# All of Statistics: A Concise Course in Statistical Inference

By Larry Wasserman

Chapter 1 & 2 Overview Presentation

Toby Xu UW Madison 05/29/07



#### **Chapter 1 Overview**

- Sample Space
- Disjoint or Mutually Exclusive
- Probability Axioms/Basic Properties
  - Finite sample spaces
  - Independent Events
  - Conditional Probability
    - Baye's Theorem



#### **Sample Space**

- Sample Space  $\Omega$  is the set of possible outcomes.
- Ex: Toss fair coin twice Ω={HH,HT,TH,TT}
- Points ω in Ω are called sample outcomes, realizations, elements.
- Subsets of Ω are called events.
- Ex: Event that first toss is head is A={HH,HT}
- A<sup>c</sup> = complement of A (or NOT A)
- $\emptyset$  = complement of  $\Omega$

 $A \bigcup B = \{ \omega \in \Omega : \omega \in A \text{ or } \omega \in B \text{ or } \omega \in both \}$  $A \bigcap B = \{ \omega \in \Omega : \omega \in A \text{ and } \omega \in B \}$ 



# **Disjoint or Mutually Exclusive**

• Two events (A and B) are mutually exclusive iff  $A \bigcap B = \emptyset$ 

Ex:  $A_1 = [0,1), A_2 = [1,2), A_3 = [2,3)$ 

- A Partition of  $\Omega$  is a sequence of disjoint sets
- Indicator function of A
  - Monotone increasing if  $A_1 \subset A_2 \subset A_3 \cdots$
  - Monotone decreasing if  $A_1 \supset A_2 \supset A_3 \cdots$



### Intro to Probability

- P(A) = Probability Distribution or Probability Measure
- Axioms:
  - 1) P(A)≥0 for every A
  - 2) P(Ω) = 1
  - If A<sub>1</sub>,A<sub>2</sub>...are disjoint then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- Statistical Interference:
  - Frequentist
  - Bayesian Schools



# **Basic Properties of Probability**

 $P(A\bigcup B) = P(A) + P(B) - P(AB)$ A or B = (AB<sup>c</sup>) or (AB) or (A<sup>c</sup>B)



#### Probability on Finite Sample Spaces

• P(A)=A/Ω  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ 

N choose k

$$\binom{n}{0} = \binom{n}{n} = 1$$
$$\binom{n}{k} = \binom{n}{n-k}$$

• N choose K is counting how many ways can we get a *k*-subset out from a set with *n* elements.

•Ex: There's 10 people in the Book Club; We want groups of 2 people. How many possible combinations?

$$\binom{10}{2} = \frac{10!}{2!(10-2)!} = 45$$



#### **Independent Events**



- Two events are independent (does not directly affect the probability of the other from happening) iff: P(AB) = P(A)P(B)
- A set of events {A<sub>i</sub> : i ε I} is independent if

$$P(\bigcap_{i\in J}A_i)=\prod_{i\in J}P(A_i)$$

 Assume A & B are disjoint events, each with +ve probability. Can they be independent?



Ans: **No** because: Independent = P(AB) = P(A)P(B)But here  $P(AB)=\phi=0$  and P(A)P(B)>0

•Independence is sometimes assumed & sometimes derived.

Ex: Toss a fair die A= $\{2,4,6\}$  B $\{1,2,3,4\}$  A $\bigcap B = \{2,4\}$ P(AB)=2/6=P(A)P(B)=1/2\*2/3

#### **Conditional Probability**

- Assuming P(B)>0...P(A|B)=P(AB)/P(B)
- If A & B are *independent* then P(A|B)=P(A)
- Ex: Draw Ace of clubs (A) and then Queen of Diamonds (B) P(AB)=P(A)P(B|A)=1/52\*1/51=1/2652
- P(.|B) satisfies the axioms, for fixed B
- P(A|.) does not satisfy the axioms of probability, for fixed A
- In general  $P(A|B) \neq P(B|A)$



#### **Bayes' Theorem**



• The Law of Total Probability

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

- $A_1...A_k$  are partitions of  $P(B) = \sum P(C_j) = \sum P(BA_j) = \sum P(B \mid A_j)P(A_j)$   $\bigcap_{k=1}^{n} Q_{k}$  Where  $C_j = BA_j C_{1...k}$  are disjoint
  - Let  $A_1, \dots, A_k$  be a partition of  $\Omega$  such that  $P(A_i) > 0$  for each i. If P(B) > 0 then, for each  $i=1,\dots,k$  $P(A_i / B) = \frac{P(B | A_i) P(A_i)}{\sum P(B | A_j) P(A_j)}$

