

The National Antimicrobial Resistance Monitoring System

Patrick McDermott, Ph.D. Director, NARMS U.S. Food & Drug Administration Center for Veterinary Medicine Office of Research Laurel, MD USA

Center for Veterinary Medicine Strategy

Aimed at assessing relationships between antimicrobial use in food animals and the potential human health consequences

Multi-pronged approach that includes:

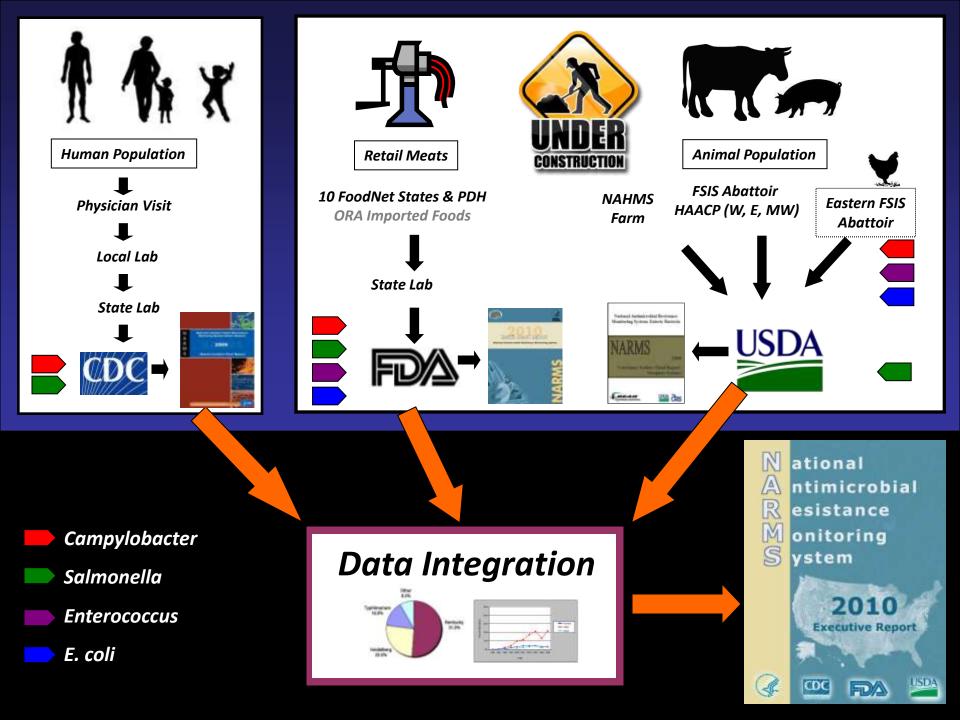
- Education/outreach activities
- Expanded research activities
- Revised safety assessment process (GFI #152) 2003
- Revised judicious use guidance (GFI #209) 2012
- Industry guidance on phasing out production uses (GFI #213)
- Update on veterinary feed directive
- Enhanced surveillance activities (NARMS) 1996
- Better antimicrobial use information (ANPRM)
- Participation in international activities (WHO, PAHO, OIE, Code, RMS)

Challenges of Integrated Surveillance for Antimicrobial Resistance

- Gathering accurate information is expensive and laborious
- Burden of illness and food consumption data are needed for design and prioritization of pathogens and commodities
- Sound sampling scheme along the food chain is critical
- Cooperation of, and good communication between, agriculture and public health sectors
- Collaboration and information sharing between laboratorians, epidemiologists, industry and public health officials within and across sectors

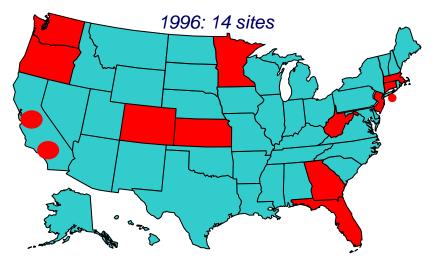
Challenges of Integrated Surveillance for Antimicrobial Resistance

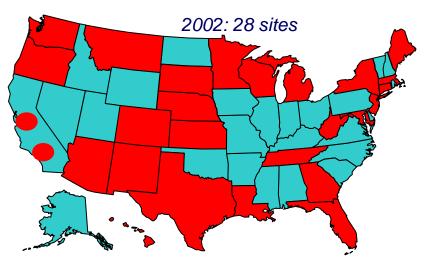
- Political/financial support Requires recognition of the public health issues and the need for ongoing risk assessments
- Establish a process for review and enhancement
- Remain flexible in order to stay current
- Understanding the implications of the data and the need for research
- Publishing findings to different audiences in a timely manner
- Using the data to formulate sound public health policy
- International harmonization and cooperation

