factors can accommodate different types of de-
pendency. For example, we can incorporate dependency among users, items, or
contexts from the same group, which has been studied before [4, 32].
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Fig 2. Correlations between each row of Xij· and each column of X·jk, which represent the
correlation between user-brewery interaction and brewery-style interaction.

For example, consider a third-order tensor X = {xijk} ∈ R
100×100×100 repre-

senting the user-brewery-style relations. We generate two groups of latent factor
for each mode, where the first 50 users, breweries, and styles have latent factor
a1, b1, and c1, respectively, while the last 50 users, breweries, and styles have
latent factor a2, b2, and c2, respectively. Latent factors ai, bi, ci ∈ R

R for
i = 1, 2 are generated randomly from N(0, IR), where R is the rank of latent
space which is set as 3. Let Xij· = {xij·}100×100 and X ·jk = {x·jk}100×100,

where xij· =
1

100

∑100
k=1 xijk and x·jk = 1

100

∑100
i=1 xijk. By averaging ratings over

styles and users, each row of Xij· and each column of X ·jk represent ratings on
breweries by each user, and ratings on breweries for each style, respectively. Fig-
ure 2 shows the correlation between each row of Xij· and each column of X ·jk,
representing the correlation between user-brewery interaction and brewery-style
interaction. The top-left red block shows that the first group of users’ ratings
on breweries are positively correlated with the first group of styles’ ratings for
breweries, while the bottom left blue block shows that the second group of users’
ratings on breweries are negatively correlated with the first group of styles’ rat-
ings for breweries. This type of dependency may be caused by users’ preferences
for different tastes of beer styles. If the first group of users like the sweet taste,
and the first group of styles’ high ratings are due to the sweet flavor of the beer,
then the users’ ratings on breweries are positively correlated with the styles’
ratings for breweries. On the other hand, if the second group of users prefer the
strong and malty taste, they may tend to give low ratings to breweries with
high ratings for the first group of styles, which leads to negative correlations
at the bottom left. The above simulation shows how the proposed method is
able to capture the dependency between user-item interaction and item-context
interaction under the beer review context.

For our the real data, Figure 3 shows the dependency between user-location
interaction and location-activity interaction from user-location-activity data.
There are only positive correlations or no correlation under this data. This can
be explained in that people tend to go to places where there are activities they
prefer.
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Fig 3. Correlations between each row of Xij· and each column of X·jk, representing the
correlations between user-location interaction and location-activity interaction.

Although one might capture the dependence of interaction through increasing
the rank in tensor decomposition, such as the CP and the Tucker, this could be
infeasible as non-identifiability, unstable estimation and higher computational
cost could also occur if the rank in tensor increases. By specifying a more explicit
structure of the tensor as in (3), we can drop the number of observations in order
to recover the tensor, especially when the tensor size is large. In addition, a
three-way interaction could introduce spurious correlation and noise, especially
if there is no correlation between user and context variable. For example, in tag
recommendation, a tag is used to describe the characteristics of items, which
are not likely to be correlated with users.

In general, the user-context interaction can be ignored in a recommender
system; that is, the interaction between user {air} and context {ckr} is less
influential when a user’s primary interest is the item ranking [27]. This can be
explained from the Bayesian Personalized Ranking (BPR) perspective, where
optimization is achieved through maximizing the likelihood of item ranking
conditioning on user-context pairs (i, k). Specifically, let j1 >i,k j2 denote that

j1 ranks higher than j2, given a user-context pair (i, k), and matrix R(i,k) ∈
{0, 1}n2×n2 denote the rankings of all items for user i under context k, where

each entry is R
(i,k)
j1j2

= I(j1 >i,k j2), and I(·) is the indicator function. The

problem of finding the best ranking of itemR(i,k) given the observed data can be
formulated as maximizing the following likelihood of independent observations:

argmax
Θ

∏
(i,k)∈I×K

P (R(i,k)|Θ), (4)

where I,K are sets of users and contexts, respectively, and Θ is a model param-
eter vector. Assume that j1 >i,k j2 follows a Bernoulli distribution, we have:
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∏
(i,k)∈I×K

P (R(i,k)|Θ) =
∏

(i,k,j1,j2)∈I×K×J2

[
P (j1 >i,k j2|Θ)I{(i,k,j1,j2)∈D}

×{1− P (j1 >i,k j2|Θ)}1−I{(i,k,j1,j2)∈D}
]

=
∏

(i,k,j1,j2)∈D

P (j1 >i,k j2|Θ),

(5)

where D = {(i, k, j1, j2)} is a set of indices such that j1 >i,k j2 is observed.
Suppose that we have a model predicting a scoring function ŷ : I×J×K → R.

We derive an estimator for p(j1 >i,k j2|Θ) by plugging in ŷ:

p(j1 >i,k j2|Θ) := f(ŷi,j1,k − ŷi,j2,k), (6)

where f(x) = exp(x)
1+exp(x) is the logistic function. Notice that ŷ is is an arbitrary

real-valued function obtained from a model parameter vector Θ, e.g., the pro-
posed factorization model.

The Bayesian Personalized Ranking (BPR) perspective shows that if the
primary interest is item ranking, then, when estimating the scoring ŷ, we only
care about the difference between two items’ scoring, ŷi,j1,k − ŷi,j2,k. Although
ignoring the user-context interaction may lead to inaccurate scoring predictions,
the ranking of items based on the estimated scoring will not be affected. For
example, suppose ŷi,j,k =

∑R
r=1 airbjr+

∑R
r=1 bjrckr+

∑R
r=1 airckr, then ŷi,j1,k−

ŷi,j2,k = (
∑R

r=1 airbj1r +
∑R

r=1 bj1rckr)− (
∑R

r=1 airbj2r +
∑R

r=1 bj2rckr), where
the third term for the user-context interactions is canceled out. In addition,
discarding user-context interaction does not lead to poor rating predictions, as
shown in our simulations. This may be because the value-based loss functions
for binary ratings and ordinal ratings are similar to the rank-based loss function.

Another advantage of the proposed model (3) is its flexibility in modeling
different dependency structure among modes. Existing methods for character-
izing dependency structure require a specific dependence structure, such as the
Markov chain on temporal data or the multivariate copula [36, 15]. In the
Markov chain model, the probability of each event depends only on the state of
the previous event, while in the multivariate copula model, data are assumed to
follow a specific multivariate distribution. These model assumptions could be
violated. In contrast, the proposed model utilizes latent factor modeling and is
able to approximate complex unstructured dependency between tensor modes.

