All of Statistics: A Concise Course in Statistical Inference

By Larry Wasserman

Chapter 1 \& 2 Overview Presentation

Toby Xu UW Madison

05/29/07

Chapter 1 Overview

- Sample Space
- Disjoint or Mutually Exclusive
- Probability Axioms/Basic Properties
- Finite sample spaces
- Independent Events
- Conditional Probability
- Baye's Theorem

Sample Space

- Sample Space Ω is the set of possible outcomes.
- Ex: Toss fair coin twice $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Points ω in Ω are called sample outcomes, realizations, elements.
- Subsets of Ω are called events.
- Ex: Event that first toss is head is $A=\{H H, H T\}$
- $A^{c}=$ complement of A (or NOT A)
- $\varnothing=$ complement of Ω

$$
\begin{aligned}
& A \bigcup B=\{\omega \in \Omega: \omega \in A \text { or } \omega \in B \text { or } \omega \in \text { both }\} \\
& A \bigcap B=\{\omega \in \Omega: \omega \in A \text { and } \omega \in B\}
\end{aligned}
$$

Disjoint or Mutually Exclusive

- Two events (A and B) are mutually exclusive iff $A \bigcap B=\varnothing$
$E x: A_{1}=[0,1), A_{2}=[1,2), A_{3}=[2,3)$
- A Partition of Ω is a sequence of disjoint sets
- Indicator function of A
- Monotone increasing if $A_{1} \subset A_{2} \subset A_{3} \ldots$
- Monotone decreasing if $A_{1} \supset A_{2} \supset A_{3} \ldots$

Intro to Probability

- $P(A)=$ Probability Distribution or Probability Measure
- Axioms:
- 1) $P(A) \geq 0$ for every A
- 2) $P(\Omega)=1$
- If $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots$ are disjoint then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

- Statistical Interference:
- Frequentist
- Bayesian Schools

Basic Properties of Probability

$$
\begin{aligned}
& P(\varnothing)=0 \\
& A \subset B \Rightarrow P(A) \leq P(B) \\
& 0 \leq P(A) \leq 1 \\
& A \bigcap B=\varnothing \Rightarrow P(A \bigcup B)=P(A)+P(B) \quad \text { For Disjoint Probabilities only } \\
& \mathrm{P}\left(\mathrm{~A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{~A}) \\
& P(A \bigcup B)=P(A)+P(B)-P(A B) \\
& \mathrm{A} \text { or } \mathrm{B}=(\mathrm{AB}) \text { or }(\mathrm{AB}) \text { or }(\mathrm{A} \mathrm{~B})
\end{aligned}
$$

Probability on Finite Sample Spaces

- $P(A)=A / \Omega$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad \text { N choose } \mathrm{k}
$$

$$
\begin{aligned}
& \binom{n}{0}=\binom{n}{n}=1 \\
& \binom{n}{k}=\binom{n}{n-k}
\end{aligned}
$$

- N choose K is counting how many ways can we get a k-subset out from a set with n elements.
-Ex: There's 10 people in the Book Club; We want groups of 2 people. How many possible combinations?

$$
\binom{10}{2}=\frac{10!}{2!(10-2)!}=45
$$

Independent Events

- Two events are independent (does not directly affect the probability of the other from happening) iff: $P(A B)=P(A) P(B)$
- A set of events $\left\{A_{i}: i \varepsilon\right.$ $\}$ is independent if

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right)
$$

- Assume A \& B are disjoint events, each with +ve probability. Can they be independent?

