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Abstract

The role of glutathione (GSH) in eukaryotic cells is well known. The biosynthesis of this γ-
glutamine tripeptide is well studied. However, other γ-glutamyl peptides were found in vari-

ous sources, and the pathways of their formation were not always clear. The aim of the pres-

ent study was to determine whether Saccharomyces cerevisiae can produce γ-glutamyl

tripeptides other than GSH and to identify the pathways associated with the formation of

these peptides. The tripeptide γ-Glu-Val-Gly (γ-EVG) was used as a model. Wild-type yeast

cells were shown to produce this peptide during cultivation in minimal synthetic medium.

Two different biosynthetic pathways for this peptide were identified. The first pathway con-

sisted of two steps. In the first step, γ-Glu-Val (γ-EV) was produced from glutamate and

valine by the glutamate-cysteine ligase (GCL) Gsh1p or by the transfer of the γ-glutamyl

group from GSH to valine by the γ-glutamyltransferase (GGT) Ecm38p or by the (Dug2p-

Dug3p)2 complex. In the next step, γ-EV was combined with glycine by the glutathione syn-

thetase (GS) Gsh2p. The second pathway consisted of transfer of the γ-glutamyl residue

from GSH to the dipeptide Val-Gly (VG). This reaction was carried out mainly by the

(Dug2p-Dug3p)2 complex, whereas the GGT Ecm38p did not participate in this reaction.

The contribution of each of these two pathways to the intracellular pool of γ-EVG was

dependent on cultivation conditions. In this work, we also found that Dug1p, previously iden-

tified as a Cys-Gly dipeptidase, played an essential role in the hydrolysis of the dipeptide VG

in yeast cells. It was also demonstrated that γ-EV and γ-EVG could be effectively imported

from the medium and that γ-EVG was imported by Opt1p, known to be a GSH importer. Our

results demonstrated that γ-glutamyl peptides, particularly γ-EVG, are produced in yeast as

products of several physiologically important reactions and are therefore natural compo-

nents of yeast cells.
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Introduction

The most well-known γ-glutamyl compound is the tripeptide γ-L-glutamyl-L-cysteinylglycine,

also known as glutathione (γ-Glu-Cys-Gly, GSH). GSH plays an important role in many physi-

ological processes, including maintenance of redox balance and detoxification of cells. The

GSH biosynthetic pathway has been well studied in many organisms; this pathway comprises

two steps (Fig 1A). In the first step, glutamate-cysteine ligase (γ-glutamylcysteine synthetase,

GCL, EC 6.3.2.2) produces γ-glutamylcysteine (γ-GC) from glutamate and cysteine. In the sec-

ond step, γ-GC is combined with glycine by glutathione synthetase (GS, EC 6.3.2.3) [1, 2]. In

some organisms, these two reactions are carried out by a single enzyme [3]. A recent study also

suggested the potential importance of the GSH precursor γ-GC in physiological activities [4–

6]. In addition to GSH and γ-GC, several other γ-glutamyl compounds, mainly dipeptides,

have been identified from many sources [7–23]. The roles of these compounds in cells is not

always clear, but some have been detected in important mammalian tissues, such as the brain

[11] and eyes [23], which may indicate the involvement of these compounds in signaling path-

ways. This hypothesis is supported by the fact that theanine (γ-glutamylethylamine), a sub-

stance that was first identified in tea leaves [24], has a well-known stimulatory effect [25].

Recently, there has been an interest in using γ-glutamyl peptides for the treatment of Alzhei-

mer’s disease [26, 27].

While medical studies on γ-glutamyl peptides have started relatively recently, there is

another area in which the role of these compounds has been well studied. Some of these com-

pounds are important (or even principal) components of the tastes and smells of food. For

example, γ-Glu-S-allyl-Cys was found to be one of the compounds that determines the taste

properties of garlic [18]; γ-Glu-S-propenyl-Cys sulfoxide is associated with the taste of onion

[19]; γ-Glu-Leu, γ-L-Glu-Val, and γ-Glu-Cys-β-Ala determine the taste properties of beans

[20]; and γ-Glu-Phe, γ-Glu-Tyr, γ-Glu-Leu, γ-Glu-Glu, γ-Glu-Gly, γ-Glu-Gln, γ-Glu-Met and

γ-Glu-His are key components that influence the flavor of mature cheese [21, 22]. Moreover,

some data suggest that GSH is associated with flavor formation in several foodstuffs, including

meat [28]. Notably, a significant amount of γ-GC has been detected in some foodstuffs, such as

chicken gizzard and yeast [29]. In addition to their own taste, several γ-glutamyl compounds

enhance the taste of food (continuity, richness and thickness). Compounds that possess these

properties have been coined “kokumi compounds” or “kokumi flavor compounds” [18–20,

28].