## **Additional Examples**



- P(A<sub>1</sub>)=.7,P(A<sub>2</sub>)=.2,P(A<sub>3</sub>)=.1 Let B be event that email contains the word "Free"
- P(B|A<sub>1</sub>)=.9, P(B|A<sub>2</sub>)=.01, P(B|A<sub>3</sub>)=.01
- Q: receive an email with word "free", what's the probability that it is spam?  $P(A_1 | B) = \frac{.9 \times .7}{(.9 \times .7) + (.01 \times .2) + (.01 \times .1)} = .995$



# **Chapter 2 Overview**



- Random Variable
- Cumulative Distribution Function (CDF)
- Discrete Vs. Continuous probability functions (Probability Density Function PDF)
  - Discrete: Point Mass, Discrete Uniform, Bernoulli, Binomial, Geometric, Poisson
    Distribution
  - Continuous: Uniform, Normal (Gaussian), Exponential, Gamma, Beta, t and Cauchy, X<sup>2</sup>
- Bivariate Distribution
- Marginal Distribution
- Independent Random Variables
- Conditional Distribution
- Multivariate Distributions: Multinomial, Multivariate Normal
- Transformations of Random Variables.

#### **Random Variable**

- A random variable is a mapping
  - X: Ω R
  - That assigns a real number X(ω) to each outcome ω
- Ex: Flip coin twice and let X be number of heads.

| ω  | Ρ(ω) | Χ(ω) |
|----|------|------|
| TT | 1⁄4  | 0    |
| ТН | 1⁄4  | 1    |
| HT | 1⁄4  | 1    |
| НН | 1/4  | 2    |

| х | P(X=x) |
|---|--------|
| 0 | 1⁄4    |
| 1 | 1⁄2    |
| 2 | 1⁄4    |



#### **Cumulative Distribution Function**

•  $CDF = F_X: R \rightarrow [0,1]$ 

•  $F_X(x)=P(X \le x)$ 

 Ex: Flip a fair coin twice and let X be number of heads

$$F_x(x) = \begin{cases} 0 & x < 0 \\ 1/4 & 0 \le x < 1 \\ 3/4 & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

- Theorem: let X and Y have CDF F and G. If F(x) = G(x) for all x, then P(X<sup>∈</sup> A) = P(Y<sup>∈</sup> A)
- Theorem: CDF needs to satisfy:
  - F is non-decreasing:  $x_1 < x_2$ , also  $F(x_1) \le F(x_2)$
  - F is normalized:

 $\lim_{x \to -\infty} F(x) = 0$  $\lim_{x \to +\infty} F(x) = 1$ 

• F is right-continuous:  $F(x) = F(x^+)$  for all, where  $F(x^+) = \lim_{\substack{y \to x \\ y > x}} F(y)$ 



#### **Discrete Vs. Continuous Distributions**



- Def: X is discrete if it take countably many values. We define the probability function or probability mass function for X by f<sub>X</sub>(x)=P(X=x)
- Def: X is **continuous** if there exists a function  $f_X$  such that  $f_X(x) \ge 0$  for all  $x, \stackrel{+\infty}{\longrightarrow} f(x)dx = 1$  $P(a < X \stackrel{-\infty}{<} b) = \int_a^b f(x)dx$ 
  - The function  $f_X$  is called the probability density function (PDF).  $F_x(x) = \int_{-\infty}^{x} f_X(t) dt$

and  $f_X(x) = F'_X(x)$  at all points x at which  $F_X$  is differentiable Note: mention Lemmas (pg 25)

#### Some Important Discrete **Functions**

- **Point Mass Distribution:** if P(X=a)=1 otherwise 0
- **Discrete Uniform**

•  $f(x) = \begin{cases} \frac{1}{k} & \text{for } x = 1,...,k \end{cases}$ 0 otherwise

- Bernoulli (Binary Coin Flip)
  - $f(x) = P^{x}(1-p)^{1-x}$  for x  $\varepsilon \{0,1\}$
- **Binomial** (flip coins n time and let X be number of heads)

for x=0,...,n  $f(\mathbf{x}) = \mathbf{P}(\mathbf{X} = \mathbf{x}) = \left\{ \binom{n}{x} P^{n} x^{(1-p)^{n}(n-x)} \right\}$ otherwise

- **Geometric** p  $\epsilon$  (0,1) (Think X as the No. of flips needed to get the 1<sup>st</sup> head)  $P(X=k)=p(1-P)^{k-1}, k=1,2,3,...$
- **Poisson** (Counting rare events like radioactive decay or traffic accidents)  $f(x)^{\bullet} = e^{(-\lambda)} \frac{\lambda^{h} x}{r!} \qquad x \ge 0$