In this paper, we consider the most common cases where xijk is binary or or-
dinal. We first introduce the proposed model for binary rating tensor as follows:

logit{P (xijk = 1)} =

R∑
r=1

airbjr +

R∑
r=1

bjrckr, (7)

where P (xijk = 1) denotes the probability of xijk being 1, and logit(p) =
log( p

1−p ).
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To estimate the latent factor matrices A = {air}, B = {bjr} and C = {ckr},
we minimize the following square loss on xijk with L2 penalty [5, 3, 29], where
the L2 penalty controls the model complexity to avoid over-fitting and scale
indeterminacy [1]:

L(A,B,C|X ) =
∑

(i,j,k)∈Ω

(
xijk − f(

R∑
r=1

airbjr +

R∑
r=1

bjrckr)

)2

+ λ(||A||2F + ||B||2F + ||C||2F ),

(8)

where Ω denotes the set of indices corresponding to observed ratings, f(x) =
exp(x)

1+exp(x) is the logistic function, λ is the penalty tuning parameter, and || · ||F
denotes the Frobenius norm.

Note that minimizing the square loss is equivalent to maximizing the likeli-
hood of observed {xijk} if the data are fully observed. In recommender systems,
the first square loss term and the remaining penalty term in (8) could be un-
der different domain spaces, therefore (8) is more computationally efficient in
practice.

3.2. Ordinal rating tensor

In the following, we extend the proposed tensor modeling to the case of ordinal
rating. Given an ordinal ratings tensor X = {xijk} with L levels, we propose a
proportional-odds-based modeling on rating xijk as follows:

logit{P (xijk ≤ l} = αl − θijk, l = 1, ..., L− 1,

θijk =

R∑
r=1

airbjr +

R∑
r=1

bjrckr,
(9)

where α1 ≤ α2 ≤ ... ≤ αL−1.
The model (9) has an equivalent representation as follows:

xijk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x∗

ijk ∈ (−∞, α1] ,

2, x∗
ijk ∈ (α1, α2] ,

...
...

L, x∗
ijk ∈ (αL−1,∞) ,

(10)

where {x∗
ijk} is a noisy version of {θijk}:

x∗
ijk = θijk + εijk,

and {εijk} are i.i.d. noises with a cumulative distribution function P(ε) = 1
1+e−ε

[19]. According to (10), we assume that the ordinal outcome xijk can be formu-
lated as a categorized version of a latent continuous variable x∗

ijk. For example,
in a 5-point ordinal ranking, we can treat it as a discrete surrogate of the con-
tinuous variable indicating the degree of likeness.
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In the following, we propose a proportional odds model where the distance
between pairs of levels are the same for all entries, and therefore (9) implies L-1
parallel classification hyperplanes for the L-level ratings as follows:

log
P (xijk ≤ l)

P (xijk > l)
− log

P (xijk ≤ l − 1)

P (xijk > l − 1)
= αl − αl−1, l ∈ {1, . . . , L− 1}. (11)

Note that the right hand side of (11) does not involve xijk, that is the log odds
are the same across observations. If there is evidence showing that the log odds
are heteroscedastic for post (i, j, k), then a multinomial logistic model is more
desirable.

Let Ω represent the set of indices corresponding to the observed ratings. To
simplify the notation, let α0 = −∞, and αL = ∞. We estimate A,B,C,α =
{αl}, l = 1, ..., L − 1 via minimizing the following penalized negative log likeli-
hood,

L(A,B,C,α|X )

= −
∑

(i,j,k)∈Ω

L∑
l=1

I(Xijk = l) log {f(αl − θijk)− f(αl−1 − θijk)}

+ λ(||A||2F + ||B||2F + ||C||2F ),

(12)

where θijk =
∑R

r=1 airbjr +
∑R

r=1 bjrckr.

Notice that we do not penalize α as they are the cut-off points for each level of
rating. When L = 2, the above proportional odds loss function (12) degenerates
to a penalized logistic loss function for the binary ratings.

4. Computation

In this section, we propose a scalable algorithm to estimate the latent factors
A,B,C and cutoff parameter α, and provide implementation strategies to im-
prove the stability and efficiency of the optimization.

The proposed algorithm is based on a mode-wise gradient descent, and the
gradient of the latent factors can be derived from loss functions (8) and (12).
Let Ω := {(i, j, k) : xijk is observed} be the set of indices corresponding to
the observed ratings, and define Ωi·· := {(j, k) : (i, j, k) ∈ Ω} as a subset of
Ω collecting entries whose first index is i. We similarly define Ω·j· := {(i, k) :
(i, j, k) ∈ Ω} and Ω··k := {(i, j) : (i, j, k) ∈ Ω} corresponding to the second
and third modes. For the binary rating case, the gradients of the proposed loss
function (8) with respect to the latent factors A = {air},B = {bir},C = {cir}
are
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∂L

∂air
=

∑
(j,k)∈Ωi··

yijkbjk + 2λair,
∂L

∂bjr
=

∑
(i,k)∈Ω·j·

yijk (air + ckr) + 2λbjr,

∂L

∂ckr
=

∑
(i,j)∈Ω··k

yijkbjk + 2λckr,

(13)
where

yijk = 2 (f(x̂ijk)− xijk) f(x̂ijk)(1−f(x̂ijk)), and x̂ijk =

R∑
r=1

airbjr+

R∑
r=1

bjrckr.

(14)
For the ordinal rating case, the gradients of the penalized negative log likeli-

hood (12) with respect to the latent factors A,B,C, and cutoff α are

∂L

∂air
= −

∑
(j,k)∈Ωi··

yijkbjk + 2λair,
∂L

∂bjr
= −

∑
(i,k)∈Ω·j·

yijk (air + ckr) + 2λbjr,

∂L

∂ckr
= −

∑
(i,j)∈Ω··k

yijkbjk + 2λckr,
∂L

∂αl
= −

∑
(i,j,k)∈Ω

yijk,

(15)
where

yijk =

L∑
l=1

{I(Xijk = l)×

f(αl − x̂ijk) {1− f(αl − x̂ijk)} − f(αl−1 − x̂ijk) {1− f(αl−1 − x̂ijk)}
f(αl − x̂ijk)− f(αl−1 − x̂ijk)

}
.

(16)
Instead of updating only one entry of A,B,C,α at each iteration, we can

utilize the matrix and tensor operations to jointly update each mode of the rating
tensor for each iteration using parallel computing, thus reducing computation
time [12].

Due to the non-convex nature of the proposed objective functions (8) and
(12), the gradient-descent based optimization can only guarantee convergence
to a stationary point, and is sensitive to the initial value. However, the proposed
algorithm is not sensitive to the initial value since our method has a low model
complexity compared to the standard tensor decomposition methods. This low
model complexity has an advantage of ensuring the convergence of the proposed
algorithm in that it is more stable and less likely to be trapped by the saddle
points [9]. We set the initial values for the latent factors randomly as

ai,bi, ci ∼ N (0, IR) ,

where IR is a R×R identity matrix and
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α ∼ Uniform (0, 1) ,

for a cutoff in the ordinal rating case. After initializing α, we sort the entries
of α in an ascending order. We summarize the proposed optimization in the
following Algorithm 1.