Although GSH biosynthesis has been well studied in many organisms, there is little data

regarding the mechanism of formation of other γ-glutamyl compounds. For several com-

pounds, two different mechanisms were demonstrated in in vitro and in vivo experiments.

Both of these mechanisms were associated with GSH metabolism. The first mechanism was

based on the known pathway of GSH degradation (Fig 1B), which is carried out by γ-glutamyl-

transferase (GGT, EC 2.3.2.2), previously called γ-glutamyltranspeptidase. This enzyme trans-

fers the γ-glutamyl moiety from GSH to any amino acid or water [30, 31]. Several γ-glutamyl

compounds have been produced by using this enzyme in vitro [30–32]. Moreover, two γ-gluta-

myl dipeptides, namely, γ-Glu-Glu and γ-Glu-Gly, were identified in the yeast Saccharomyces
cerevisiae, and there was some evidence that these compounds were synthesized by GGT [33].

It has also been proposed that γ-glutamyl peptides found in cheese are synthesized by GGT

produced by the fungus Penicillium roqueforti [34].

The second mechanism involved the relatively broad substrate specificity of the GSH bio-

synthetic enzymes (Fig 1C). It has been demonstrated in vitro for several studied GCLs that

these enzymes can bind glutamate with some other amino acids besides cysteine, producing

the corresponding γ-glutamyl dipeptides. In turn, GS can recognize these dipeptides and
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combine them with glycine [35–41]. In particular, it was demonstrated that ophthalmic acid

(γ-L-glutamyl-L-α-amino-n-butyrylglycine, γ-Glu-Abu-Gly), a tripeptide primarily isolated

from calf lenses, is synthesized via this pathway [23].

It can also be presumed that γ-glutamyl peptides can be formed as a byproduct in other

reactions in which γ-glutamyl phosphate is an intermediate. For example, glutamine synthe-

tase and γ-glutamylmethylamide synthetase were used for in vitro synthesis of theanine from

glutamate, ethylamine and ATP [42, 43]. In this regard, it is worth mentioning that accumula-

tion of γ-glutamyl phosphate due to mutation in the proline biosynthesis pathway suppressed

the GSH auxotrophy of S. cerevisiae gsh1Δ strain [44]. Moreover, γ-glutamyl kinase Pro1p was

used for improving the GSH yield in the GSH-producing S. cerevisiae strain [45]. These experi-

ments indicated that γ-glutamyl kinase also possesses relatively broad substrate specificity.

Wild-type S. cerevisiae strains synthesize approximately 10 μmol (0.3 mg) GSH per gram

dry cell weight (DCW) when cultivated in a minimal synthetic medium, which corresponds to

an intracellular concentration of 4 mM [46, 33]. The synthesis of GSG in S. cerevisiae is cata-

lyzed by GCL and GS, which are encoded by GSH1 and GSH2, respectively [47–51]. In addi-

tion, S. cerevisiae synthesizes GGT, which is encoded by ECM38 [52–54]. Thus, it is very likely

that S. cerevisiae can produce γ-glutamyl compounds via one of the above described mecha-

nisms associated with GSH metabolism. Moreover, several γ-glutamyl di- and tripeptides were

recently identified in yeast extract [55], and some experimental data indicate that in S. cerevi-
siae, GGT produces two γ-glutamyl peptides, namely, γ-Glu-Glu and γ-Glu-Gly [33].