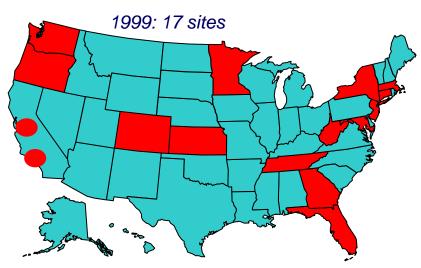


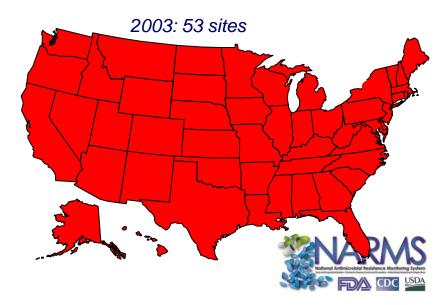
NARMS Objectives

- Monitor trends in antimicrobial resistance among foodborne bacteria from humans, retail meats, and animals
- 2. Disseminate timely information on antimicrobial resistance to promote interventions that reduce resistance among foodborne bacteria
- 3. Conduct research to better understand the emergence, persistence, and spread of antimicrobial resistance
- Assist the FDA in making decisions related to the approval of safe and effective antimicrobial drugs for animals

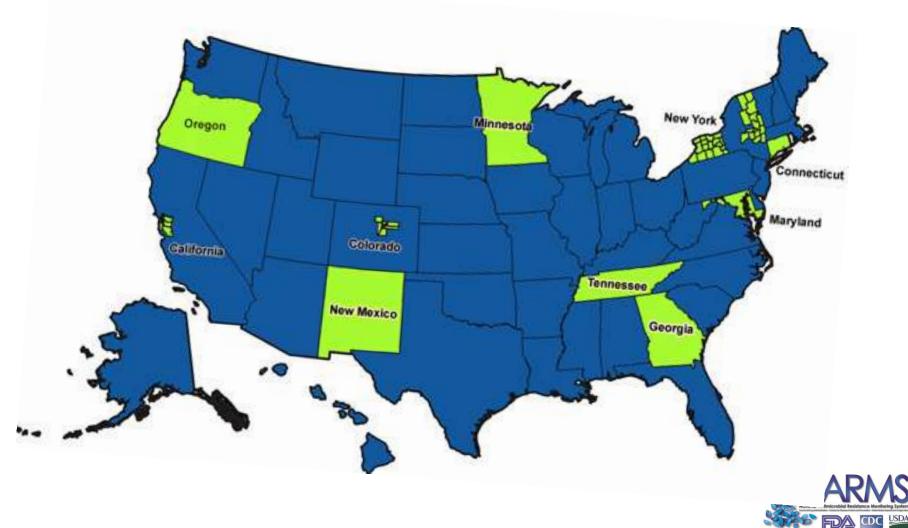


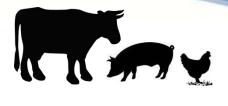


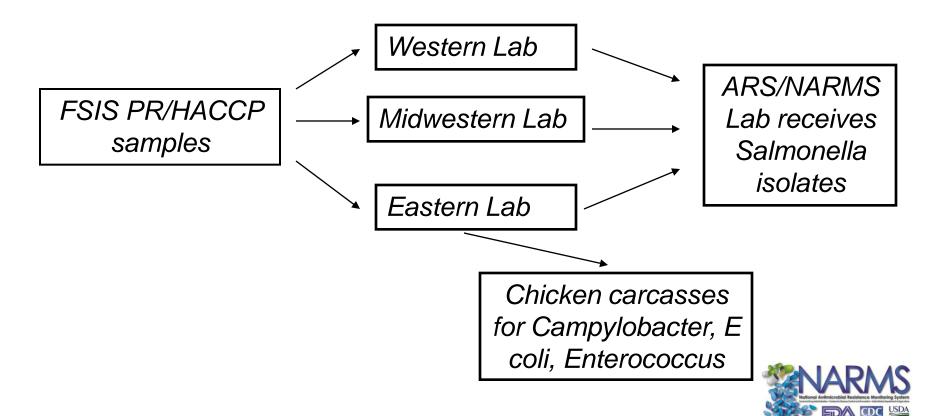



U.S. Food and Drug Administration Protecting and Promoting Public Health

Human Salmonella Surveillance Sites*






Human Campylobacter Surveillance Sites

Animal Source of Isolates

FDA Science Board Review April 10-11, 2007

- 1. Are there inherent biases in the sampling strategies employed in NARMS? If so, how can they be improved to ensure that the data and our interpretation are scientifically sound given current resources?
- 2. Are there epidemiological and/or microbiological research studies that would better serve the goals of NARMS and the regulatory work of FDA?
- 3. Are our current plans for data harmonization and reporting appropriate? If not, what would you consider the top priorities for advancing harmonized reporting?
- 4. Are the current NARMS international activities adequate to address the worldwide spread of antimicrobial-resistant foodborne bacteria?

Focus Areas and Key Findings

- 1. Research studies
 - Encouraged further development and expansion
 - Emphasis on hypothesis-driven and collaborative research
- 2. Data harmonization and reporting
 - Need for an integrated database and timely reporting
- 3. International activities
 - Strongly endorsed continuation and expansion of international activities, including training
- 4. Sampling strategies
 - Use national, random sampling when possible
 - When not feasible, further stratify data or use a more targeted sampling strategy

1. Laboratory Method Meeting Sep 10-12, 2008. Athens GA

- Revised NARMS Goals
- Sample and isolate processing
- Established research working groups (Lab, Epi, Mol.)
- Serotyping and species identification
- QC organisms and susceptibility testing
- Criteria for repeat testing
- PFGE updates
- Microarray and Luminex
- ARIS vs. manual AST for Enterococcus
- Other laboratory methods issues
 - Developed a laboratory methods manual

