ON \(k \)-TRESTLES IN POLYHEDRAL GRAPHS

MICHAL TkÁČ
Department of Mathematics
The Faculty of Business Economics in Košice
University of Economics in Bratislava
Tajovského 13, 041 30 Košice, Slovakia
\textit{e-mail:} mtkac@euke.sk

AND

HEINZ-JÜRGEN Voss
Institute of Algebra
Technical University Dresden
Mommsenstrasse 13, D-01062 Dresden, Germany
\textit{e-mail:} voss@math.tu-dresden.de

Abstract

A \(k \)-trestle of a graph \(G \) is a 2-connected spanning subgraph of \(G \) of maximum degree at most \(k \). We show that a polyhedral graph \(G \) has a 3-trestle, if the separator-hypergraph of \(G \) contains no two different cycles joined by a path of 3-separators of length \(\geq 0 \). There are graphs not satisfying this condition that have no 3-trestles. Further, for each integer \(k \) every graph with toughness smaller than \(\frac{2}{k} \) has no \(k \)-trestle.

Keywords: polyhedral graphs, non-Hamiltonian, \(k \)-trestle.

2000 Mathematics Subject Classification: Primary 05C38, Secondary 52B10.

1. Introduction

By Steinitz’s theorem a polyhedral graph is a planar and 3-connected graph. Let \(G \) be a connected graph. A subset \(S \) of the vertex set of \(G \) separates \(G \) if the graph \(G - S \) obtained from \(G \) by deleting the vertices of \(S \) is disconnected. If \(|S| = k \), \(S \) is said to be a \(k \)-separator of \(G \). If no
$S_p \subset S$ (a proper subset of the set S) separates G then the S is said to be a proper k-separator of G. A subgraph of G is a spanning subgraph of G if it contains all vertices of G. 2-connected spanning subgraphs in which all vertices have degree at most k are called k-trestles. We will say that a graph G is k-trestled if G has a k-trestle [6]. Note that a graph G has a 2-trestle if and only if G is Hamiltonian.

A graph G is said to be t-tough if for every separating set $S \subseteq V(G)$ the number $\omega(G - S)$ of components of $G - S$ is at most $\frac{|S|}{t}$. The toughness $\tau(G)$ of a non-complete graph G is defined to be the largest integer $t > 0$ such that G is t-tough. For a complete graph G let $\tau(G) = \infty$. The concept of toughness was introduced by Chvátal [4]. It is easy to see that every graph with toughness less than one has no 2-trestles. The following Lemma shows that every graph has a similar property with respect to k-trestles, $k \geq 3$.

Lemma 1. Every graph G with toughness $\tau(G) < \frac{2}{k}$ (where the integer k is greater than one) has no k-trestle.

In [4] Chvátal conjectured:

Conjecture 1 (Chvátal). There is a real number $t_0 > 0$ such that every t_0-tough graph has a Hamiltonian cycle, i.e., a 2-trestle.

It seems to be interesting to consider relations between t-tough and k-trestled graphs in general. We pose the following conjecture.

Conjecture 2. For every integer k greater than one there is a real number $t_k > 0$ such that every t_k-tough graph has a k-trestle.

There are several papers which deal with k-trestled polyhedral graphs. In [1] Barnette showed that there is a polyhedral graph with no 5-trestles. In [5] Gao proved that every 3-connected graph on the plane, projective plane, torus and Klein bottle has a 6-trestle.

The well known theorem of Tutte [8] states that every 4-connected planar graph contains a Hamiltonian cycle, which means that every polyhedral graph with no 3-separators has a 2-trestle. Moreover, Tutte [8] proved

Theorem 1. Let G be a 4-connected planar graph and let e and f be two edges of a facial cycle of G. Then G has a Hamiltonian cycle through e and f.
Let H_1 and H_2 be two disjoint subsets of the vertex set $V(G)$ of a graph G. The length of a minimal path in G with one end in H_1 and the second in H_2 is said to be the distance of H_1 and H_2 in G.

