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Chapter 1 Overview

� Sample Space

� Disjoint or Mutually Exclusive

� Probability Axioms/Basic Properties

� Finite sample spaces

� Independent Events 

� Conditional Probability

� Baye’s Theorem



Sample Space

� Sample Space Ω is the set of possible outcomes. 

� Ex: Toss fair coin twice Ω={HH,HT,TH,TT}

� Points ω in Ω are called sample outcomes, realizations, 

elements.

� Subsets of Ω are called events.

� Ex: Event that first toss is head is A={HH,HT}

� Ac = complement of A (or NOT A)

� = complement of Ω
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Disjoint or Mutually Exclusive

� Two events (A and B) are mutually exclusive iff  A B = ∅∩

Ex: A1=[0,1), A2=[1,2), A3=[2,3)

� A Partition of Ω is a sequence of disjoint sets

� Indicator function of A

� Monotone increasing if

� Monotone decreasing if 
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Intro to Probability

� P(A) = Probability Distribution or Probability Measure

� Axioms: 

� 1) P(A)≥0 for every A 

� 2) P(Ω) = 1

� If A1,A2…are disjoint then 
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� Statistical Interference:

� Frequentist 

� Bayesian Schools



Basic Properties of Probability
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Probability on Finite Sample 
Spaces

� P(A)=A/Ω
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• N choose K is counting how many ways can we get a 
k-subset out from a set with n elements. 

•Ex: There’s 10 people in the Book Club; We want 
groups of 2 people. How many possible 
combinations?
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Independent Events

� Two events are independent (does not directly affect the probability 
of the other from happening) iff:   P(AB) = P(A)P(B)

� A set of events {Ai : i ε I} is independent if 

� Assume A & B are disjoint events, each with +ve probability. Can
they be independent?
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Ans: No because:

Independent = P(AB) = P(A)P(B)

But here P(AB)=φ=0 and P(A)P(B)>0

•Independence is sometimes assumed & sometimes derived.

Ex: Toss a fair die A={2,4,6} B{1,2,3,4} ∩ }4,2{=BA
P(AB)=2/6=P(A)P(B)=1/2*2/3



Conditional Probability 

� Assuming P(B)>0…P(A|B)=P(AB)/P(B)

� If A & B are independent then P(A|B)=P(A)

� Ex: Draw Ace of clubs (A) and then Queen of Diamonds (B) 

P(AB)=P(A)P(B|A)=1/52*1/51=1/2652

� P(.|B) satisfies the axioms, for fixed B

� P(A|.) does not satisfy the axioms of probability, for fixed A

� In general P(A|B) ≠ P(B|A)



Bayes’ Theorem

� The Law of Total Probability
1
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Where Cj = BAj C1…k are disjoint

� Let A1,…,Ak be a partition of Ω such that P(Ai)>0 for 
each i. If P(B)>0 then, for each i=1,…,k
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Additional Examples

� Disease Test with + or – outcomes
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.099.009+

DcD

Go to test and get + results. What’s the 

probability of one having disease? Ans: not 

90%...actually 8% ( ) .009
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� 3 Catergories of Email: A1= “spam”, A2= “low priority”, 
A3= “high priority”

� P(A1)=.7,P(A2)=.2,P(A3)=.1 Let B be event that email 

contains the word “Free”

� P(B|A1)=.9, P(B|A2)=.01, P(B|A3)=.01

� Q: receive an email with word “free”, what’s the 

probability that it is spam?
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Chapter 2 Overview

� Random Variable

� Cumulative Distribution Function (CDF)

� Discrete Vs. Continuous probability functions (Probability Density 
Function PDF)
� Discrete: Point Mass, Discrete Uniform, Bernoulli, Binomial, Geometric, Poisson 

Distribution 

� Continuous: Uniform, Normal (Gaussian), Exponential, Gamma, Beta, t and Cauchy, 
Χ2

� Bivariate Distribution

� Marginal Distribution

� Independent Random Variables

� Conditional Distribution

� Multivariate Distributions: Multinomial, Multivariate Normal

� Transformations of Random Variables.