2. Data Management Meeting Aug 5-7, 2009. Rockville MD

- NARMS integrated database and analytical tools
 - Currently in Phase III of B/A contract
- Linking NARMS with other programs (e.g., PulseNet)
- NARMS Working Group breakouts
- Sampling
- Strategic Planning
 - Developed 5Y Strategic Plan

3. International Partners Meeting July 15-16, 2010 Atlanta GA

- International
 - WHO, EFSA, OIE, PAHO, PHAC, Korean, China, Denmark, Africa, IFAH
- Research
 - Molecular biology of resistance
 - Genomic typing tools
- Presented draft 5Y Strategic Plan

4. Sampling Meeting July 2011, St. Louis, MO

- Revising animal and retail meat sampling
- Including industry stakeholders, academic experts and consumer representatives
- Explored potential partnerships to obtain samples
- Discussed best use of resources to meet public health goals
- Sept 2012 meeting of the retail meat sites at White Oak

NARMS Strategic Plan

The National Antimicrobial Resistance Monitoring System (NARMS)

2012-2016

Goal 1: To develop, implement and optimize a shared database, with advanced data acquisition and reporting tools

Goal 2: To make sampling more representative and more applicable to trend analysis

Goal 3: To strengthen collaborative research projects to address high risk food safety issues

Goal 4: To support international activities which promote food safety, and mitigate the spread of antimicrobial resistance

NARMS Initiatives - FY2011

CDC

- Expand Outbreak Isolate Testing. CDC will expand antimicrobial susceptibility testing of isolates from *Salmonella* outbreaks. This additional testing will allow CDC to more fully use the rich epidemiologic data that is typically available from outbreak investigations.
- Link Foodborne Disease Surveillance Data. Link NARMS data with information in other surveillance systems (FoodNet, PulseNet, OutbreakNet). Currently, this type of linking is very labor-intensive and it must be redone whenever up-to-date information is needed.

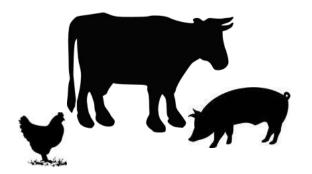
USDA

- ARS is coordinating 5 on-farm pilot studies: dairy cattle, beef cattle, swine, broilers and turkeys. Will include surveys to assess antibiotic use in sampled animals.
- **FSIS** is working with NARMS to establish long-term in plant sampling of animals, slated to begin in mid-late 2012

FDA

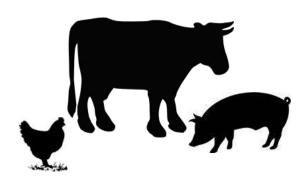
- Adding 3 retail testing sites in 2012 (MO, LA, WA). To expand the number of samples collected will improve the ability to determine trends in different strain NARMS subtypes
- Database development

Science Board Comments on Animal Sampling


- Sampling needs to be nationally representative
- Sampling biases occur as processing plants are not randomly selected
 - USDA encouraged to assess HACCP sampling to see if modifications can make the sample more representative
 - Alternatively, consider an ongoing "baseline" sampling scheme
- On-farm data are essential in understanding movement of resistance from farm to fork

New NARMS Animal Component-2 parts 1. On-Farm

- Collaboration with USDA- Agricultural Research Service (ARS) and University partners
- Randomized nationally representative selection of farms
- Fecal samples
- Drug use information



New NARMS Animal Component-2 parts 2. In-plant

- Collaboration with USDA-Food Safety Inspection Service (FSIS)
- Randomized nationally representative selection of slaughterhouses
- Cecal samples will be added to HACCP samples to better reflect consequences of veterinary antimicrobial use and less confounding by plant contamination

In Plant Sampling

- Finalized an interagency agreement with FSIS to acquire intestinal samples at slaughter
- Goal is to include all plant sizes
- Testing all four bacteria from 6 production classes
 Beef, dairy, hogs, sows, broilers, turkeys
- HACCP testing will continue
- Goal is a random representative and sustainable animal sampling scheme with benchmarking to baseline studies and comparison with farm data
- Coupled with on farm studies, we will meet the SB recommendations and better serve the goals of the program

New NARMS Animal Component

Old system

New system

	Swine	Cattle	Chicken	Turkeys
Campylobacter			Х	
Salmonella	x	x	Х	X
E. coli			Х	
Enterococcus			х	

	Swine	Cattle	Chicken	Turkeys
Campylobacter	х	Х	Х	Х
Salmonella	х	х	Х	Х
E. coli	х	Х	Х	Х
Enterococcus	х	х	Х	Х