Algorithm 1 Mode-wise Coordinate Descent
1.(Initialization) Set stopping error ε, rank R, tuning parameter λ and initial values:

(i) Binary rating case: A(0),B(0),C(0).

(ii) Ordinal rating case: A(0),B(0),C(0),α(0).
2.(Latent factor update) At the s-th iteration (s ≥ 1):

(i) Binary rating case: update A(s),B(s),C(s) sequentially via (13).

3. Ordinal rating case: update A(s),B(s),C(s),α(s+1) sequentially via (15).

4. Stop if
|L(s+1)−L(s)|

L(s) < ε.

In addition, we tune rank r and λ via minimizing the mean square error
(MSE) on a validation set, where the MSE on a set Ω is defined as 1

|Ω|
∑

Ω(xijk−
x̂ijk)

2.

High computational complexity is a common issue for tensor based modeling,
especially when the dimension of the tensor is large. One difficulty arises from
the trade-off between memory cost and computational efficiency. In additional
to the rating tensor X , we also need to store Y = {yijk} in (14) and (16) in
computing gradients. When X is sparse, we can store X effciently by storing
only its nonzero values and the corresponding indices. However, even when X
is sparse, Y can still be dense and might cause memory issues.

The proposed algorithm achieves a higher computational efficiency when the
dimension of each mode is large and X is scarce [12]. In practice, X is likely
scarce as the vast majority of its entries are missing, due to the fact that tensor
Y becomes sparse when X is scarce since each missing element in X corresponds
to a zero entry of Y . Our strategy is to store the nonzero entries of Y only to
save memory and therefore make our algorithm scalable.

5. Theory

In this section, we develop the theoretical properties for the proposed method.
Specifically, we provide the consistency and convergence rate for the proposed
estimator under the cases of binary and ordinal rating. In addition, we extend
the convergence property of the proposed estimator under L2 loss to a general
loss function, given additional smoothness conditions.

We first provide the asymptotic properties for the proposed method for the
binary rating case. Since our primary goal is the prediction of ratings, we fo-
cus on the convergence property of the rating values instead of the latent fac-
tor recovery. Suppose the entries Y = {yi1i2i3} ∈ R

n1×n2×n3 are i.i.d. follow-
ing a Bernoulli distribution with probability Θ = {θi1i2i3}, where θi1i2i3 =
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f(
∑R

r=1 ai1rbi2r +
∑R

r=1 bi2rci3r). For element yi1i2i3 of Y , we define the L2-loss
function as

l (Θ, yi1i2i3) = (yi1i2i3 − θi1i2i3)
2
. (17)

Let |Ω| be the number of observed ratings and J(Θ) be a non-negative penalty
function; for example, we have J(Θ) = ||A||22+ ||B||22+ ||C||22 for the L2-penalty
on the tensor factors. Then the overall object function is

L(Θ | Y) =
∑

(i1,i2,i3)∈Ω

l (Θ, yi1i2i3) + λ|Ω|J(Θ), (18)

where λ|Ω| is a tuning parameter for the penalization. To establish the conver-
gence rate, we introduce the following assumption:

Assumption 1. max {||A||∞, ||B||∞, ||C||∞} ≤ c0, for a constant c0.

Assumption 1 assumes that the latent factors are bounded, since, in practice,
the underlying probabilities of binary utilities are finite. We define the parameter
space as

S(k) = {Θ : ||Θ||∞ ≤ c, J(Θ) ≤ k2},

where k is a positive constant.
We assume that k ∼ O(

√
γ), where γ =

∑3
i=1 niR is the total number of

parameters. We introduce S(k) to ensure that the proposed estimator can reach
the best possible convergence rate. Let S ⊆ R

(n1+n2+n3)R be the true underlying
parameter space. The estimator Θ̂|Ω| defined on S may not achieve the best
possible convergence rate since the size of S is too large when ni goes to infinity
[31]. In contrast, S(k) imposes constraints on the parameters. When k increases,
the constraint J(Θ) ≤ k2 becomes less stringent, and the parameter space S(k)
converges to S when ni goes to infinity [5, 30].

LetΘ0 be the true probability of the binary ratings and Θ̂ = argminΘ∈S L(Θ |
Y). We denote Θ̂|Ω| as the sample estimator of Θ0 satisfying:

L(Θ̂|Ω||Y ) ≤ inf
Θ∈S(k)

L(Θ|Y ) + τ|Ω|, (19)

where lim|Ω|→∞ τ|Ω| = 0. Since finding the global minimizer is not always feasible

due to the non-convexity of L, we require that Θ̂|Ω| be close to a global minimizer
of L(Θ|Y ) when |Ω| → ∞.

Let lΔ(Θ | ·) = l(Θ, ·)− l (Θ0, ·), and

K (Θ,Θ0) =
1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

E {lΔ (Θ, yi1i2i3)} , (20)

which is the expected loss difference between Θ and Θ0. Since Θ0 is the
true parameter, we have K (Θ0,Θ) ≥ 0 for all Θ ∈ S and K = 0 only if
Θ = Θ0. Given K (Θ,Θ0), the distance between Θ and Θ0 can be measured
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as ρ (Θ0,Θ) = K1/2 (Θ0,Θ). Similarly, we quantify the variance of the loss
difference lΔ as:

V (Θ0,Θ) =
1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

Var {lΔ (Θ, yi1i2i3)} .

Note that K (Θ0,Θ) = 1
n1n2n3

||Θ0 −Θ‖2, where ‖ · ‖ stands for the Euclidean

norm of the vectorized tensor. We establish the convergence of Θ̂|Ω| in the
following Theorem 1.

Theorem 1. Suppose Θ̂|Ω| is a sample estimator satisfying (19). Then under
Assumption 1 we have:

P
(
ρ(Θ̂|Ω|,Θ0) ≥ η|Ω|

)
≤ 7 exp

(
−c1|Ω|η2|Ω|

)
,

where c1 ≥ 0 is a constant, η|Ω| = max
(
ε|Ω|, λ

1/2
|Ω|

)
, and ε|Ω| ∼ 1

|Ω|1/2 is the best

possible rate that can be achieved when λ|Ω| ∼ ε2|Ω|.

Theorem 1 indicates that, if the penalty term shrinks to zero at an appropriate
rate, the proposed method leads to a convergence rate of 1

|Ω|1/2 for Θ.

Next, we extend Theorem 1 to a more general loss function. Notice that the
loss function l(., .) in (17) can be replaced by a loss function other than the L2

loss to model complex and nonlinear relations between the ratings andΘ. For ex-
ample, the loss function l(·, ·) can be a log-likelihood loss, then K(·, ·) reduces to
the Kullback-Leiber pseudo-distance. Let Wα

p [a, b]
n1×n2×n3 be a Sobolev space

with a finite Lp norm, where a and b are constants and α is a parameter asso-
ciated with the degree of smoothness of the loss difference lΔ.