Böhmke, Harant and Tkáč in [3] showed that every maximal planar graph G in which no 3-separator has any common vertex with a proper 4-separator and every two distinct 3-separators have distance at least three, has a 2-trestle. In [2] Böhmke and Harant presented examples of maximal planar graphs with no 2-trestles in which the minimal distances between two 3-separators are arbitrarily large.

Our next theorems partially supplement these results but in a more general case.

For each polyhedral graph G we will construct a separator-hypergraph $\mathcal{H}(G)$ with the same set of vertices, such that the edges of $\mathcal{H}(G)$ are the 3-separators of G. A cycle (and a path) of a hypergraph is a sequence $P_1e_1P_2e_2\cdots P_ke_kP_{k+1}$, where P_1, P_2, \ldots, P_k are pairwise distinct vertices, e_1, e_2, \ldots, e_k are pairwise distinct edges, the edge e_i is incident with both P_i and P_{i+1}, $1 \leq i \leq k$, and $P_{k+1} = P_1$ (and $P_{k+1} \notin \{P_1, P_2, \ldots, P_k\}$, respectively).

Theorem 2. Let G be a polyhedral graph. Let each component of the separator-hypergraph $\mathcal{H}(G)$ have at most one cycle. Then G has a 3-trestle.

Theorem 3. There are polyhedral graphs with more than one cycle in their separator-hypergraph which have no 3-trestles.

The polyhedral graphs constructed for Theorem 3 have separator-hypergraphs with many cycles; even 2-cycles are present.

2. Proofs of Theorems

The Proof of Lemma 1. Let G be a graph with toughness $\tau(G) < \frac{2}{k}$ (where the integer k is greater than one). Suppose that G has a k-trestle H. Since $\tau(G) < \frac{2}{k}$ there exists a subset S_0 of the vertex set of G ($S_0 \subset V(G)$) with

$$\frac{|S_0|}{\omega(G - S_0)} = \tau(G) < \frac{2}{k}.$$

So G contains a vertex set S_0 such that

$$2\omega(G - S_0) > k|S_0|.$$
If G has a k-trestle H then $S_0 \subset V(G) = V(H)$ and every vertex from S_0 has in H a degree at most k. Since H is 2-connected, every component of $G - S_0$ is adjacent with at least two vertices from S_0. This means that the following inequality holds

$$2\omega(G - S_0) \leq k|S_0|.$$

But this contradicts the before stated inequality.

Instead of Theorem 2 we shall prove the slightly stronger but more technical Theorem 4.

Theorem 4. Let G be a polyhedral graph. Let each component of the separator-hypergraph $H(G)$ have at most one cycle. Label a vertex in each cycle-free component of $H(G)$. Then G has a 3-trestle H such that every 3-valent vertex of H is an unlabelled vertex of a 3-separator in G.

The Proof of Theorem 4. The proof is by induction on the number of 3-separators of the considered graphs. If G has no 3-separator then G is 4-connected and by Tutte’s Theorem 1 the graph G has a Hamiltonian cycle. Thus G has a special 3-trestle with the required properties.

Assume that Theorem 4 is true for all polyhedral graphs with at most m 3-separators, $m \geq 0$. Let G be a polyhedral graph with $m + 1$ 3-separators such that each component of the ”separator”-hypergraph $H(G)$ has at most one cycle.

A 3-separator $S = \{x, y, z\}$ is called elementary if one component $I(S)$ of $G - S$ has no 3-separators. W.l.o.g. we may suppose that G is mapped into the plane so that $I(S)$ is the interior of the cycle (x, y, z). Now we prove the following

Claim 1. If $S = \{x, y, z\}$ is an elementary 3-separator of G then $(I(S) \cup S)_G$, the subgraph induced by $I(S) \cup S$ in G, contains an x, y-path through all vertices of $I(S) \cup S \setminus \{z\}$ avoiding z.

Proof of Claim 1. Since $S = \{x, y, z\}$ is elementary the subgraph $H := (I(S) \cup S)_G \cup (x, y, z)$ has no 3-separators and H is 4-connected or K_4 (a complete graph on four vertices). By Tutte’s Theorem 1 the subgraph H has a Hamiltonian cycle h through the edges (x, z) and (z, y). The path $p = h \setminus \{z\}$ has the required properties, and the proof of Claim 1 is complete.
The graph G obviously contains an elementary 3-separator $S = \{x, y, z\}$. This 3-separator S is a hyperedge of a component K of $\mathcal{H}(G)$.

