A Laboratory Technique for Estimating the Resilient Modulus Variation of Unsaturated Soil Specimens from CBR and Unconfined Compression Tests

> *by*: Mike Vogrig Adam McDonald

Presented to Civil Engineering Department Lakehead University, Canada

# Outline

Introduction
Scope
Procedure
Results
Recommendations
Conclusions

# Outline

Introduction
Scope
Procedure
Results
Recommendations
Conclusions

#### Introduction

#### Pavement system composition



Asphalt /Concrete

**Granular Base** 

Sub-base

Sub-grade

#### Introduction

Question: Pavement Design Method????

Key Soil Properties:

- CBR values
- R-values
- Resilient Modulus, Mr

 Mechanistic-Empirical Design Method (ME)



Indicates:

the soil's resistance to force
the swell and strength potential

of soils

- Used to determine:
  - Resilient modulus (M<sub>r</sub>)
  - R- values



 CBR tests incorporate the effects of the asphaltic layer by placing the appropriate surcharge on the sample



 Indicates the ability to resist lateral deformation

 Determining the expansion pressure of a soil gives the thickness of the material above the soil that will prevent swelling

• Indirect method of determining  $M_r$ :  $M_r(MPa) = 8.0 + (3.8 \times R\text{-value})$  $M_r(psi) = 1000 + (555 \times R\text{-value})$ 

#### Resilient Modulus (M<sub>r</sub>)

- Primary soil property: Dynamic test
- Defined as the ratio between repeated deviator stress and resilient strain:

 $M_r = (\sigma_1 - \sigma_3) / \epsilon_{al}$ 

Calculated by:

 $M_r (MPa) = 10.342 (CBR)$  $M_r (psi) = 1500 (CBR)$ 

#### Laboratory Setup for M<sub>r</sub>

#### Specimen

For aggregate base Diameter: 6"; Height: 12" Stress hardening for granular materials

**For subgrade soils** Diameter: 2.8"; Height: 6" Stress softening for fine grained materials

Test protocol: LTPP P-46

# Testing Equipment for M<sub>r</sub>



## **Typical Triaxial Test Results**



# Outline

Introduction
Scope
Procedure
Results
Recommendations
Conclusions



Determine correlations between California Bearing Ratio (CBR) tests and unconfined compression tests (UCS) on unsaturated soils and propose a simple technique for estimating M<sub>r</sub>

Soil supplied by the Minnesota Department of Transportation (Mn DOT) was used in test program

## **Mn-DOT Full Scale Test Facility**

#### MnROAD



### Site Map of Mn-DOT Test Facility



# MnRoad Bedrock Geology



# Outline

Introduction
Scope
Procedure
Results
Recommendations
Conclusions

# Grain Size Analysis Data



## Modified CBR Testing Procedure

- □ Soil dried to 0% w.c.
- Mixed 16% w.c.
- Rest for 24 hours
- Compacted in 5 layers, 56 blows per layer



- □ Initial density and w. c: Saturated sample
- Dry the sample under two 40 watt lights
- One week in constant moisture room
- Test conducted
- Degree of saturation determined

# **CBR** Test Results



# Analysis: CBR Results



### **Modified UCS Testing Procedure**

Drying the samples using two- 40 watt lamps



 Prepared according to AASHTO designation T 208, Unconfined Compression Strength of Cohesive Soils
 Modifications:

Sample Preparation – creating unsaturated conditions

# Unconfined Compression Test Results – Varying Times



# Unconfined Compression Test Results



#### Analysis: UCS Results



#### **CBR and UC Comparison**



# **Comparison of CBR and UCS**



# Outline

Introduction
Scope
Procedure
Results
Becommendations
Conclusions

#### Recommendations

 Longer equilibrium time for CBR molds in moisture control room before testing in order to achieve uniform water contents.

 Direct M<sub>r</sub> testing procedures to eliminate errors with regards to the mathematical CBR-M<sub>r</sub> correlations.

 A better understanding to incorporate the principles of unsaturated soils behavior in the mathematical relationship relating unconfined compression test results and M<sub>r</sub> values

# Outline

Introduction
Scope
Procedure
Results
Recommendations
Conclusions

#### Conclusions

- Research Study: Promising
- This method of testing could be a useful technique in relating simple soil properties to more complex soil parameters such as resilient modulus values used in the design of pavements.
- Strong relationship: Correlations between the test data
- More testing and large database is required for proposing such correlations.

#### Acknowledgements

We'd like to the the following for their guidance and support:

- Dr. S.K. Vanapalli
- Conrad Hagstrom
- Mn-DOT
- Molson Canadian