# Some Important Continuous Distributions

Uniform Distribution

•  $f(x)=\{1/(b-a)$  for  $x \in [a,b]$ 

{0 otherwise

• Normal (Gaussian)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\}$$

Standard Normal if  $\mu=0$  and  $\sigma=1$ 

if X ~ N( $\mu$ ,  $\sigma^2$ ), then Z=(X- $\mu$ )/  $\sigma$  N(0,1)

• **Exponential** (Model lifetimes of electronic components/ waiting times between rare events)

$$f(x) = \frac{1}{\beta} e^{(-x/\beta)}, x > 0$$

- t distribution is like Normal except with thinker tails
- Cauchy is special case of t distribution where v=1
- X<sup>2</sup> distribution deals with various degrees of freedom



# **Bivariate Distribution**

- Discrete random variables X & Y, define joint mass function by f(x,y)=P(X=x and Y=y)
- F(1,1)=P(X=1,Y=1)=4/9
- In continuous case, we use f(x,y) a PDF for the random variables (X,Y)
  - (i)  $f(x,y) \ge 0$  for all (x,y)

• (ii) 
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$
 and,

for any set A is RXR,P((X,Y)
 A) = ff

$$= \iint f(x, y) dx dy$$

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1/9 | 2/9 | 1/3 |
| X=1 | 2/9 | 4/9 | 2/3 |
|     | 1/3 | 2/3 | 1   |

# **Marginal Distributions**

- Def: if (X,Y) have joint distribution with mass function  $f_{X,Y}$ , then the **marginal mass function** for X is defined by  $f_X(x) = P(X = x) = \sum P(X = x, Y = y) = \sum f(x, y)$
- And the marginal Mass Function for Y is defined by

$$f_Y(x) = P(X = x) = \sum_x P(X = x, Y = y) = \sum_x f(x, y)$$

- $f_X(0)=3/10$  and  $f_X(1)=7/10$
- For continuous random variables, the marginal densities are

| $f_X(x) = \int f(x, y) dy$ |  |
|----------------------------|--|
| $f_Y(y) = \int f(x, y) dx$ |  |

|     | Y=0  | Y=1  |      |
|-----|------|------|------|
| X=0 | 1/10 | 2/10 | 3/10 |
| X=1 | 3/10 | 4/10 | 7/10 |
|     | 4/10 | 6/10 |      |



#### Independent Random Variables

 Def: Two random variables X & Y are independent iff, for every A & B,

 $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ 

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1⁄4 | 1⁄4 | 1⁄2 |
| X=1 | 1⁄4 | 1⁄4 | 1⁄2 |
|     | 1⁄2 | 1⁄2 | 1   |

- $f_X(0)f_Y(0)=f(0,0)$
- $f_X(0)f_Y(1)=f(0,1)$
- $f_X(1)f_Y(0)=f(1,0)$
- $f_X(1)f_Y(1)=f(1,1)$

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1⁄2 | 0   | 1⁄2 |
| X=1 | 0   | 1⁄2 | 1⁄2 |
|     | 1⁄2 | 1⁄2 | 1   |

- These are not independent because
- $f_X(0)f_Y(1)=(1/2)(1/2)=1/4$ yet f(0,1)=0



# **Conditional Distributions**

- Def:
  - f(x|y)=P(X=x|Y=y)=P(X=x,Y=y)/P(Y=y)=f(x,y)/f(y)
  - Assuming that f(y)>0
- Def: for continuous random variables,
  - f(x|y) = f(x,y)/f(y)
  - Assuming that f(y)>0. Then,

$$P(X \in A / Y = y) = \int_{A} f(x \mid y) dx$$



# Multivariate Distribution and IID Samples



- If X<sub>1</sub>,...,X<sub>n</sub> are independent and each has the same marginal distribution with CDF F, we say that X<sub>1</sub>,...,X<sub>n</sub> are independent and identically distributed and we write
  - X<sub>1</sub>,...X<sub>n</sub> ~ F
  - Random sample size n from F

#### 2 Important Multivariable Distributions

- Multinomial: multivariate version of a Binomial
  - X ~ Multinomial(n,p)

$$f(x) = \binom{n}{x1...xk} P1^{(x1)...Pk^{(xk)}}$$

Where

$$\binom{n}{x1\dots xk} = \frac{n!}{x1!\dots xk!}$$

• Multivariate Normal:  $\mu$  is a vector and  $\sigma$  is a matrix (pg40)



#### **Transformations of Random** Variables

- Three steps for Transformations
  - 1. For each y, find the set  $A_y = \{x: r(x) \le y\}$
  - 2.Find CDF
    - $F(y)=P(Y \le y)=P(r(X) \le y)$ = $P(\{x;r(x) \le y\})$

$$\int fx(x)dx$$

• 3. The PDF is f(y)=F'(y)

=