In the present study, we have chosen the γ-glutamyl peptide γ-L-glutamyl-L-valyl-glycine

(γ-Glu-Val-Gly, γ-EVG) as a model to determine whether S. cerevisiae can produce γ-glutamyl

tripeptides other than GSH. We chose this particular peptide because it was recently discov-

ered that it possesses strong kokumi properties [56] and it has been detected in several tradi-

tional foods and in beer [13–17]. In addition, S. cerevisiae is used for the production of yeast

extract, which is widely used as a food ingredient. Therefore, the ability of S. cerevisiae to pro-

duce this peptide would be interesting from a biotechnological perspective. In this study, we

detected γ-EVG in yeast extract and demonstrated that γ-EVG may be produced in yeast via

two pathways: (i) by GCL and GC using glutamate, valine and glycine as precursors; or (ii) via

transfer of the γ-glutamyl residue from GSH to the dipeptide Val-Gly (VG). This reaction is

Fig 1. Glutathione biosynthesis pathway and two possible pathways for the synthesis of γ-glutamyl peptides. A. Schematic depiction of glutathione

biosynthesis. GCL, glutamate-cysteine ligase; GS, glutathione synthetase. B. Synthesis of γ-glutamyl peptides during glutathione degradation. γ-

Glutamyltransferase (GGT) transfers γ-glutamyl residues from GSH to amino acids or peptides (X). C. Synthesis of γ-glutamyl peptides as a byproduct

of GSH biosynthesis. GCL uses another amino acid (X) instead of cysteine as a substrate and produces a γ-glutamyl dipeptide (γ-Glu-X). Then, GS uses

this peptide as a substrate and produces a tripeptide (γ-Glu-X-Gly).

https://doi.org/10.1371/journal.pone.0216622.g001
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carried out mainly by the (Dug2p-Dug3p)2 complex, which mediates an alternative GSH deg-

radation pathway [57–59], whereas GGT Ecm38p does not participate in this reaction or its

contribution is negligible. We also demonstrated that the dipeptide γ-EV may be produced via

transfer of the γ-glutamyl group from GSH to valine. This reaction can be carried out by

Ecm38p or by the (Dug2p-Dug3p)2 complex. In addition, we found that Dug1p, previously

identified as Cys-Gly dipeptidase, possesses high activity toward the dipeptide VG and demon-

strated that γ-EVG can be effectively imported from the medium by Opt1p (Hgt1p), a known

importer of GSH.

Materials and methods

Materials, culture media and yeast strains

Media components were purchased from BD (Difco), USA. Amino acids (LAA21 set) were

purchased from Sigma-Aldrich Chemie GmbH Munich, Germany. Uracil was purchased from

AppliChem GmbH, Germany. Geneticin (G418) and phleomycin were purchased from Invi-

voGen, USA. γ-EV and VG were purchased from Bachem AG, Switzerland, and γ-EVG was

synthesized by Kokusan Chemical Co., Ltd., Japan. Culture media preparation and yeast strain

manipulation were carried out according to standard procedures [60]. For transformation of

yeast cells, the lithium acetate method was used [61]. The culture media used in this work are

listed in Table 1. For selection for geneticin or phleomycin resistance after yeast transforma-

tion, YPD agar plates were supplemented with 200 mg/L geneticin or 7.5 mg/L phleomycin,

respectively. For selection of the Ura+ phenotype, SD agar plates were used. For cultivation of

Ura- strains, the synthetic media were supplemented with 20 mg/L uracil. The yeast strains

used in this study were derivatives of S288C. The construction of these strains is described in

S1 File. The MATa yeast deletion collection (95401.H2) was purchased from Invitrogen Life

Technologies Ltd., Carlsbad, USA.

Analysis of peptide content in yeast cells

The peptide content in the yeast cells was measured by liquid chromatography/tandem mass

spectrometry (LC/MS/MS) as described in [62], with some modifications. Five milliliters of

the corresponding liquid medium in a 50-ml test tube (d = 20 mm) was inoculated with an

overnight culture of the corresponding strain at an optical density (OD600) of 0.03–0.2 and cul-

tivated overnight to the late logarithmic phase (OD600 = 1.5–3.5). After cultivation, the OD600

Table 1. Culture media used in this work.