Assumption 2. For each yi1···i3 , we assume

|l (Θ0, yi1i2i3)− l (Θ, yi1i2i3)| ≤ g (yi1i2i3) ‖Θ0 −Θ‖ ,

where g(·) satisfies E [exp {t0g (yi1i2i3)}] ≤ c2 < ∞, for a constant c2 and a
constant t0 around 0. In particular, there exists a constant c′2 > 0, such that
E
{
g2 (yi1i2i3)

}
≤ c′2 for all yi1i2i3 .

Assumption 3. Suppose there exist δ > 0 and β ∈ [0, 1), such that for Θ
within the δ-ball centered at Θ0 under the metric ρ, we have ρ (Θ0,Θ) ≥
c3 ‖Θ0 −Θ‖

1
1+β , where c3 ≥ 0 is a constant and ‖ · ‖ is the Euclidean norm.

The regularity condition defined in Assumption 2 is a restriction on the
smoothness of loss function l(., .). Assumption 3 requires that in the neigh-
borhood of the true parameter Θ0, a metric ρ (Θ0, ·) is larger than a certain
order of the Euclidean distance in Theorem 2. In contrast, if ρ (Θ0, ·) is bounded
by the Euclidean distance and Assumption 2 is satisfied, then Theorem 1 is still
valid in terms of the metric ρ (Θ0, ·).
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Theorem 2. Let Θ̂|Ω| be a sample estimator satisfying (19). Assume that lΔ ∈
Wα

p [a, b]
n1×n2×n3 , where p > 2, and that Assumptions 1, 2 and 3 hold. Then we

have:

P
(
ρ
(
Θ̂|Ω|,Θ0

)
≥ η|Ω|

)
≤ 7 exp

(
−c4|Ω|η2|Ω|

)
,

where c4 ≥ 0 is a constant, and η|Ω| = max
(
ε|Ω|, λ

1/2
|Ω|

)
with

ε|Ω| ∼

⎧⎪⎨⎪⎩
(

1
|Ω|1/2

) 2ω
2ω+1

if ω > 1
2 ,(

1
|Ω|1/2

)ω
if ω ≤ 1

2 ,

being the best possible rate achieved when λ|Ω| ∼ ε2|Ω|. Here ω = α/γ, and

γ =
∑3

i=1 niR is the total number of parameters.

Theorem 2 shows that the convergence rate under a general loss is still 1
|Ω|1/2

when the loss function is infinitely differentiable, i.e. ω = ∞. When the smooth-
ness of the loss function decreases, the convergence rate of the estimator Θ̂|Ω|
is slower.

We also consider the ordinal rating case. Let Θ denote the vectorization of
(α,A,B,C). We represent the penalized likelihood-based loss function (11) as:

L(Θ|Y ) = −
∑

(i1,i2,i3)∈Ω

log{P (yi1i2i3 |Θ)}+ λ|Ω|J(Θ).

Then Assumption 1 and the definition of S(k) are the same as in the binary
case, except that the total number of parameters γ becomes (n1+n2+n3)R+L.

To measure the difference between the two parameters Θ̂|Ω| and Θ0, we
introduce the Hellinger metric h(·, ·) on S(k) as:

h(Θ0, Θ̂|Ω|) =⎡⎣ 1

|Ω|
∑

(i1,i2,i3)∈Ω

∫ {
P 1/2 (yi1i2i3 | Θ0)− P 1/2

(
yi1i2i3 | Θ̂|Ω|

)}2

dyi1i2i3

⎤⎦1/2

.

Theorem 3. Under Assumption 1 and suppose λ|Ω| <
1
2k ε

2
|Ω|, the best possible

convergence rate of Θ̂|Ω| is

ε|Ω| ∼
√
γ

|Ω|1/2

{
log

(
L|Ω|

√
n1n2n3γ

)}1/2

,

and there exists a constant c5 > 0, such that

P
(
h(Θ0, Θ̂|Ω|) ≥ ε|Ω|

)
≤ 7 exp

(
−c5|Ω|ε2|Ω|

)
.
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Theorem 3 establishes the convergence rate of Θ̂|Ω| with the Hellinger dis-
tance as a metric for the parameter space. This result still holds if the L2

distance is used and additional assumptions on the local and global behavior of
V ar{L(Θ̂|Ω||Y )−L(Θ0|Y )} are needed. We can then apply Corollary 2 in [30]
to prove it. Notice that the number of levels L also affects the convergence rate,
and ε|Ω| increases as L grows.

6. Simulation studies

In this section, we conduct simulations to compare the proposed method (TFD)
with existing tensor factorization methods for both binary and ordinal rating
cases.

6.1. Binary rating tensor

We first focus on binary rating tensors and compare the proposed method
(TFD) with five competing methods; namely, the Boolean Tensor Decomposition
(BTD) [28], Canonical Polyadic Decomposition (CP) [16], Generalized Canoni-
cal Polyadic Decomposition (GCP) [12], Bayesian probabilistic tensor factoriza-
tion (BPTF) [36], and the pairwise interaction tensor factorization (PITF) [27].
Among these models, CP and PITF are considered as baseline tensor factor-
ization methods which model multi-way interactions and two-way interactions,
respectively. Both the BTD and GCP are able to deal with binary data, and
the BPTF is a tensor factorization method that can characterize dependency
across subjects within the last mode.

In the first experiment, we evaluate the performance of different methods via
prediction accuracy under different ranks and tensor sizes. We consider a 3-order
tensor, whose size is n1 × n2 × n3 = 200× 100× 50 or 2000× 1000× 50 and the
rank of the latent factors is set as R = 3, 5 or 8. Each latent factor is generated

as ai, bj , ck
iid∼ N(0, 4 · IR) for i = 1, . . . , n1, j = 1, . . . , n2, and k = 1, . . . , n3,

and the underlying rating probability is formulated as:

pijk = P (xijk = 1) = f(
R∑

r=1

airbjr +
R∑

r=1

bjrckr),

and the binary rating tensor is generated via xijk ∼ Bernoulli(pijk). We denote
the missing rate of the observation in the rating tensor as π0. For small tensor
size 200 × 100 × 50, the missing rate π0 = 90%, while for large tensor size
2000× 1000× 50, π0 = 99%. For the observed rating, we assign 60%, 20% and
20% of the data into training, validation and testing sets, respectively. Here, all
simulations are replicated 100 times, and the true rank R is applied.

Table 1 provides the comparisons between the proposed method and com-
peting methods, where the performance is measured by the mean square error
(MSE) and the area under the receiver operating characteristic curve (AUC).
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Table 1

The MSE and AUC of the proposed method and competing methods under the first
simulation setting in Section 6.1. Standard errors are reported in parentheses.

