Digital Rights Management in a 3G Mobile Phone and Beyond

Thomas S.Messerges, Ezzat A. Dabbish

Hyojin Yoon Jaehoon Lee

Contents

- Introduction
- DRM Concepts and strategies
- Our DRM system
 - DRM Manager
 - Trusted Application Agents
 - Security Agent
 - DRM Credential
- Security issues
- Family Domain
- Conclusion

Introduction

- 3G Mobile Phone
 - High communication rates (144 Kbps ~2 Mbps)
 - Personal Area Networking capability
 - P2P sharing of digital items over short-range networks
 - High Internet Connectivity
- Business opportunities for digital contents are attracting much interest
- Losses from piracy

Digital Rights Management(DRM) will be an essential component for future mobile phones

DRM concepts and strategies

- Overview of Trusted DRM System

- License File
 - Metadata
 - Usage Rules
 - Content Encryption Key (CEK)
 - Hash
 - Digital Signature
 - For authenticity and integrity
- Protected Content File (Encrypted)
- DRM System
 - DRM Service
 - Verify the signature & the hash of content
 - Decrypt the content

Rendering Software (When content is rendered)

DRM concepts and strategies

- Open Mobile Alliance DRM(OMA)
- Open Mobile Alliance (OMA)
 - Develops open standards for the mobile phone industry
 - Version1 DRM specification
- Open Mobile Alliance DRM
 - Goal
 - Devise a consumer-friendly DRM standard

"Content files can be distributed to other devices, but that licenses to use this content must be obtained from a server called the right issuer"

- In this paper, "Family Domain" approach is proposed
 - Distributed contents to all devices owned by a consumer
 - No need to acquire a new license for each transfer

OUR DRM SYSTEM

- Interface for DRM

- Two approach noted in Schneck's paper
 - Replace the I/O elements of OS with new modules
 - Hyperadvisor

- Our Approach
 - OS is extended to support DRM functionality
 - Access these extended system through API
 - A header indicates if that is protected
 - If file is protected -> call extended API
 - These extensions "privileged mode"
 - Applications "user mode"

OUR DRM SYSTEM

- DRM manager

- Authenticate Licenses and Content
 - Verify Cryptographic hash of the license file
 - Digital signature
 - With the help of Security Agents
- Enforce Rights
 - Actions can be associated with three types of rights
 - Render rights ,Transport rights, Derivative work rights
 - Rights to an action are assigned to a device
 - Use device's credentials (e.g., keys, certificates, IDs)
 - Perform additional event for an action
- Decrypt Content
 - Decrypt the content using key
 - Route it to a trusted application agent

OUR DRM SYSTEM

- Trusted Application Agents

- Actually Access and manipulate decrypted content
- Rendering Agents
 - Render DRM-protected content
 - e.g., a music player, a picture viewer, an application loader
- Transport Agents
 - move content from one location to another
 - e.g., email attachments, messaging services, streaming
 - Establish a Secure Authenticate Channel(SAC)
 - e.g., secure Bluetooth link b/w the phone and the headphones
- Derivative Work Agents
 - Extract and transform protected content or license into a different form
 - e.g., digital item duplication
 - Installation of DRM-protected software or data
 - For fast execution, installed software and data is decrypted and this makes it vulnerable to copying
 - Place the decrypted data into an access-controlled file system maintained by security agents

DRM System – Security Agents[1/2]

- Handle the security-related functions
 - Memory and File management
 - Cryptographic operations
 - Key management
- Memory and File management
 - Access-controlled file system
 - To store decrypted content
 - Only trusted agents will be allowed to access the content
 - Memory separation system
 - To ensure that if a trusted operation is running, untrusted operations can't eavesdrop on the memory
 - Secure memory system
 - Prevent critical data(private key) from leaking out of the system
 - If suspicious events occurs, the memory is immediately cleared

DRM System – Security Agents[2/2]

- Cryptographic operations
 - Using symmetric key algorithm(ex. AES)
 - License is bound to the content file using a Hash of the content file(ex. SHA-1)
 - Public key for content-key encryption, (1) 1024-bit RSA with signature generation and verification etc(ex. RSA, ECC)

Operation	Time
Hash of a license (5KByte)	SHA1: 3 ms
Verify license signature	RSA ⁽¹⁾ : 100 ms ECC ⁽²⁾ : 150 ms
Decrypt content key	RSA ⁽¹⁾ : 1,800 ms ECC ⁽²⁾ : 90 ms
Decrypt content (2 Kbyte)	AES ⁽³⁾ : 1.6 ms

(1) 1024-bit RSA with CRT (2) WTLS Curve 3 (3) 128-bit key

- Key/certificate Manager
 - Securely handle a database of the phone's credentials
 - Keys, Certificates, IDs
 - Parsing and verifying the appropriate certificates

DRM System – DRM Credentials

- Serial and Model numbers
 - Serial Numbers
 - Unchangeable number that identifies the phone
 - Model Numbers
 - Number that identifies HW and SW version
- Root Key
 - Check the authenticity and integrity of the credentials
- Private Keys and Certificates
 - KuPri and UniCert
 - Used for establishing Secure Authenticate Channel(SAC) to a phone
 - KdPri and DRMCert
 - Used for assigning content to a device

Security Issues

Licenses

Need to verify integrity and authenticity of licenses

Integrity and Authenticity

 Content providers need to trust that the DRM system will keep keys secret

Rights Enforcement

 DRM manager should enforce rights responsibly and fail in a safe manner if there are conflicting constraints

Content Protection

 Rendering software should be trusted to not leak of copy the decrypted content

Privacy Issues

User information and identity must not be disclosed

Family Domain

- The consumers don't want to be locked to one particular device
- Consumer decides which devices belong to his domain
 - Portable devices are assigned to a particular domain by registering with the DA(Domain Authority)
- A trusted server, DA installs common DRM private key in all these devices
 - Domain private key
- A device needs to register with a DA once, and could access to all the content in a domain with domain private key

Example Use Case

K_{PRIV}: Private Key

K_{CEK}: Content Encryption Key

K_{REK}: Rights Encryption Key

 K_{MAC} : Message Authentication Code Key

Conclusion

- DRM framework is proposed for a mobile phone environment
 - Also applicable to other devices
 - PDA, tablet pc, automobile etc
- DRM system
 - DRM Manager, Trusted Application Agents, Security Agents
- Family Domain
 - Content could be more seamlessly shared amongst all devices owned by a consumer

Reference

 Thomas S. Messergers et al, "Digital Rights Management in a 3G Mobile Phone and Beyond", DRM '03