Medium Components

YPD Yeast extract, 10 g/L; peptone, 20 g/L; glucose, 20 g/L

SD Yeast nitrogen base without amino acids, 6.7 g/L; glucose, 20 g/L

SDP Yeast nitrogen base without amino acids and ammonium sulfate, 1.7 g/L; glucose, 20 g/L; proline, 1 g/

L

SDV Yeast nitrogen base without amino acids and ammonium sulfate, 1.7 g/L; glucose, 20 g/L; valine, 1 g/L

SD+V SD supplemented with valine, 1 g/L

SD+V+G SD supplemented with valine, 1 g/L and glycine 1 g/L

SD+γ-

EVG

SD supplemented with 100 mg/L of γ-EVG

SD+γ-EV SD supplemented with 100 mg/L of γ-EV

SD+VG SD supplemented with 100 mg/L of VG

SDP+VG SDP supplemented with 100 mg/L of VG

https://doi.org/10.1371/journal.pone.0216622.t001
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of the cultures was measured, and the tubes were cooled on ice. Cells from 2 ml of the medium

were collected by centrifugation, washed twice with ice water, and resuspended in 1 ml of

water. Tubes with cell suspensions were incubated in a water bath at 70˚C for 10 min and cen-

trifuged at room temperature for 3 min at 13000 g. The supernatant was collected and filtered

with Amicon Ultra– 0.5 ml 10K filter units (Millipore, No UFC501096) at 7000 g, 20 min, 4˚C,

to remove large peptides. If necessary, before filtration, the water extracts were vacuum-dried

and dissolved in a smaller volume to concentrate the peptides. Alternatively, instead of filtra-

tion, purification with acetonitrile was carried out. For this purpose, 4 volumes of acetonitrile

were added to 1 volume of water extract and mixed; the mixture was incubated at room tem-

perature for 20 min and centrifuged at 13000 g for 20 min at 20˚C. Then, the supernatant was

collected and vacuum-dried, and the precipitate was dissolved in water. Purified extract solu-

tions were derivatized with an AccQ-Fluor Reagent Kit (Waters, WAT052880) according to

the manufacturer’s instructions, but with some modifications: after derivatization, 200 μl of

0.1% aqueous solution of formic acid was added, and the samples were centrifuged at 13000

rpm for 10 min. The resulting supernatant was analyzed with an Agilent 1100 HPLC con-

nected to an API 4000 triple quadrupole mass spectrometer or with an Agilent 1200 HPLC

connected to an Agilent 6410 triple quadrupole mass spectrometer equipped with an ESI--

Turbo spray (positive mode). The HPLC conditions were as follows: column, Thermo Hyper-

sil-Keystone C18 100 mm�2.1 mm�5 μm or an analogous column; mobile phase A, 0.1%

formic acid in water; mobile phase B, 0.1% formic acid in acetonitrile. The ions used for pep-

tide identification by MS/MS analysis are listed in Table 2. The pure peptides γ-EVG, γ-EV

and VG were used as standards.

Statistical analysis

Statistical analysis was performed using Student’s t test. Microsoft Excel 2007 was used for the

calculation. The peptide values are presented as arithmetic means of 3–10 independent experi-

ments. The error bars on diagrams represent ± 95% confidence intervals. Additionally, the

conclusions regarding the effect of genetic modifications on peptide accumulation were veri-

fied using the Mann–Whitney U test.

The raw data used to build the graphs are given in S1–S6 Tables.

Results

Detection of γ-EVG, γ-EV and VG in yeast cell extracts and dependence of

γ-EVG concentration in the extracts on medium composition

To study the ability of yeast to produce γ-EVG, the peptide content was determined in cells of

the WT strain (S288C ura3Δ0) cultivated in minimal synthetic liquid medium (SD). γ-EVG

was detected in these cells at approximately 0.03 μg (L�OD600)-1 (corresponding to approxi-

mately 0.1 μg /g DCW). Two other peptides, namely, γ-EV and VG, were also detected in this

extract (Fig 2).

Table 2. Ions used for peptide identification by MS/MS analysis.

Peptide Precursor ion Product ions

γ-EVG 474 171, 304, 229

γ-EV 417 171, 247, 184

VG 345 171, 270, 242

https://doi.org/10.1371/journal.pone.0216622.t002
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γ-EV and VG could be precursors of γ-EVG in reactions catalyzed by GS and GGT, respec-

tively (Fig 1). To determine which peptide, γ-EV or VG, served as a precursor for γ-EVG syn-

thesis, yeast cells were cultivated in medium supplemented with these peptides, namely, SD+γ-

EV and SD+VG, respectively. Cultivation of cells in the SD+γ-EV medium increased the con-

centrations of both γ-EVG and γ-EV in the cell extracts approximately 50- and 2500-fold,

respectively. In cells cultivated in SD+VG, the concentrations of γ-EVG and VG increased

approximately 10-fold (Fig 2).