Rank Method
MSE AUC

200× 100× 50 2000× 1000× 50 200× 100× 50 2000× 1000× 50

R=3

TFD 0.038 (0.002) 0.123 (0.022) 0.995 (0.001) 0.906 (0.025)
PITF 0.176 (0.009) 0.190 (0.011) 0.816 (0.019) 0.808 (0.012)
CP 0.455 (0.005) 0.495 (0.001) 0.902 (0.008) 0.801 (0.006)
GCP 0.206 (0.002) 0.249 (0.000) 0.923 (0.001) 0.843 (0.003)
BTD 0.310 (0.004) – 0.689 (0.004) –
BPTF 0.505 (0.006) 0.501 (0.001) 0.622 (0.002) 0.562 (0.004)

R=5

TFD 0.049 (0.002) 0.153 (0.023) 0.988 (0.004) 0.877 (0.025)
PITF 0.199 (0.008) 0.255 (0.057) 0.771 (0.017) 0.780 (0.012)
CP 0.448 (0.004) 0.495 (0.001) 0.929 (0.001) 0.906 (0.003)
GCP 0.233 (0.036) 0.249 (0.000) 0.904 (0.004) 0.765 (0.006)
BTD 0.294 (0.002) – 0.705 (0.010) –
BPTF 0.504 (0.001) 0.500 (0.001) 0.585 (0.003) 0.524 (0.004)

R=8

TFD 0.068 (0.009) 0.128 (0.006) 0.971 (0.009) 0.907 (0.006)
PITF 0.238 (0.003) 0.318 (0.007) 0.717 (0.007) 0.713 (0.012)
CP 0.456 (0.005) 0.495 (0.002) 0.935 (0.002) 0.907 (0.003
GCP 0.256 (0.002) 0.249 (0.000) 0.797 (0.004) 0.817 (0.002)
BTD 0.305 (0.004) – 0.694 (0.003) –
BPTF 0.498 (0.005) 0.504 (0.001) 0.543 (0.003) 0.581 (0.002)

The proposed method performs the best in all cases except for the large ten-
sor of 2000 × 1000 × 50 with R = 5 in terms of AUC. This is because the
observed sample size for the large tensor is sufficient for recovering the tensor
using CP decomposition. Compared to a small tensor, a large tensor has 100
times more entries, but the missing rate is only 10 times smaller, resulting in 10
times more observations for a large tensor. The improvements of the proposed
method compared to the other methods are at least 78% in the MSE. Note
that the performance of all methods becomes worse when the rank increases in
general, due to the increasing number of total parameter. The Boolean Tensor
Decomposition (BTD) is not able to handle the large tensor of 2000×1000×50,
as there is no sparsity constraint. The CP method provides a comparable per-
formance in terms of the AUC, but the MSE is rather poor. This is because CP
is directly applied to a binary rating, and the estimation of each rating given
by CP is around 0.5, which leads to a high MSE. However, the AUC is mainly
used to distinguish the high and low binary ratings, and the CP can learn such
information from binary ratings, thus gives a comparable AUC. In contrast,
the proposed method is able to improve the performance in terms of MSE by
utilizing the link function, and transforming a binary rating to a continuous
outcome.

The second experiment investigates the prediction performance of binary
ratings when no dependency exists among pairwise interactions of latent factors.

Specifically, we generate two separate latent factors of item b
(1)
j for user-item

interaction and b
(2)
j for item-context interaction from two normal distributions,
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Table 2

The MSE and AUC of the proposed method and competing methods when no dependency
between interactions exists. Standard errors are reported in parentheses.

TFD PITF CP GCP BTD BPTF
MSE 0.157 (0.005) 0.189 (0.008) 0.463 (0.004) 0.260 (0.001) 0.326 (0.007) 0.496 (0.005)
AUC 0.853 (0.009) 0.802 (0.029) 0.833 (0.006) 0.788 (0.005) 0.676 (0.003) 0.621 (0.005)

N(0, 4 · IR). Thus, the true probability tensor becomes:

pijk = P (xijk = 1) = f(

R∑
r=1

airb
(1)
jr +

R∑
r=1

b
(2)
jr ckr).

All other simulation settings are similar to the first experiment.
Table 2 provides the performance of different methods when no dependency

exists between interactions. The proposed model is still the best compared with
competing models, indicating that the proposed method is quite robust against
model misspecification when no dependency among pairwise interactions exists.
There are two major reasons for improved performance of the proposed method
over the PITF. First, we treat binary response as a random variable following an
underlying probability, while the PITF treats it as a continuous variable. Second,
the proposed loss function includes penalty on the latent factors while the PITF
does not. Therefore, the PITF might suffer from low prediction accuracy due to
overfitting and scale indeterminacy of latent factors.

6.2. Ordinal rating tensor

In the following simulation, we investigate the performance of the proposed
method (TFD) with five competing methods on the ordinal rating prediction.
Three of them are CP, PITF and BPTF. The other two are extensions of the
CP and PITF methods, which are not designed for ordinal rating, but can be
plugged into the proportional odds model by replacing θijk in (12) with the
CP and PITF output. We refer to these two as the Ordinal Canonical Polyadic
Decomposition (OCP) and Ordinal Pairwise Interaction Tensor Factorization
(OPI).

We generate each latent factor ai, bj , ck
iid∼ N(0, 4 · Ir) for i = 1, . . . , n1,

j = 1, . . . , n2, k = 1, . . . , n3, and cutoff parameters αl
iid∼ Uniform(0, 1) for

l = 1, . . . , L− 1. The tensor size is 200× 100× 50, or 2000× 1000× 50, and the
number of rating levels is L = 3, 5 or 7.

The underlying probability of the rating being l is

plijk = P (xijk = l) = f(αl − θijk)− f(αl−1 − θijk), l = 1, ..., L,

θijk =

R∑
r=1

airbjr +

R∑
r=1

bjrckr,
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Table 3

The MSE of the proposed method and competing methods for ordinal ratings under different
number of levels. Standard errors are reported in parentheses.

Rank Method
Tensor size

200× 100× 50 2000× 1000× 50

L=3

TFD 0.073 (0.048) 0.183 (0.043)
PITF 0.253 (0.062) 4.975 (0.283)
OPI 0.105 (0.087) 0.995 (0.184)
CP 1.621 (0.991) 4.822 (3.069)
OCP 0.551 (0.323) 1.059 (0.418)
BPTF 0.220 (0.091) 1.175 (0.118)

L=5

TFD 0.216 (0.088) 0.931 (0.178)
PITF 3.203 (0.454) 9.035 (1.061)
OPI 1.973 (0.103) 3.015 (0.915)
CP 7.117 (1.654) 9.423 (3.294)
OCP 2.277 (0.654) 3.607 (0.642)
BPTF 1.085 (0.109) 2.109 (0.354)

L=7

TFD 0.513 (0.040) 1.852 (0.404)
PITF 5.055 (1.259) 13.891 (1.188)
OPI 4.510 (0.703) 7.009 (1.125)
CP 10.602 (6.528) 16.494 (3.130)
OCP 9.618 (5.517) 7.620 (0.659)
BPTF 3.008 (0.534) 3.796 (0.931)

where f is the logistic function and the ordinal rating tensor follows

xijk ∼ Multinomial(p1ijk, . . . , p
L
ijk).