NARMS Retail Meat Surveillance

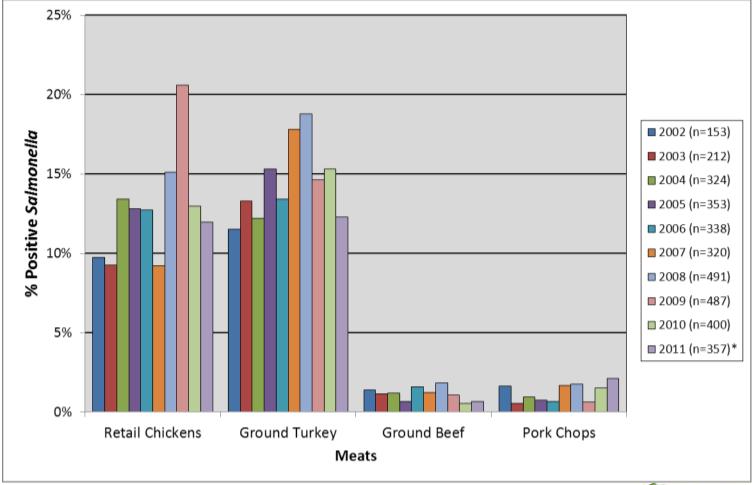
Partnership with state FoodNet Sites

CT, GA, MD, MN, TN	1/2002
CT, GA, MD, MN, TN, OR	9/2002
 CT, GA, MD, MN, TN, OR NY, CA 	1/2003
 CT, GA, MD, MN, TN, OR NY, CA, CO, NM 	1/2004
 CT, GA, MD, MN, TN, OR NY, CA, CO, NM, PA 	1/2008
• CT, GA, MD, MN, TN, OR NY, CA, CO, NM, PA, WA, LA, MO	0/2012

CT, GA, MD, MN, TN, OR NY, CA, CO, NM, PA, WA, LA, MO ٠

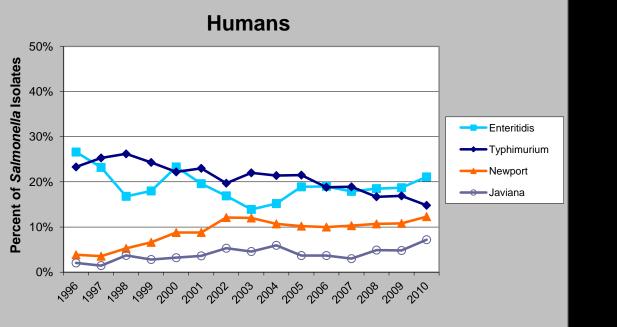
Sampling scheme

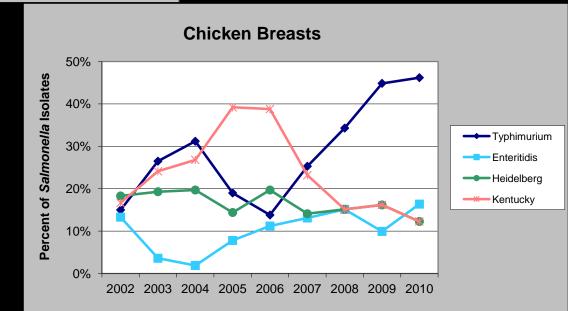
- Each site purchases 10 packages each of chicken breasts, pork chops, ground turkey, ground beef per month
- All 11 sites culture for Salmonella and Campylobacter
- In addition, 3-4 sites (GA, OR, TN, ±MD) ٠ culture for *E. coli* and *Enterococcus*
- In 2005, changed from convenience to ٠ randomized sampling


Number of Meat Samples Tested

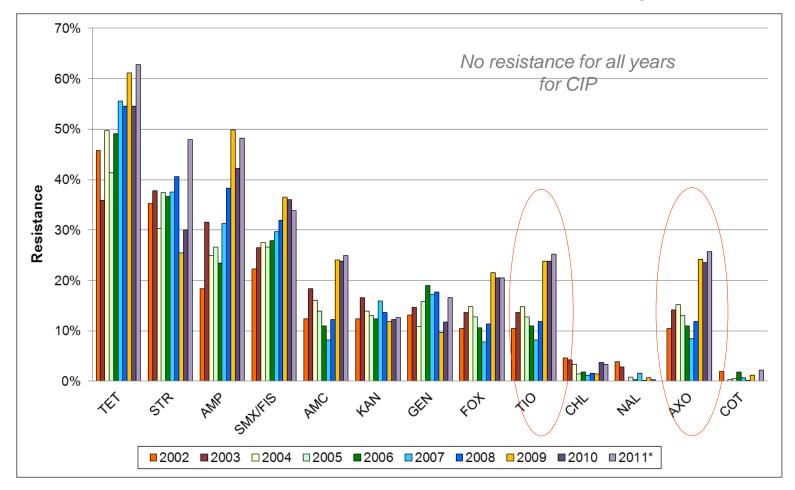
Meat					Ye	ar					
Type	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011*	2013
Retail Chickens	616	897	1172	1194	1196	1072	1310	1320	1320	1320	
Ground Turkey	642	857	1165	1195	1185	1066	1309	1320	1320	1320	
Ground Beef	642	880	1186	1196	1196	1071	1310	1320	1320	1320	
Pork Chops	613	899	1176	1196	1192	1073	1307	1320	1320	1320	
Total	2513	3533	4699	4781	4769	4282	5236	5280	5280	5280	6720