Because ammonia inhibits peptide transport into cells [63], the experiment with VG was

repeated in SDP medium (SD medium in which ammonium sulfate was replaced with 1 g/L of

proline). Indeed, in cells grown in SDP medium supplemented with VG (SDP+VG), the γ-

EVG concentration was approximately 8-fold higher than that in cells grown in SD+VG (Fig

2).

To determine whether amino acids can be precursors of γ-EVG, cells were cultivated in SD

medium supplemented with valine (SD+V) or with valine and glycine (SD+V+G). Cultivation

in SD+V medium increased the intracellular γ-EV concentration, whereas cultivation in SD

+V+G increased the amounts of all three peptides, namely, γ-EV, γ-EVG and VG (Fig 2).

In subsequent experiments, derivatives of three strains with different variants of the URA3
allele were used: S288C (native URA3), S288C ura3Δ0 (deletion of the entire URA3 coding

sequence) and S288C ura3Δ227 (partial deletion of URA3). To exclude the influence of the

URA3 allele, the peptide content of these three strains was compared under the conditions

described above, and differences between intracellular peptide concentrations were not

observed among the strains.

Identification of the enzyme responsible for the synthesis of γ-EVG from γ-

EV

The most likely candidate for catalysis of the conversion of γ-EV to γ-EVG was GS, encoded

by GSH2. To test this hypothesis, the GSH2 deletion strain (gsh2Δ) and the strain in which the

promoter of this gene was substituted with the ADH1 promoter (overexpression of GSH2 after

promoter replacement was confirmed by qPCR and by measurement of GS activity; S2 File)

were cultivated in SD+γ-EV medium, and the γ-EVG content in the cells was measured. The

gsh2Δ strain accumulated approximately 7-fold less γ-EVG than the strain in which GSH2 was

Fig 2. Dependence of peptide concentration in yeast cell extracts on medium composition. Cells of the WT strain were grown in SD or SDP (SD in

which ammonium sulfate was replaced with proline as a nitrogen source) medium supplemented with γ-EV, VG, valine, or valine and glycine.

https://doi.org/10.1371/journal.pone.0216622.g002
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not deleted. In turn, overexpression of GSH2 led to an approximately 25-fold increase in γ-

EVG concentration in the extract (Fig 3). Thus, these data show that conversion of γ-EV to γ-

EVG was catalyzed by Gsh2p.

Identification of the enzyme responsible for the synthesis of γ-EVG from

VG. (1) γ-EVG synthesis was dependent on VG uptake

To determine the influence of VG import on the synthesis of γ-EVG, the native promoter of

PTR2, encoding a di- and tripeptide transporter [64], was replaced by the constitutive pro-

moter PADH1 in the S288C ura3Δ0 strain. This modification was performed to enhance the

import of VG upon cultivation in SD medium supplemented with VG (SD+VG) because it is

known that ammonia ions, which are contained in this medium, inhibit uptake of peptides

[63]. Cultivation of the resulting and parental strains in SD+VG medium showed that the pro-

moter replacement had no effect on the intracellular VG concentration but resulted in a more

than 15-fold increase in the γ-EVG content (Fig 4A).

Identification of the enzyme responsible for the synthesis of γ-EVG from

VG (2). preventing VG degradation increased γ-EVG synthesis

One of the possible reasons why the replacement of the PTR2 promoter did not result in an

increase in the intracellular VG concentration could be a rapid hydrolysis of this peptide in the

cells. In this case, it was not clear whether VG itself was a precursor for γ-EVG or whether the

precursors were valine and glycine, formed as a result of VG degradation. To confirm the

hypothesis of VG degradation, several strains from a yeast deletion collection, bearing dele-

tions of genes encoding peptidases, were cultivated in SDP+VG medium, and the VG concen-

tration was determined in the yeast extracts. Among the tested strains, only the DUG1 deletion

Fig 3. Effect of deletion and overexpression of GSH2 on the γ-EVG concentrations in cell extracts. Cells were

cultivated in SD medium supplemented with γ-EV (SD+γEV). The data shown are the mean values of at least three

independent determinations. As a control (WT), the strains S288C and S288C ura3Δ0 were used.

