TurboVG: A HW/SW Co-Designed Multi-Core OpenVG Accelerator for Vector Graphics Applications with Embedded Power Profiler

Shuo-Hung Chen, Hsiao-Mei Lin, Ching-Chou Hsieh, Chih-Tsun Huang, Jing-Jia Liou, Yeh-Ching Chung

National Tsing Hua University, Hsinchu, Taiwan
Background

• Vector graphic requires extremely high computation resources, which make it impossible to run on embedded system.

• Use HW/SW co-design methodology to design a high-performance multi-core accelerating system with low power consumption.

• Find an efficient way to develop a both-HW&SW-optimized system.
Hardware/Software Components

TurboVG is designed to be integrated in a complex SoC system with full software stack.

Hardware/Software integration is a big challenge because of the data transportation!!
Design Features to Overcome the Performance Degradation

- **Multi-banked memory with write enable**
 - Efficient serial-to-parallel conversion
 - Support software I/O optimization

- **Stack-simulated recursion**
 - Adaptively generating points near high-curvature curves

- **Multi-core architecture**
 - Speedup single application
 - Increase multi-application throughput

- **Embedded power profiler**
 - Monitor system components
 - Software API allows dynamic power profiling and management
Experimental Results

- **Hardware**
 - CPU: 200 MHz ARM926EJ-S
 - FPGA: 20 MHz Altera Stratix II
 - RAM: 32 KB SRAM
 - Bus: 100 MHz AHB
 - QVGA Touch Screen

- **Software**
 - OS: Linux 2.6.27
 - X11 Window System
 - OpenGL Graphic Library

10 times faster with 25% power saving!!
Concluding Remarks

• **Extreme Performance**
 - 10x performance over pure software
 - Full HD (1920x1080)
 - HW/SW: 7000 seqs/s,
 - Pure SW: 690 seqs/s

• **Power Efficient**
 - 25% power saving
 - 92.5% energy saving

• **High Scalability**
 - Multi-core accelerator can meet requirements of higher resolution screen
 - Duo-core: 951 seqs/s in Full HD (1920x1080),
 - Single core: 1200 seqs/s in VGA (640x480)