We set the missing rate π0 = 90% for the small tensor size, and π0 = 99% for
the large tensor size. All simulations are replicated 100 times, and use the true
rank R.

Table 3 shows that for both small and large scale tensors, the proposed
method outperforms other methods by more than 30% in the MSE when the
number of levels is 3, while the improvement increases to more than 88% when
the number of levels is 5 or 7. As the number of levels increases, the MSE of the
proposed model increases as well, which is consistent with Theorem 3.

We also compare the performance of the proposed TFD model with PITF,
OPI, CP, OCP and BPTF given different observation missing rates. Specifically,
we fix the tensor size at 2000 × 1000 × 50, the rank of the latent factor at
R = 5, and the number of rating levels at L = 3. We consider two missing
rates at π0 = 0.95 and 0.97. Table 4 shows that although all methods perform
worse as π0 increases, the proposed method and the PITF-based methods are
most robust against observation-missing than the CP-based methods. This is
because the proposed method pursues parsimonious tensor modeling, and is
less demanding on the sample size to recover data information compared with
CP-based modeling.
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Table 4

The MSE of the proposed method and competing methods for ordinal ratings under different
missing rates. Standard errors are reported in parentheses.

Method
Missing rate

95% 97%
TFD 0.172 (0.076) 0.223 (0.096)
PITF 2.636 (0.435) 3.150 (0.314)
OPI 1.088 (0.318) 1.196 (0.512)
CP 1.558 (0.470) 2.082 (0.415)
OCP 1.272 (0.301) 1.835 (0.397)
BPTF 0.925 (0.121) 0.966 (0.111)

7. Real data application

In this section, we apply the proposed method to two real application datasets,
the User-Location-Activity dataset [38] and the Beer Review dataset [21].

7.1. User-location-activity data

The User-Location-Activity dataset [38] contains 164 users, 168 locations and 5
different types of activities. The study asked 164 users to carry GPS devices to
record their movements and activities from April 2007 to October 2009 in a city
of China. The raw GPS points are labelled as 168 locations for recommendation.
The activities are divided into 5 categories, including “Food & Drink”, “Shop-
ping”, “Movies & Shows”, “Sports & Exercise” and “Tourism & Amusement.”
The original data provides the counts of each activity at a specific location. Af-
ter removing the users with no records and the locations with no counts, there
are 146 users and 85 locations remaining, where only 2% of the entries have
counts larger than 0. This is because each users only went to a few locations
and had few specific activities during the experiment. Therefore, most entries
are missing, which result in sparse tensor data.

Figure 4 illustrates the dependency between location and activity based on
the data. Specifically, people doing specific activities are correlated with their
locations. Thus, it is reasonable to consider a dependence between location and
activity when build the recommender system.

We define the tensor X as:

xijk =

{
1 if user i does activity k at location j
0 otherwise.

The goal of our study is to predict the user’s probability of choosing a certain
activity at a specific location. Through the prediction result, we can recommend
location-activity pairs to each user. The preprocessed data are randomly split
into training, validation and testing sets with proportions of 60%, 20%, 20%, and
the experiments are replicated 100 times. We compare the proposed method with
competing methods in Section 6.1. Each method’s rank is tuned via minimizing
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Fig 4. User count of five activities on four sample locations.

Table 5

MSE, AUC, and resulting rank R of User-Location-Activity dataset. Standard errors are
reported in parentheses.

TFD PITF CP GCP BTD BPTF
MSE 0.016 (0.001) 0.436 (0.035) 0.018 (0.001) 0.254 (0.003) 0.018 (0.003) 0.982 (0.002)
AUC 0.928 (0.009) 0.512 (0.042) 0.807 (0.036) 0.869 (0.007) 0.521 (0.043) 0.539 (0.010)
R 9 8 2 2 9 9

the mean square errors (MSE) from the validation set, and the largest possible
rank is 10.

Table 5 shows that the proposed model outperforms the other methods in
AUC and MSE. The improvement from the proposed method in the AUC is
more than 6 % compared with the second-best model, the GCP method. The
proposed model, CP and BTD perform similarly on the MSE of predictions due
to the imbalanced data.

7.2. Beer review data

In this subsection, we apply the proposed method to Beer Review Dataset [21]
and recommend breweries with preferred beer styles to customers.

This dataset consists of 1.5 million beer reviews from 2002 to 2011 collected
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Fig 5. Average ratings of different beer styles on two sample breweries.

by BeerAdvocate. Each review includes a rating from 0 to 5 with a 0.5 incremen-
tal point scale, thus consisting of 11 levels in total. The dataset includes a total
of 33,388 users, 5,743 breweries and 104 beer styles. Note that for each brewery,
there is only one beer for each beer style. Here, we consider the brewery as an
item and the beer style as the contextual variable. For the dependence struc-
ture, the beer style is entirely controlled by the brewery, and users’ preference
of brewery highly depends on the features of different beer styles in different
breweries. As illustrated in Figure 5, the users’ ratings on different beer styles
vary for different breweries, indicating the dependency between user-brewery
interaction and brewery-beer style interaction. To be more specific, the brewery
affects the distribution of ratings on beer styles.

We randomly split the data into training, validation and testing sets with
proportions of 60%, 20% and 20%, respectively. We adopt the sparse tensor
strategy in Section 4 to handle the large tensor size. We compare our method
with the CP decomposition, Ordinal CP decomposition, PITF, Ordinal PITF
and BPTF. Each method’s rank is tuned via minimizing the mean square errors
(MSE) from the validation set, and the largest possible rank is 10.

Table 6 shows that the proposed model outperforms other methods with re-
spect to prediction MSE. Specifically, neither the CP or PITF can handle ordinal
ratings with 11 levels well with large MSE. However, their modified versions, the
OCP and OPI, perform better. The comparison between the proposed model
and the Ordinal PITF indicates that incorporating dependency structure im-
proves the prediction performance by 40% on the MSE. The proposed model also
performs better than the BPTF, showing the advantages of incorporating the
dependency between interactions of modes. Without any additional optimiza-
tion of the implementation, the proposed algorithm has similar computation
time compared to existing methods. Note that, except for the BPTF model, all
the other methods including the proposed method are implemented in Python.
Due to memory limitations, we store a large tensor in a sparse tensor data struc-
ture where only observed entries’ information are stored. To further optimize the
implementation, we can implement parallel computing in calculating gradients
for different factors.
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Table 6

MSE, selected rank R, and running time in minutes of the proposed method and competing
methods for the Beer Review dataset. Standard errors are reported in parentheses.