https://doi.org/10.1371/journal.pone.0216622.g003
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strain demonstrated considerably increased VG content (S3 File). Recently, DUG1 was identi-

fied as a gene encoding the Cys-Gly dipeptidase participating in an alternative pathway of

GSH degradation [58]. DUG1 was deleted in the PADH1-PTR2 strain, and the resulting strain

was cultivated in SD+VG medium. Determination of the peptide content demonstrated that

deletion of DUG1 increased the VG content in cells more than 1000-fold and the γ-EVG con-

tent more than 10-fold (Fig 4A). This result proved the hypothesis that VG itself served as a

precursor for γ-EVG synthesis.

Identification of the enzyme responsible for the synthesis of γ-EVG from

VG (3). γ-EVG synthesis was dependent on the GSH supply

To prove that GSH was a γ-glutamyl donor for the synthesis of γ-EVG from VG, GSH-limited

conditions were designed. For this purpose, GSH1, encoding GCL, the first enzyme in the

GSH biosynthetic pathway, was deleted in the PADH1-PTR2 strain. Then, the minimal concen-

tration of GSH, leading to growth of the resulting strain in SD at an OD600 of approximately 4

units, was determined to be approximately 2 μM. It was also confirmed that the intracellular

GSH concentration in cells cultivated in medium supplemented with 2 μM GHS was lower

than that in cells cultivated in medium supplemented with 200 μM GSH (S4 File). Then, the

PADH1-PTR2 gsh1Δ strain was cultivated in SD+VG medium supplemented with 2 μM or

200 μM GSH. In cells grown in medium supplemented with 2 μM GSH, the concentration of

Fig 4. Identification of the enzyme responsible for γ-EVG synthesis from VG. A, Effect of overexpression of PTR2 and

deletion of DUG1 on intracellular VG and γ-EVG concentrations. The strain S288C ura3Δ0 was used as a control (WT). B.

Effect of GSH concentration on γ-EVG synthesis by the PADH1-PTR2 gsh1Δ strain. C. Effect of deletion of ECM38 or

DUG2 on γ-EVG synthesis by the PADH1-PTR2 strain. In B and C, the level of γ-EVG in the PADH1-PTR2 strain cultivated in

the corresponding medium was taken to be 100%.

https://doi.org/10.1371/journal.pone.0216622.g004

Multiple pathways for the formation of the γ-glutamyl peptides

PLOS ONE | https://doi.org/10.1371/journal.pone.0216622 May 9, 2019 8 / 18

https://doi.org/10.1371/journal.pone.0216622.g004
https://doi.org/10.1371/journal.pone.0216622


γ-EVG was found to be lower than that in cells cultivated in medium supplemented with

200 μM GSH (Fig 4B). This result supported the hypothesis that GSH served as a γ-glutamyl

donor for the synthesis of γ-EVG from VG.

Identification of the enzyme responsible for the synthesis of γ-EVG from

VG (4). γ-EVG synthesis was dependent on the integrity of the (Dug2p-

Dug3p)2 complex

Based on previous knowledge of degradation of GSH, the first candidate for the transfer of the

γ-glutamyl moiety from GSH to VG was GGT, encoded by ECM38 [54]. To examine this

hypothesis, ECM38 was deleted in the PADH1-PTR2 strain. The resulting PADH1-PTR2 ecm38Δ
strain accumulated approximately 40% less γ-EVG than the parental strain when cultivated in

SD+VG and approximately 40% more when cultivated in SDP+VG media (Fig 4C). Therefore,

Ecm38p did not participate in the synthesis of γ-EVG from VG, or its contribution to this pro-

cess was minor. Thus, it was hypothesized that this reaction could be carried out by the

enzymes of a recently discovered alternative GSH degradation pathway [57]. A component of

this pathway, namely, the (Dug2p-Dug3p)2 complex, has been shown to cleave GSH to gluta-

mate and Cys-Gly [59]. To examine this hypothesis, DUG2 was deleted in the PADH1-PTR2
strain. The resulting PADH1-PTR2 dug2Δ strain accumulated negligible amounts of γ-EVG

when cultivated in SD+VG or SDP+VG medium (Fig 4C). Thus, the transfer of the γ-glutamyl

moiety from GSH to VG was mainly carried out by the (Dug2p-Dug3p)2 complex.