Prevalence of Salmonella



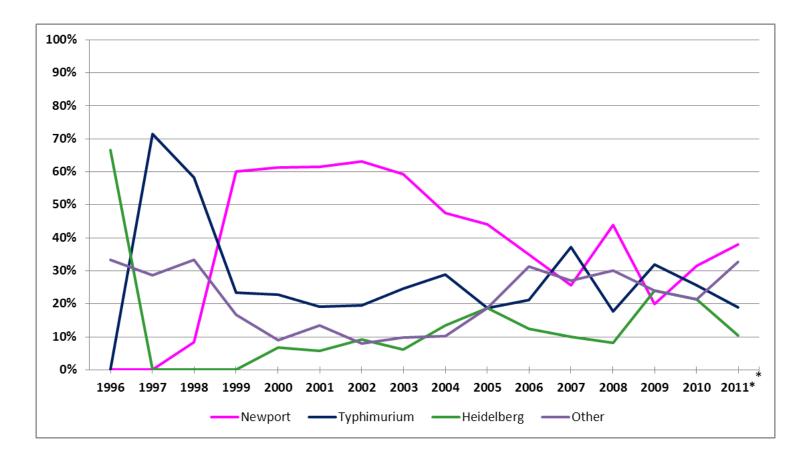

Salmonella Serotype Distributions

Humans	Chicken Breast	Ground Turkey	Cattle	Swine
Enteritidis	Typhimurium	Saintpaul	Montevideo	Typhimurium
Typhimurium	Enteritidis	Heidelberg Typhimuriu		Saintpaul
Newport	Heidelberg	Typhimurium	Infantis	Infantis
Javiana	Infantis	Infantis	Saintpaul	Heidelberg
l 4,[5],12:i:-	l 4,[5],12:i:-	Newport	Heidelberg	l 4,[5],12:i:-
Heidelberg	Branderup	Montevideo	Javiana	
Montevideo			Enteritidis	
Saintpaul				
Braenderup				
Infantis				

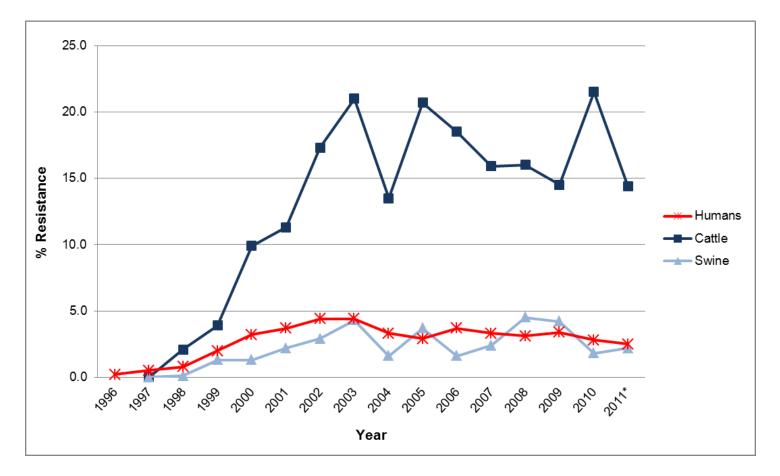


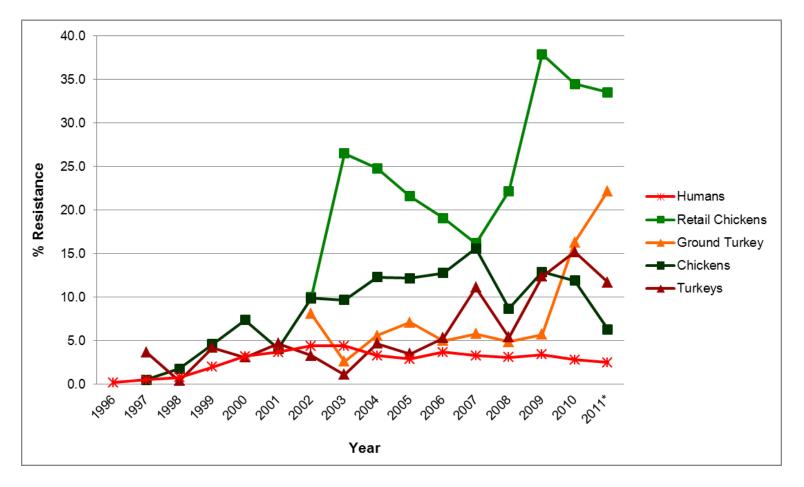
Year

Antimicrobial Resistance Phenotypes



-In 2011 AMI was removed from the NARMS panel and AZI was added.