TFD CP OCP PITF OPI BPTF
MSE 1.064 (0.385) 15.056 (0.060) 4.436 (1.267) 6.585 (1.258) 1.772 (0.148) 2.243 (0.245)
R 10 9 8 8 10 10

Time (mins) 39.753 (2.635) 21.801 (1.541) 87.078 (19.202) 33.059 (2.143) 90.421 (3.852) 80.702 (29.020)

8. Discussion

In this paper, we propose a new tensor-based recommender system to incorpo-
rate the dependency among modes, and to achieve tensor completion through
utilizing shared factors in addition to the pairwise interactions. The proposed
decomposition is capable of capturing the dependency between user-item and
item-context interactions, and leads to significant advantages in incorporating
context information that introduces dependency among modes. In addition, the
proposed method is capable of dealing with ordinal ratings in additional to bi-
nary recommendations. We also propose a mode-wise coordinate descent (MCD)
algorithm to accelerate computation and reduce memory storage. We demon-
strate the superiority of the proposed method on both simulation and real data
applications. In theory, we show that the estimated parameter achieves asymp-
totic consistency in both binary and ordinal rating cases.

There are several potential research directions to extend our method. One
is to develop a unified framework for different types of utility jointly, such as
binary, ordinal, count data and non-negative continuous data. Another possible
direction is to extend the proposed method to a higher-order tensor, and develop
an inference procedure to test whether certain dependencies between two specific
interactions are needed or not.

Appendix A: Appendix section

A.1. Proof of Theorem 1

For any ki ≥ 0, let A (k1, k2) = {Θ ∈ S : k1 ≤ ρ (Θ0,Θ) ≤ 2k1, J(Θ) ≤ k2},
and F (k1, k2) = {lΔ(Θ | ·) : Θ ∈ A (k1, k2)}.

We verify several conditions of Corollary 2 in [30]. First, we verify Assumption
B. By definition, we have

Var {lΔ (Θ, yi1i2···id)} = 4(θi1i2···id − θ0i1i2···id)θ0i1i2···id(1− θ0i1i2···id),

sup
A(k1,k2)

V (Θ0,Θ) ≤ c6k
2
1 = c6k

2
1

{
1 +

(
k21 + k2

)β1
}
,

and hence β1 = 0. In the rest of this section, all ci’s with i ∈ N are assumed to
be non-negative constants.
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Second, for Assumption C, recall that θ0,i1···id and θi1···id are between 0 and
1 by property of sigmoid function for a given yi1···id . Thus, we have

Var {lΔ (Θ, yi1i2···id)} = 4(θi1i2···id − θ0i1i2···id)θ0i1i2···id(1− θ0i1i2···id)

≤ c7(θi1i2···id − θ0i1i2···id).

Furthermore, |l (Θ, yi1···id)− l (Θ0, yi1···id)| = |θ0,i1···id − θi1···id | · |2yi1···id −
θ0,i1···id −θi1···id |. Define a new random variable w = |2yi1···id−θ0,i1···id−θi1···id |,
then we have E {exp (t0w)} < ∞ for t0 at an open interval containing 0.

Now we verify that for a constant c8 > 0, we have supA(k1,k2) ‖Θ0−Θ‖sup ≤
c8
(
k21 + k2

)β2
for β2 ∈ [0, 1). Define f0 = f0(A,B,C) = Θ − Θ0. Recall that

‖(A,B,C)‖∞ ≤ c and γ =
∑3

k=1 (nk) r is the total number of parameters. Since
f0 is a quadratic function of elements of (A,B,C), we have f0 ∈ W∞

2 [−c, c]
γ

where W∞
2 is a Sobolev space, and ‖f0‖2 = ρ (Θ0,Θ) ≤ c9 for a constant c9 > 0.

In addition, we have f
(α)
0 = 0 for α = ∞. Therefore, based on Lemma 2 of [30],

we get

‖f0‖∞ = ‖Θ0 −Θ‖∞ ≤ 2c4.

The required conditions are fulfilled by defining c3 = 2c4 and β2 = 0.

Next, we verify the Assumption D. Let

N (ε, n) =
{
gl1, g

u
1 , . . . , g

l
n, g

u
n

}
,

be a set of functions from the L2 space, where max1≤i≤n

∥∥gui − gli
∥∥
2
≤ ε. Sup-

pose for any function lΔ ∈ F (k1, k2), there exists i ∈ {1, . . . , n} such that
gli ≤ lΔ ≤ gui almost surely. Then the Hellinger metric entropy is defined as
H(ε,F) = log{n : minN (ε, n)}. Let ω = α

γ = ∞, then pω = ∞ > 1. Define

ψ (k1, k2) =

∫ U0

L0

H1/2(u,F)du/L0,

where L0 = c10λ|Ω|
(
k21 + k2

)
and U0 = c11ε|Ω|

(
k21 + k2

)(1+max(β1,β2))/2
. Based

on Theorem 5.2 of [7], the Hellinger metric entropy is controlled by

H
(
ε|Ω|,F

)
≤ c7ε

−0
|Ω| = c12.

Recall that β1 = β2 = 0. Then for fixed k1 and k2, we have ψ (k1, k2) =
√
c12

U0−L0

L0
∼ ε|Ω|−λ|Ω|

λ|Ω|
. Given that ψ ∼ |Ω|1/2, the best possible rate is achieved

at ε|Ω| ∼ λ
1/2
|Ω| , that is,

ε|Ω| ∼
1

|Ω|1/2 .

The result in Theorem 1 then follows by applying Corollary 2 of [30].
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A.2. Proof of Theorem 2

We define A (k1, k2) and F (k1, k2) the same as in the proof of Theorem 1 and
start by verifying conditions of Corollary 2 of [30].

First,for Assumption B, based on the definition of V (·, ·) and Assumption 2
we have

V (Θ0,Θ) =
1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

Var {l (Θ, yi1i2i3)− l (Θ0, yi1i2i3)}

≤ 1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

E
{
|l (Θ, yi1i2i3)− l (Θ0, yi1i2i3)|

2
}

≤ 1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

E
{
g2 (yi1i2i3)

}
‖Θ0 −Θ‖2

≤ c′2 ‖Θ0 −Θ‖2 .

Therefore, we have supA(k1,k2) V (Θ0,Θ) ≤ 4c′2k
2
1

{
1 +

(
k21 + k2

)β1
}

with β1 =

0.