Identification of the enzyme responsible for γ-EV synthesis

It was assumed that γ-EV can be formed via one of the two pathways, namely, transfer of the

γ-glutamyl moiety from GSH to valine (the GGT pathway) or ligation of valine with glutamate

by GCL or some other enzyme (Fig 1). It was also supposed that these two pathways can exist

simultaneously.

To evaluate γ-EV synthesis via the GGT pathway, a strain with a deletion of GSH1, encod-

ing GCL, was used. This strain was cultivated in SD medium supplemented with 1 g/L valine

with or without ammonium sulfate (SD+V and SDV, respectively) and limiting or nonlimiting

amounts of GSH (2 and 200 μM, respectively). In cells of the gsh1Δ strain cultivated in medium

supplemented with 2 μM GSH, the γ-EV content was found to be significantly lower than that

in the GSH1 strain cultivated in the corresponding medium without GSH. However, when the

concentration of GSH in the medium was 200 μM, the γ-EV content in the gsh1Δ strain was

restored to a level similar to that in the GSH1 strain (Fig 5A). Therefore, deletion of GSH1 did

not prevent the synthesis of γ-EV, and the synthesis of this peptide was dependent on the GSH

concentration. This result was consistent with the hypothesis that γ-EV is synthesized via the

GGT reaction.

To check whether the Ecm38p or (Dug2p-Dug3p)2 complex participated in the synthesis of

γ-EV from valine and GSH, deletion of GSH1 was combined with deletions of ECM38 or

DUG2 and with deletion of both of these genes. The resulting strains were tested for γ-EV

accumulation in SD+V and SDV media supplemented with various amounts of GSH. Deletion

of neither ECM38 nor DUG2 decreased GSH-dependent synthesis of γ-EV. Simultaneous dele-

tion of these two genes decreased the intracellular γ-EV concentration to a barely detectable

level (Fig 5A). This residual γ-EV level did not depend on the GSH concentration in the

medium. Therefore, both enzymes could participate in the synthesis of γ-EV from valine and

GSH, and the activity of thes enzymes was the main source of γ-EV production via this path-

way. Notably, the DUG2 deletion strain accumulated significantly high levels of γ-EV when

cultivated in SDV medium supplemented with 200 μM GSH. The intact (Dug2p-Dug3p)2
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complex likely degraded the surplus γ-EV, which was produced due to derepression of ECM38
under conditions of nitrogen starvation [65].

Because it was demonstrated that there were no enzymes other than Ecm38p and (Dug2p-

Dug3p)2 that produced significant amounts of γ-EV in the gsh1Δ strain, a strain with intact

GSH1 and deleted ECM38 and DUG2 was used to determine whether γ-EV could be produced

by GCL Gsh1p from valine and glutamate. This strain was cultivated in SD+V medium, and

the intracellular γ-EV concentration in this strain was found to be similar to that of the WT

strain, which harbored intact ECM38 and DUG2 (Fig 5B). Considering that the γ-EV level was

negligible in the strain gsh1Δ ecm38Δ dug2Δ, it could be concluded that in the ecm38Δ dug2Δ
deletion strain, γ-EV was produced by Gsh1p. To further confirm the ability of Gsh1p to pro-

duce γ-EV, the PADH1-GSH1 ecm38Δ dug2Δ strain was constructed. Enhancement of GSH1
transcription after promoter replacement was confirmed by qPCR and by measurement of the

GCL activity (S2 File). As expected, this strain produced more γ-EV than the ecm38Δ dug2Δ
strain (Fig 5B).

Synthesis of γ-EVG by a strain overexpressing GSH1 and GSH2
Factors influencing the conversion of γ-EV to γ-EVG were studied. The PADH1-GSH1 and

PADH1-GSH1 PADH1-GSH2 strains were cultivated in SD medium supplemented with valine or

Fig 5. Identification of the enzyme responsible for the synthesis of γ-EV from valine. The level of γ-EV in the WT

strain cultivated in SD+V and SDV media was taken to be 100%. A, Effect of the GSH concentration in the medium

and of deletions of ECM38 and DUG2 on γ-EV synthesis by the GSH1 deletion strain. B, Effect of GSH1
expression on γ-EVG synthesis in the strain with deletions of ECM38 and DUG2. The strains S288C ura3Δ227 and