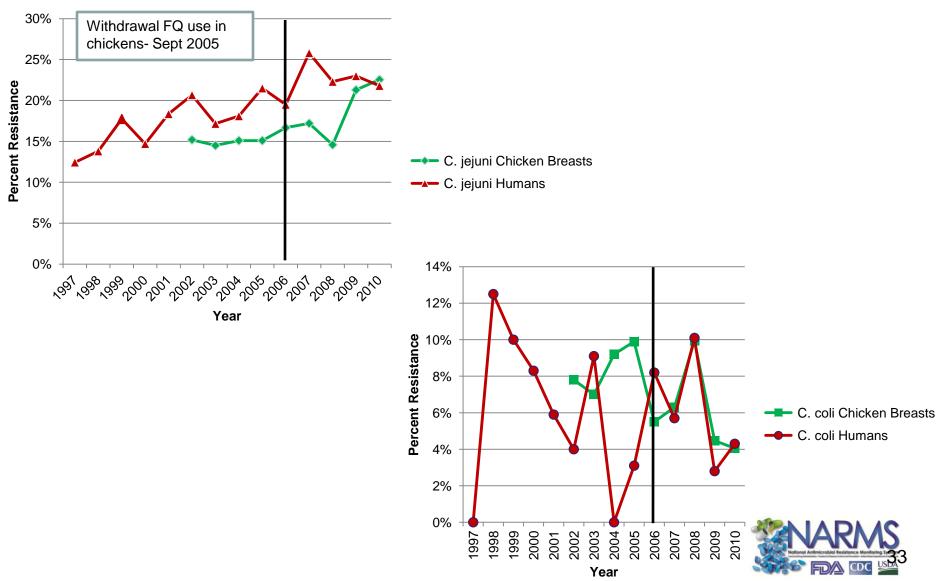

Ceftriaxone Resistance by Serotype

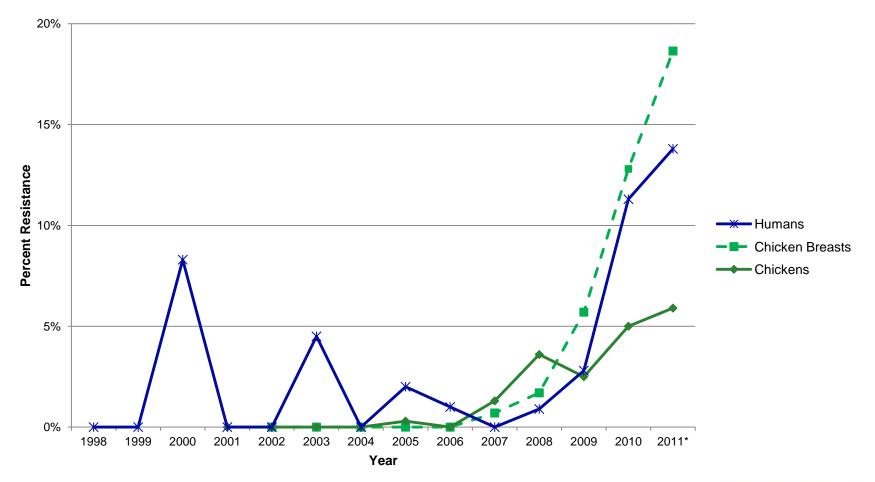

Salmonella Resistance to Ceftriaxone: 1996-2011*

Salmonella Resistance to Ceftriaxone: 1996-2011*

Ceftriaxone-Resistant Salmonella Serotypes - 2011*

Serotype	n	%
Typhimurium	22	37.9
Newport	11	19.0
Heidelberg	6	10.3
Dublin	4	6.9
I 4,[5],12:i:-	3	5.2
Agona	2	3.5
Senftenberg	2	3.5
Other	8	13.8
Total	58	100.0


- In 2011, 58/2,344 (2.4%) NT Salmonella from humans were AxoR


U.S. Food and Drug Administration Protecting and Promoting Public Health

Fluoroquinolone Resistance in Campylobacter

Gentamicin Resistance among Campylobacter coli isolates

* Data are preliminary

Antimicrobial Resistance among Non-typhoidal Salmonella Isolates from Humans, Retail Meats, and Food Animals, by Year, 1996-2009 FRAM FIRST select Source(s)

Select Antimicrobial

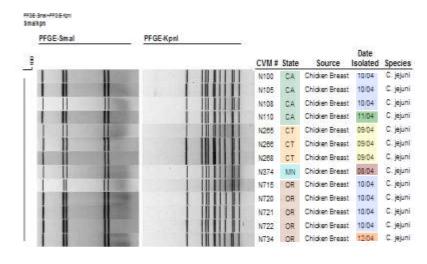
Auto-Scale Off

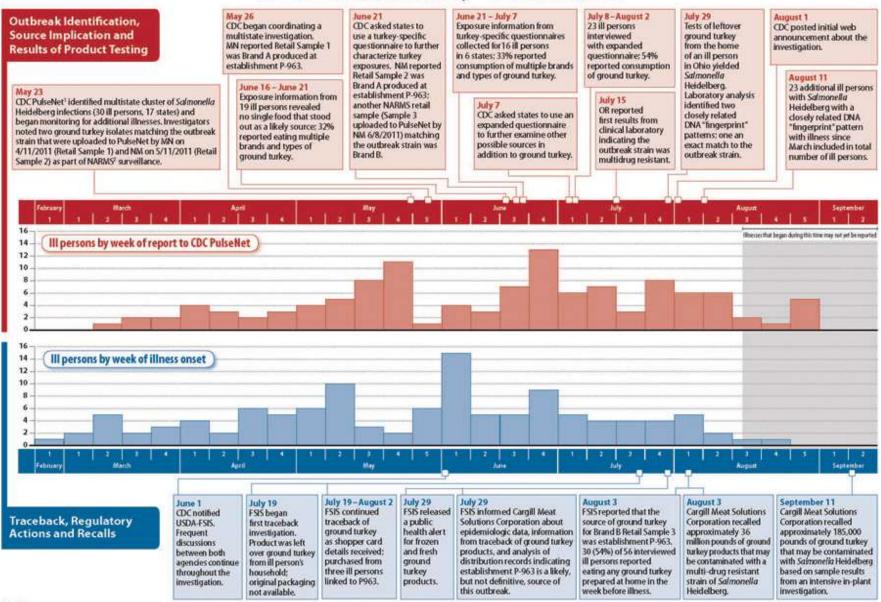
Antimicrobials
Antonia a sector de la companya de la
5-Lactom/S-Lactuma ve Inhibitor Combination
Cepherms
Fo is to Path way Inhititions
Pentcilline
Phenicols
Quinclones
Te trac yolin ex