Ans: No because: Independent $=P(A B)=P(A) P(B)$ But here $P(A B)=\varphi=0$ and $P(A) P(B)>0$
-Independence is sometimes assumed \& sometimes derived.

$$
\begin{aligned}
& \text { Ex: Toss a fair die } A=\{2,4,6\} B\{1,2,3,4\} \text { } A \bigcap B=\{2,4\} \\
& P(\Delta R)=2 / 6=P(\Delta) P(R)=1 / 2 *) / 3
\end{aligned}
$$

$$
P(A B)=2 / 6=P(A) P(B)=1 / 2 * 2 / 3
$$

Conditional Probability

- Assuming $\mathrm{P}(\mathrm{B})>0 \ldots \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{AB}) / \mathrm{P}(\mathrm{B})$
- If $A \& B$ are independent then $P(A \mid B)=P(A)$
- Ex: Draw Ace of clubs (A) and then Queen of Diamonds (B) $P(A B)=P(A) P(B \mid A)=1 / 52^{*} 1 / 51=1 / 2652$
- $P(. \mid B)$ satisfies the axioms, for fixed B
- $P(A \mid$.$) does not satisfy the axioms of probability, for fixed A$
- In general $P(A \mid B) \neq P(B \mid A)$

Bayes' Theorem

- The Law of Total Probability

$$
P(B)=\sum_{i=1}^{k} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

- $\mathrm{A}_{1} \ldots \mathrm{~A}_{k}$ are partitions of $P(B)=\sum P\left(C_{i}\right)=\sum P\left(B A_{j}\right)=\sum P\left(B \mid A_{j}\right) P\left(A_{j}\right)$ Where $\mathrm{C}_{\mathrm{j}}=\mathrm{BA}_{\mathrm{j}} \mathrm{C}_{1 \ldots \mathrm{k}}$ are disjoint
- Let A_{1}, \ldots, A_{k} be a partition of Ω such that $P\left(A_{i}\right)>0$ for each i. If $\mathrm{P}(\mathrm{B})>0$ then, for each $\mathrm{i}=1, \ldots, \mathrm{k}$

$$
P\left(A_{i} / B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

Additional Examples

- Disease Test with + or - outcomes

Go to test and get + results. What's the probability of one having disease? Ans: not

	D	D^{c}
+	.009	.099
-	.001	.891

- 3 Catergories of Email: $A_{1}=$ "spam", $A_{2}=$ "low priority", $\mathrm{A}_{3}=$ "high priority"
- $P\left(A_{1}\right)=.7, P\left(A_{2}\right)=.2, P\left(A_{3}\right)=.1$ Let B be event that email contains the word "Free"
- $\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{1}\right)=.9, \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{2}\right)=.01, \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{3}\right)=.01$
- Q : receive an email with word "free", what's the probability that it is spam?

$$
P\left(A_{1} \mid B\right)=\frac{.9 \times .7}{(.9 \times .7)+(.01 \times .2)+(.01 \times .1)}=.995
$$

Chapter 2 Overview

- Random Variable
- Cumulative Distribution Function (CDF)
- Discrete Vs. Continuous probability functions (Probability Density Function PDF)
- Discrete: Point Mass, Discrete Uniform, Bernoulli, Binomial, Geometric, Poisson

Distribution

- Continuous: Uniform, Normal (Gaussian), Exponential, Gamma, Beta, t and Cauchy, X^{2}
- Bivariate Distribution
- Marginal Distribution
- Independent Random Variables
- Conditional Distribution
- Multivariate Distributions: Multinomial, Multivariate Normal
- Transformations of Random Variables.

Random Variable

- A random variable is a mapping
- $\mathrm{X}: \Omega \quad \mathrm{R}$
- That assigns a real number $X(\omega)$ to each outcome ω
- Ex: Flip coin twice and let X be number of heads.

ω	$P(\omega)$	$X(\omega)$
TT	$1 / 4$	0
TH	$1 / 4$	1
HT	$1 / 4$	1
HH	$1 / 4$	2

x	$P(X=x)$
0	$1 / 4$
1	$1 / 2$
2	$1 / 4$

Cumulative Distribution Function

- $C D F=F_{X}: R \rightarrow[0,1]$
- $F_{X}(x)=P(X \leq x)$
- Ex: Flip a fair coin twice and let X be number of heads

$$
F_{x}(x)= \begin{cases}0 & \mathrm{x}<0 \\ 1 / 4 & 0 \leq \mathrm{x}<1 \\ 3 / 4 & 1 \leq \mathrm{x}<2 \\ 1 & \mathrm{x} \geq 2\end{cases}
$$