Second, we verify Assumption C. By Assumptions 2 and 3, we have

‖lΔ (Θ | yi1i2i3)‖2 =
[
E
{
|l (Θ, yi1i2i3)− l (Θ0, yi1i2i3)|

2
}]1/2

≤ c′2 | Θ0 −Θ‖
≤ c13ρ (Θ0,Θ)

1+β
,

for c13 = c′2/c
1+β
3 , a given element yi1i2i3 in the tensor, and δ > 0 such that

Θ ∈ Bδ (Θ0). Then by Lemma 2 of [30], we have

‖lΔ (Θ | yi1i2i3)‖∞ ≤ c14 ‖lΔ (Θ | yi1i2i3)‖
(α−p−1)/(α−p−1+1/2)
2

≤ c13c14ρ (Θ0,Θ)
2β2 ,

where β2 = 1+β
2

α−p−1

α−p−1+1/2 . Since β ∈ [0, 1), we have β2 ∈ [0, 1).

We now verify Assumption D, the condition on the Hellinger metric entropy.
Recall that ω = α

γ . Therefore, based on Theorem 5.2 of [7], the Hellinger metric

entropy is upper-bounded by H
(
ε|Ω|,F

)
≤ c15ε

−1/ω
|Ω| . Then we have:

ψ (k1, k2) =

∫ U0

L0

u− 1
2ω du/L0

∼ C (k1, k2)
ε
− 1

2ω+1

|Ω| − λ
− 1

2ω+1

|Ω|
λ|Ω|

.
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The best possible rate is provided by setting ψ (k1, k2) ∼ |Ω|1/2 and λ|Ω| ∼
ε2|Ω|. Hence

ε
− 1

2ω−1

|Ω| − ε
− 1

ω

|Ω| ∼ |Ω|1/2.

That is,

ε|Ω| ∼

⎧⎪⎨⎪⎩
(

1
|Ω|1/2

) 2
2ω+1

if ω > 1
2(

1
|Ω|1/2

)ω
if ω ≤ 1

2

Then the result follows by applying Corollary 2 of [30].

A.3. Proof of Theorem 3

Here the density is

p(y,Θ) =

L∑
l=1

{I(y = l) (f(αl − θ)− f(αl−1 − θ))} .

where θ =
∑

r A
(1)
ir A

(2)
jr +

∑
r A

(2)
jr A

(3)
kr .

Note that ∣∣∣p1/2(y,Θ1)− p1/2(y,Θ2)
∣∣∣2

≤c16(
∣∣∣f1/2(α1 − θ1)− f1/2(α1 − θ2)

∣∣∣2
+

L−1∑
l=2

(∣∣∣f1/2(αl − θ1)− f1/2(αl − θ2)
∣∣∣2

+
∣∣∣(1− f(αl−1 − θ1))

1/2 − (1− f(αl−1 − θ2))
1/2
∣∣∣2)

+
∣∣∣(1− f(αL−1 − θ1))

1/2 − (1− f(αL−1 − θ2))
1/2
∣∣∣2)

≤c17L||Θ1 −Θ2||22,

where c16 and c17 are some constant. In the last step, the mean value theorem
and the boundness of function f is used.

We then verify the condition of Lemma 2.1 of [23]. Based on the above in-
equality,⎧⎨⎩ 1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

E

(
sup

Θ̂∈Bd(Θ)

∣∣∣p1/2(yijk, Θ̂ijk)− p1/2(yijk,Θijk)
∣∣∣2)

⎫⎬⎭
1/2

=

⎧⎨⎩ 1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1
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∫
sup

Θ̂∈Bd(Θ)

∣∣∣p1/2(yijk, Θ̂ijk)− p1/2(yijk,Θijk)
∣∣∣2 dν(y)}1/2

≤
{

c17L

n1n2n3
sup

Θ̂∈Bd(Θ)

‖Θ̂−Θ‖22

}1/2

≤
√

c17L

n1n2n3
d

:= g(d).

Hence for u > 0,

HB(u,S(k), ρ) ≤ H
(
g−1(u/2),S(k), ρ

)
,

whereHB is the metric entropy of S(k) with bracketing of f1/2, H is the ordinary
metric entropy of S(k), and ρ is the L2 -norm. Next we provide an upper bound

for H
(
g−1(u/2),S(k), ρ

)
. Since g−1(u/2) =

√
n1n2n3

2
√
c17

u, and ‖Θ‖∞ ≤ c0, we have

0 ≤ HB(u,S(k), ρ)
≤ H

(
g−1(u/2),S(k), ρ

)
≤ log

⎡⎢⎣max

⎧⎪⎨⎪⎩
⎛⎝c0

√
(n1 + n2 + n3)R+ L

√
n1n2n3

2
√
c17L

u

⎞⎠(n1+n2+n3)R+L

, 1

⎫⎪⎬⎪⎭
⎤⎥⎦

≤ max

{
((n1 + n2 + n3)R+ L) log

(
2c0
√

c17L((n1 + n2 + n3)R+ L)
√
n1n2n3u

)
, 0

}

= max

{
((n1 + n2 + n3)R+ L) log

(
C
√
L((n1 + n2 + n3)R+ L)

√
n1n2n3u

)
, 0

}
,

for u ≥ ε2|Ω| and C = 2c0
√
c17.

We now find the convergence rate ε|Ω|, the smallest ε that satisties Assump-
tion A of Theorem 1 of [30].

Note that ψ1 ≤ 0 ≤ c18|Ω|1/2 when x ≥ 1, so we only consider the case when
0 < x < 1. Assume that n1n2n3 > ((n1 + n2 + n3)R+ L), then:

ψ1(ε, k) =

∫ x1/2

x

{
HB(u,F(k))

}1/2
du/x

≤ ((n1 + n2 + n3)R+ L)1/2∫ x1/2

x

(
log

(
C
√
L((n1 + n2 + n3)R+ L)

√
n1n2n3

)
− log u

)1/2

du/x

≤ ((n1 + n2 + n3)R+ L)1/2
(
x−1/2 − 1

)
{
log

(
C
√
L((n1 + n2 + n3)R+ L)

√
n1n2n3

)
+ log

(
x−1

)}1/2

.
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For the best possible rate of convergence, we have λ|Ω| = O
(
ε2|Ω|

)
. Therefore,

we solve

sup
k≥k0

ψ1(ε, k) = ψ1 (ε, k0)

∼
√

((n1 + n2 + n3)R+ L
1

ε|Ω|

{
log

(√
L((n1 + n2 + n3)R+ L)

√
n1n2n3ε2|Ω|

)}1/2

= c18|Ω|1/2.

Then we have

ε|Ω| ∼
√
γ

|Ω|1/2

{
log

(
L|Ω|

√
n1n2n3γ

)}1/2

.

where γ = (n1 + n2 + n3)R+ L is the total number of parameters.
With ε|Ω| and λ|Ω| above, the Assumption A of [30] is satisfied. The result

then follows the Corollary 1.
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