Select Source(s)
Sources
Humans Retail Meats
Chicken Breas
Ground Turke
Ground Beef
Pork Chops
Food Animais
Chickens
U Turkeys

Number of isolates Tested														
	2 394	1897	1041	1099	3000	2001	2002	2003	3004	2000	2006	2007	2001	3004
Humana	1 31 8	1297	1455	1491	1172	3410	1998	1895	1782	2014	2173	2344	2180	2192
Chicken Breats		100000000		Sec. 53	12000	100 C 100 C	60	3.1	157	151	152	99	199	27.7
Cround Turkey		2 3		4 4		12	74	114	142	141	159	190	245	290
Ground Basi		2 23		a a		12 - Q	9	10	54		- 19	13	24	- 34
Park Chaps		2 34		6 m		Ac 3	20	5	11			18	23	1.1
Chickens	0	214	561) (14)(3)(4)	1171	1307	1500	1158	1280	10484	1330	994	624	55.2
Tarkeys	2	107	240	711	518	550	244	26.2	236	227	304	271	148	42.1
Cuttin	2 2	24	284	1610	1348	393	100.8	670	607	129	18.9	459	445	200
Swith e	1.	111	791	176	451	418	179	211	103	101	104	211	111	120

Cattle

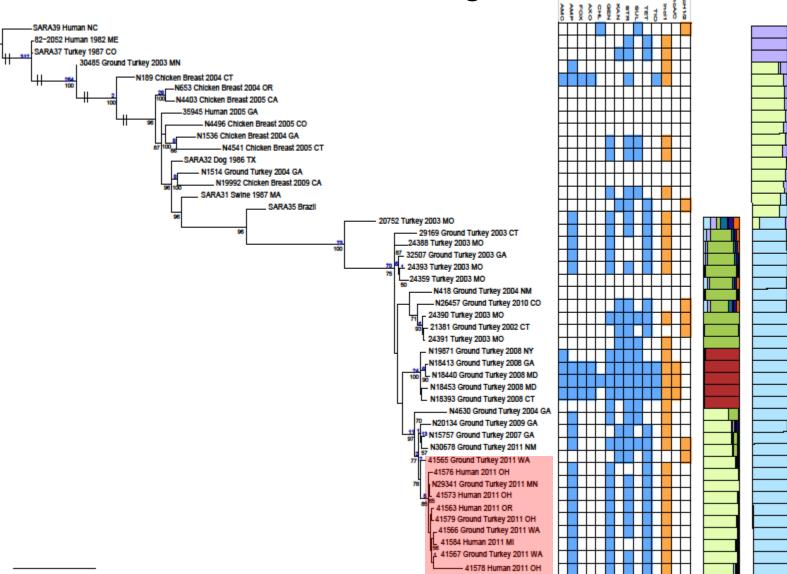

Swine


NARMS/PulseNet

- Salmonella and Campylobacter isolates undergo further molecular characterization
 - PFGE analysis
 - Follow CDC guidelines for PFGE analysis
 - Data is shared with PulseNet
 - CVM PulseNet database has more than 12,000 data entries, including
 - 8,380 Salmonella
 - 3,439 Campylobacter
 - 547 E. coli
 - 69 Vibrio
 - Isolates can be used for future research projects
 - Attribution
 - Virulence studies
 - Antimicrobial resistance studies
 - Method development

Timeline of Events: Multistate Outbreak of Salmonella Heidelberg Infections Associated with Ground Turkey — United States, 2011

For more information, visit CDC's Salmonella website: http://www.cdc.gov/salmonella



Multistate Outbreak of S. Heidelberg Infections Associated with Ground Turkey - 2011