- Theorem: let X and Y have CDF F and G. If $F(x)=G(x)$ for all x, then $P(X \in A)=P(Y \in$ A)
- Theorem: CDF needs to satisfy:
- F is non-decreasing: $\mathrm{x}_{1}<\mathrm{x}_{2}$, also $F\left(\mathrm{x}_{1}\right) \leq \mathrm{F}\left(\mathrm{x}_{2}\right)$
- F is normalized:
$\lim _{x \rightarrow-\infty} F(x)=0$
$\lim _{x \rightarrow+\infty} F(x)=1$
- F is right-continuous:
$F(x)=F\left(x^{+}\right)$for all, where $\mathrm{F}\left(\mathrm{x}^{+}\right)=\lim _{\substack{y \rightarrow x \\ y>x}} F(y)$

Discrete Vs. Continuous Distributions

- Def: X is discrete if it take countably many values. We define the probability function or probability mass function for X by $f_{X}(x)=P(X=x)$
- Def: X is continuous if there exists a function f_{X} such that $f_{X}(x) \geq 0$ for all $\mathrm{x},{ }^{+\infty}$ and for every $\mathrm{a} \leq \mathrm{b}$
$P(a<X<b)=\int_{a}^{b} f(x) d x$
- The function f_{x} is called the probability density function (PDF).

$$
F_{x}(x)=\int_{-\infty}^{x} f x(t) d t
$$

and $f_{x}(x)=F_{x}^{\prime}(x)$ at all points x at which F_{x} is differentiable Note: mention Lemmas (pg 25)

Some Important Discrete Functions

- Point Mass Distribution: if $P(X=a)=1$ otherwise 0
- Discrete Uniform
- $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{1}{k} & \text { for } \mathrm{x}=1, \ldots, \mathrm{k} \\ 0 & \text { otherwise }\end{cases}$
- Bernoulli (Binary Coin Flip)
- $f(x)=P^{x}(1-p)^{1-x}$ for $x \varepsilon\{0,1\}$
- Binomial (flip coins n time and let X be number of heads)
$\mathrm{f}(\mathrm{X})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\left\{\binom{n}{x}^{\rho \wedge x(1-p)^{\wedge}(n-x)}\right.$
$\{0$
otherwise
- Geometric $p \varepsilon(0,1)$ (Think X as the No. of flips needed to get the $1^{\text {st }}$ head) - $P(X=k)=p(1-P)^{k-1}, k=1,2,3, \ldots$
- Poisson (Counting rare events like radioactive decay or traffic accidents) $f(x)^{\ominus}=e^{\wedge}(-\lambda) \frac{\lambda^{\wedge} x}{x!}$

Some Important Continuous Distributions

- Uniform Distribution
- $f(x)=\{1 /(b-a) \quad$ for $x \in[a, b]$
\{0 otherwise
- Normal (Gaussian)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{\wedge} 2}(x-\mu)^{\wedge} 2\right\}
$$

Standard Normal if $\mu=0$ and $\sigma=1$
if $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=(X-\mu) / \sigma N(0,1)$

- Exponential (Model lifetimes of electronic components/ waiting times between rare events)

$$
f(x)=\frac{1}{\beta} e^{\wedge}(-x / \beta), x>0
$$

- $\quad \mathrm{d}$ distribution is like Normal except with thinker tails
- Cauchy is special case of t distribution where $v=1$
- X^{2} distribution deals with various degrees of freedom

Bivariate Distribution

- Discrete random variables $X \& Y$, define joint mass function by $f(x, y)=P(X=x$ and $Y=y$)
- $F(1,1)=P(X=1, Y=1)=4 / 9$
- In continuous case, we use $f(x, y)$ a PDF for the random

	$\mathrm{Y}=0$	$\mathrm{Y}=1$	
$\mathrm{X}=0$	$1 / 9$	$2 / 9$	$1 / 3$
$\mathrm{X}=1$	$2 / 9$	$4 / 9$	$2 / 3$
	$1 / 3$	$2 / 3$	1