Case 1. Let K have no cycle in $\mathcal{H}(G)$.

The subhypergraph $K \setminus \{S\}$ of $\mathcal{H}(G)$ has at most three cycle-free components K_x, K_y and K_z containing $x, y,$ and z, respectively. Note that some of these components can be trivial. W.l.o.g. let K_x have the vertex with the label of K (it may be that x has this label). In K_y and K_z we label the vertices y and z, respectively.

Case 2. Let K have a cycle C in $\mathcal{H}(G)$.

Note that K has no label.

Case 2.1. Let $S \notin C$.

The subhypergraph $K \setminus \{S\}$ of $\mathcal{H}(G)$ has at most three components K_x, K_y and K_z containing $x, y,$ and z, respectively. W.l.o.g. let $C \subseteq K_x$, and K_y, K_z are cycle-free in $\mathcal{H}(G)$. In K_y and K_z we label the vertices y and z, respectively.

Case 2.2. Let $S \in C$.

Two vertices of S belong to C, say, x and y. The subhypergraph $K \setminus S$ of $\mathcal{H}(G)$ has at most two components $K_{x,y}$ and K_z containing $\{x, y\}$ or $\{z\}$, respectively. The path $C \setminus \{S\} \subseteq K_{x,y}$ and both components $K_{x,y}$ and K_z are cycle-free in $\mathcal{H}(G)$. We label y and z.

In all cases we proceed in the same way.

The graphs G_1 and G_2 are obtained from G by deleting the interior or the exterior of (x, y, z), respectively, and adding the cycle (x, y, z). Thus G has a separation: $G = G_1 \cup G_2$, $G_1 \cap G_2 = (x, y, z)$, $K \setminus \{S\} \subseteq G_1$.

By the induction hypothesis G_1 contains a 3-trestle T_1 with the required properties. The degrees $\deg_{T_1}(y) = \deg_{T_1}(z) = 2$.

By Claim 1 the subgraph G_2 contains a y, z-path T_2 through all vertices of $G_2 \setminus \{x\}$ avoiding x. Then $T_1 \cup T_2$ is a 3-trestle of G with the required properties. ■

The Proof of Theorem 3. Theorem 3 will be proved by constructing an appropriate graph. A double-cube is obtained from two disjoint copies C_1 and C_2 of the cube by identifying a face of C_1 with a face of C_2. This polyhedral graph has $n = 12$ vertices and $f = 10$ quadrangles. In each quadrangle with bounding 4-cycle (v_0, v_1, v_2, v_3) we introduce a 4-cycle
(w_0, w_1, w_2, w_3) so that for every \(i \) (mod 4) a vertex \(v_i \) is connected with \(w_i \) and \(w_{i+1} \) by an edge, introduce a new vertex \(\alpha_i \) in each triangle face with bounding cycle \((v_i, v_{i+1}, w_{i+1})\) and join \(\alpha_i \) to each vertex of the bounding 3-cycle \((v_i, v_{i+1}, w_{i+1})\) by an edge.

The resulting graph \(H \) is polyhedral and its connected separator-hypergraph has more than one cycle.

We claim that \(H \) has no 3-trestle.

Suppose \(H \) has a 3-trestle \(T \). By construction each vertex \(\alpha_i \) is joined to the vertex \(v_i \) or \(v_{i+1} \) of the double-cube by at least one edge of \(T \). Thus the subgraph \(T \) has at least \(4f \) such edges. Consequently, the double-cube has at least one vertex \(v \) of degree

\[
\deg_T(v) \geq \frac{4f}{n} = \frac{40}{12} > 3.
\]

Hence \(v \) has a degree \(\deg_T(v) \geq 4 \) and \(T \) is no 3-trestle. This contradiction shows that \(H \) has no 3-trestle.

Starting our construction with \(l \geq 3 \) cubes results in an infinite sequence of graphs satisfying Theorem 3.

\[\square \]

References

Received 24 July 2000
Revised 19 July 2001