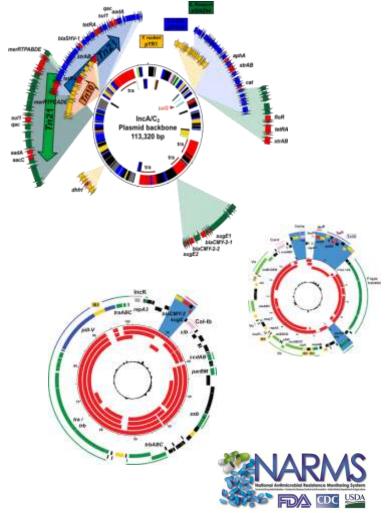
			Antibiogram				• •		
Xbal/Blnl ₽	PFGE-Xbal	PFGE-Binl	AMI AMC AMC AMC AMC CHL CCP CCH CCP CCT TTTTTTTTTTTTTTTTTTTTTTT	ID #	State	Source	Year	Serotype	PulseNet Pattern #
1	• ••••••••••••••••••••••••••••••••••••	11 1 111		41583	OR	Clinical	2011	Heidelberg	JF6X01.0058
2.53				41584	MI	Clinical	2011	Heidelberg	JF6X01.0058
		11 1 111		41587	он	Ground Turkey	2011	Heidelberg	JF6X01.0058
				41589	OH	Clinical	2011	Heidelberg	JF6X01.0058
				41570	ОН	Clinical	2011	Heidelberg	JF6X01.0058
				41571	OH	Clinical	2011	Heidelberg	JF6X01.0058
		11 1 1111		41572	OH	Clinical	2011	Heidelberg	JF6X01.0058
		11 1 181		41573	он	Clinical	2011	Heidelberg	JF6X01.0058
	1 11 1 11 11 11 11			41574	он	Clinical	2011	Heidelberg	JF8X01.0058
				41575	OH	Clinical	2011	Heidelberg	JF6X01.0058
				41576	OH	Clinical	2011	Heidelberg	JF6X01.0058
				41577	ОН	Clinical	2011	Heidelberg	JF6X01.0058
				41581	он	Clinical	2011	Heidelberg	JF6X01.0058
				41582	ОН	Clinical	2011	Heidelberg	JF8X01.0058
2				41583	MI	Clinical	2011	Heidelberg	JF6X01.0058
				41584	ML	Clinical	2011	Heidelberg	JF6X01.0058
				N14653	MN	Ground Turkey	2007	Heidelberg	JF6X01.0058
10.000				N15787	NM	Ground Turkey	2007	Heidelberg	JF6X01.0058
				N15835	СТ	Ground Turkey	2007	Heidelberg	JF6X01.0057
				N18399	GA	Ground Turkey	2008	Heidelberg	JF6X01.0058
				N18415	GA	Ground Turkey	2008	Heidelberg	JF6X01.0058
				N19753	co	Ground Turkey	2008	Heidelberg	JF6X01.0058
		11 1 . 1111		N23760	MD	Ground Turkey	2010	Heidelberg	JF6X01.0058
		11 1 111		N27399	NM	Ground Turkey	2010	Heidelberg	JF6X01.0058
				N29341	MN	Ground Turkey	2011	Heidelberg	JF6X01.0058
13 13				N29368	NM	Ground Turkey	2011	Heidelberg	JF6X01.0058
				N30644	GA	Ground Turkey	2011	Heidelberg	JF6X01.0058
				N30667	NM	Ground Turkey	2011	Heidelberg	JF6X01.0058
				N30684	NM	Ground Turkey	2011	Heidelberg	JF6X01.0058

SNP matrix - S. Heidelberg

NARMS Research to Support FDA's Mission

1. Determine the genetic diversity within bacterial populations to understand the movement of bacteria through the food chain

Collaborations with CFSAN-MRC and CFSAN-College Park


US-EU consortium on NGS

2. Characterize genetic mechanisms of resistance

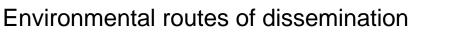
Collaborations with many partners at universities (Univ. MD) and government (CFSAN, CDC, USDA)

3. Examine the role of animal feeds in the ecology of resistance

ORA - feeds and imports surveillance

Summary

- Comprehensive susceptibility data can be used for regulatory decision making, including pre-approval of new animal antibiotics
- Most extensive national program for integrated laboratory based surveillance of bacteria in foods
 - Only national program that provides routine isolates for analysis
 - Strong stakeholder support
- Leverages existing public health infrastructure
 - Partnership with FoodNet, PulseNet, USDA-FSIS & USDA-ARS
- Making improvements to overcome limitations based on original NARMS design
- Infrastructure in place for hypothesis-driven food hazard analyses
- Provides food safety officials with ongoing baseline data on the prevalence of specific pathogens in food supply
 - Provides bacterium/commodity data needed for attribution



٠

Challenges & Future Needs

- Overcoming the inherent limitations because NARMS was built on existing infrastructure
 - Animal sampling
 - Sampling at slaughter (FSIS): sustainable, representative, random, cost effective
 - Sampling on-farm with antibiotic use information in some cases (ARS): value added.
 - Adding 3 retail meat testing sites (WA, LA, MO)
- Examining other pathogens and commodities as needed without compromising core monitoring functions.
 - Seafood, feeds
 MRSA, ESBLs
- Transitioning to WGS hardware and bioinformatics
- Need for detailed drug use information in food animals
- Continued database development
- Incorporating ORA data into NARMS
- Anticipating feed safety/security events with appropriate method development

U.S. Food and Drug Administration Protecting and Promoting Public Health

Acknowledgments

NARMS FDA

- Dr. Heather Tate
- Dr. Shaohua Zhao
- Dr. Daniel Tadesse
- Jason Abbott
- Sherry Ayers
- Sonya Bodeis-Jones
- Emily Crarey
- Sharon Friedman
- Stuart Gaines
- Carol Henderson
- Claudine Kabera
- Claudia Lam
- Sampa Mukherjee
- Jonathan Sabo
- Thu Thuy-Tran
- Shenia Young

NARMS CDC

- Dr. Jean Whichard
- Dr. Beth Karp
- Dr. Maria Karlsson
- Dr. Jason Folster
- Dr. Felicita Medalla
- Regan Rickert
- Kevin Joyce
- Rebecca Howie
- Allison O'Donnell
- Jared Reynolds
- Julian Grass
- Melissa Pitcher
- Andre McCullough
- Julia Taylor

NARMS USDA

- Dr. Paula Fedorka-Cray
- Dr. Mary Torrence
- Dr. Jonathan Frye
- Dr. Charlene Jackson
- Jovita Haro
- Takiyah Ball
- Tiffanie Woodley
- Jodie Plumblee
- Dr. Mary Torrence

U.S. Food and Drug Administration Protecting and Promoting Public Health

<u>http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/</u> <u>NationalAntimicrobialResistanceMonitoringSystem/default.htm</u>