- (i) $f(x, y) \geq 0$ for all (x, y)
- (ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$ and,
- for any set A is $\mathrm{RXR}, \mathrm{P}((\mathrm{X}, \mathrm{Y})$

$$
\mathrm{A})=\iint f(x, y) d x d y
$$

Marginal Distributions

- Def: if (X, Y) have joint distribution with mass function $f_{X, Y}$, then the marginal mass function for X is defined by

$$
f_{X}(x)=P(X=x)=\sum_{y} P(X=x, Y=y)=\sum_{y} f(x, y)
$$

- And the marginal Mass Function for Y is defined by

$$
f_{v}(x)=P(X=x)=\sum_{x} P(X=x, Y=y)=\sum_{x} f(x, y)
$$

- $f_{x}(0)=3 / 10$ and $f_{x}(1)=7 / 10$
- For continuous random variables, the marginal densities are

$$
\begin{aligned}
& f_{X}(x)=\int f(x, y) d y \\
& f_{Y}(y)=\int f(x, y) d x
\end{aligned}
$$

	$\mathrm{Y}=0$	$\mathrm{Y}=1$	
$\mathrm{X}=0$	$1 / 10$	$2 / 10$	$3 / 10$
$\mathrm{X}=1$	$3 / 10$	$4 / 10$	$7 / 10$
	$4 / 10$	$6 / 10$	

Independent Random Variables

- Def: Two random variables X \& Y are independent iff, for every A \& B,

$P(X \in A, Y \in B)=P(X \in A) P(Y \in B)$			
$\mathrm{Y}=0$ $\mathrm{Y}=1$ $\mathrm{X}=0$ $1 / 4$ $1 / 4$ $\mathrm{X}=1$ $1 / 4$ $1 / 4$ $1 / 2$ $1 / 2$			

- $f_{X}(0) f_{Y}(0)=f(0,0)$
- $f_{X}(0) f_{Y}(1)=f(0,1)$
- $f_{X}(1) f_{Y}(0)=f(1,0)$
- $f_{X}(1) f_{Y}(1)=f(1,1)$

	$Y=0$	$Y=1$	
$X=0$	$1 / 2$	0	$1 / 2$
$X=1$	0	$1 / 2$	$1 / 2$
	$1 / 2$	$1 / 2$	1

- These are not independent because
- $f_{X}(0) f_{Y}(1)=(1 / 2)(1 / 2)=1 / 4$ yet $f(0,1)=0$

Conditional Distributions

- Def:
- $f(x \mid y)=P(X=x \mid Y=y)=P(X=x, Y=y) / P(Y=y)=f(x, y) / f(y)$
- Assuming that $\mathrm{f}(\mathrm{y})>0$
- Def: for continuous random variables,
- $f(x \mid y)=f(x, y) f(y)$
- Assuming that $\mathrm{f}(\mathrm{y})>0$. Then,

$$
P(X \in A / Y=y)=\int_{A} f(x \mid y) d x
$$

Multivariate Distribution and IID Samples

- If $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are independent and each has the same marginal distribution with CDF F, we say that X_{1}, \ldots, X_{n} are independent and identically distributed and we write
- $X_{1}, \ldots X_{n} \sim F$
- Random sample size n from F

2 Important Multivariable Distributions

- Multinomial: multivariate version of a Binomial
- \quad X ~Multinomial(n,p)

$$
f(x)=\binom{n}{x 1 \ldots x k} P 1^{\wedge}(x 1) \ldots P k^{\wedge}(x k)
$$

Where

$$
\binom{n}{x 1 \ldots x k}=\frac{n!}{x 1!\ldots x k!}
$$

- Multivariate Normal: μ is a vector and σ is a matrix (pg 40)

Transformations of Random Variables

- Three steps for Transformations
- 1. For each y, find the set $A_{y}=\{x: r(x) \leq y)$
- 2.Find CDF
- $F(y)=P(Y \leq y)=P(r(X) \leq y)$
$=P(\{x ; r(x) \leq y\})$
$=\quad \int_{A y} f x(x) d x$
- 3. The PDF is $f(y)=F^{\prime}(y)$