Random Variable

� A random variable is a mapping 

� X: Ω R 

� That assigns a real number 

X(ω) to each outcome ω

� Ex: Flip coin twice and let X be 
number of heads. 2¼HH

1¼HT

1¼TH

0¼TT

X(ω)P(ω)ω

→

¼2

½1

¼0

P(X=x)x



Cumulative Distribution 
Function

� CDF = FX: R→[0,1]

� FX(x)=P(X≤x)

� Ex: Flip a fair coin twice 

and let X be number of 

heads

∈

� Theorem: let X and Y have 
CDF F and G. If F(x) = G(x) 

for all x, then P(X   A) = P(Y   

A) 

� Theorem: CDF needs to 
satisfy:

� F is non-decreasing: x1<x2, 
also F(x1)≤F(x2)

� F is normalized: 

� F is right-continuous: 

F(x) = F(x+) for all, 

where F(x+)=
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Discrete Vs. Continuous 
Distributions

� Def: X is discrete if it take countably many values. We define the 
probability function or probability mass function for X by 
fX(x)=P(X=x)

� Def: X is continuous if there exists a function fX such that fX(x)≥0 for 
all x, and for every a≤b

� The function fX is called the probability density function (PDF). 

and fX(x) =F’X(x) at all points x at which FX is differentiable 

Note: mention Lemmas (pg 25)
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Some Important Discrete 
Functions

� Point Mass Distribution: if P(X=a)=1 otherwise 0
� Discrete Uniform

� f(x)=

� Bernoulli (Binary Coin Flip)

� f(x)=Px(1-p)1-x for x ε {0,1}

� Binomial (flip coins n time and let X be number of heads)

f(x)=P(X=x)={ for x=0,…,n

{0 otherwise

� Geometric p ε (0,1) (Think X as the No. of flips needed to get the 1st head)

� P(X=k)=p(1-P)k-1, k=1,2,3,…

� Poisson (Counting rare events like radioactive decay or traffic accidents)

� x≥0
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Some Important Continuous 
Distributions

� Uniform Distribution

� f(x)={1/(b-a) for x    [a,b]

{0 otherwise

� Normal (Gaussian)

Standard Normal if µ=0 and σ=1

if X ~ N(µ, σ2), then Z=(X- µ)/ σ N(0,1)

� Exponential (Model lifetimes of electronic components/ waiting 
times between rare events)

� t distribution is like Normal except with thinker tails

� Cauchy is special case of t distribution where ν=1

� X2 distribution deals with various degrees of freedom
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Bivariate Distribution

� Discrete random variables 
X & Y, define joint mass 
function by f(x,y)=P(X=x 
and Y=y)

� F(1,1)=P(X=1,Y=1)=4/9

� In continuous case, we use 
f(x,y) a PDF for the random 
variables (X,Y)
� (i) f(x,y) ≥ 0 for all (x,y)

� (ii) 

� for any set A is RXR,P((X,Y)    
A) = 

12/31/3

2/34/92/9X=1

1/32/91/9X=0

Y=1Y=0
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Marginal Distributions

� Def: if (X,Y) have joint distribution with mass function fX,Y,  
then the marginal mass function for X is defined by 

� And the marginal Mass Function for Y is defined by

� fX(0)=3/10 and fX(1)=7/10

� For continuous random variables, the marginal densities are 
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Independent Random 
Variables

� Def: Two random variables X & 
Y are independent iff, for every 
A & B,

� fX(0)fY(0)=f(0,0)

� fX(0)fY(1)=f(0,1)

� fX(1)fY(0)=f(1,0)

� fX(1)fY(1)=f(1,1)

1½½

½¼¼X=1

½¼¼X=0

Y=1Y=0

� These are not independent 

because 

� fX(0)fY(1)=(1/2)(1/2)=1/4 
yet f(0,1)=0

1½½

½½0X=1

½0½X=0

Y=1Y=0
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Conditional Distributions 

� Def:

� f(x|y)=P(X=x|Y=y)=P(X=x,Y=y)/P(Y=y)=f(x,y)/f(y)

� Assuming that f(y)>0

� Def: for continuous random variables,

� f(x|y)= f(x,y)/f(y)

� Assuming that f(y)>0. Then,
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Multivariate Distribution and IID 
Samples

� If X1,…,Xn are independent and each has the same marginal 

distribution with CDF F, we say that X1,…,Xn are independent 

and identically distributed and we write

� X1,…Xn ~ F

� Random sample size n from F



2 Important Multivariable 
Distributions

� Multinomial: multivariate version of a Binomial

� X ~ Multinomial(n,p)

Where

� Multivariate Normal: µ is a vector and σ is a matrix (pg40)
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Transformations of Random 
Variables

� Three steps for Transformations 

� 1. For each y, find the set Ay={x:r(x)≤y)

� 2.Find CDF

� F(y)=P(Y ≤y)=P(r(X) ≤y)

=P({x;r(x) ≤y})

=

� 3. The PDF is f(y)=F’(y)
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Ay
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