S288C ura3Δ0 were used as controls (WT).

https://doi.org/10.1371/journal.pone.0216622.g005
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with valine and glycine (SD+V or SD+V+G, respectively). Additionally, a derivative of the

PADH1-GSH1 PADH1-GSH2 strain containing a second copy of the PADH1-GSH2 cassette inte-

grated into the chromosome was cultivated in SD+V+G medium. The PADH1-GSH1 PADH1-
GSH2 strain accumulated a significant amount of γ-EVG only when glycine was present in the

medium. However, even in the presence of glycine, the PADH1-GSH1 strain produced mainly

γ-EV and only a small amount of γ-EVG. The strain with two PADH1-GSH2 cassettes accumu-

lated more γ-EVG and less γ-EV than the strain with one cassette (Fig 6). These findings indi-

cate that the synthesis of γ-EVG from γ-EV was limited by glycine availability and GS Gsh2p

activity.

It is noteworthy that the addition of glycine to the medium decreased γ-EV accumulation

by the yeast cells. Apparently, this was due to competitive inhibition of γ-EV synthesis by gly-

cine since for several GCLs, it was shown that this enzyme has a higher affinity for glycine than

for valine [39, 40].

S. cerevisiae effectively absorbed γ-EVG from the medium, and Opt1p

played a main role in this process

Because yeast cells absorbed γ-EV with high efficiency from the medium (Fig 2), the uptake of

γ-EVG by yeast cells was also studied. It was demonstrated that yeast cells accumulated high

amounts of γ-EVG during cultivation in SD medium supplemented with this peptide at 100

mg/L (Fig 7). Deletion of OPT1 (also called HGT1 and GSH11), encoding a GSH importer

[66], was found to considerably decrease the γ-EVG concentration in cells grown in the γ-

EVG-containing medium, whereas replacement of the native promoter of this gene with the

ADH1 promoter increased the γ-EVG concentration. Therefore, it may be concluded that

Opt1p played a main role in γ-EVG uptake from the medium.

Discussion

In the beginning of this work, two pathways for the synthesis of γ-glutamyl tripeptides in S.

cerevisiae were proposed: (i) synthesis as a side reaction of GSH biosynthesis and (ii) transfer

of the γ-glutamyl group from GSH onto other peptides (Fig 1). To prove or refute the existence

of these pathways, several experiments were carried out using the tripeptide γ-EVG as a

model. S. cerevisiae was shown to synthesize this peptide, even when the cells were cultivated

in minimal synthetic medium. The experiments revealed the presence of both pathways: (i)

Fig 6. Synthesis of γ-EVG by a strain overexpressing GSH1 and GSH2. All strains were cultivated in SD medium

supplemented with valine (SD+V). Glycine was added to the medium where indicated.

https://doi.org/10.1371/journal.pone.0216622.g006
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synthesis by GCL Gsh1p and by GS Gsh2p using glutamate, valine and glycine as precursors;

and (ii) synthesis by transfer of the γ-glutamyl residue from GSH to the dipeptide VG. The lat-

ter reaction was found to be catalyzed by the (Dug2p-Dug3p)2 complex, which was previously

identified as part of a fungal-specific alternative GSH degradation pathway [57–59]. It was also

demonstrated that in addition to the condensation of valine with glutamate, γ-EV is synthe-

sized via transfer of the γ-glutamyl group from GSH to valine. This reaction was catalyzed by

Ecm38p or the complex (Dug2p-Dug3p)2. Fig 8 summarizes the data obtained in this work

and shows the proposed scheme of γ-EVG synthesis. The contribution of these pathways to

the pool of intracellular γ-EVG was dependent on cultivation conditions.

The obtained results, as well as the finding that γ-EV and γ-EVG can be easily imported

into yeast cells, indicated that the peptides γ-EV and γ-EVG are integral components of yeast

cells. These results also allowed us to propose that γ-glutamyl dipeptides and γ-glutamyl tri-

peptides, with the structures γ-EX and γ-EXG, respectively, where X is any amino acid, can be

produced during normal yeast metabolism.

Fig 7. Effect of OPT1 deletion and overexpression on γ-EVG levels in cells grown in SD+γ-EVG medium. The data

shown are the mean values of at least three independent determinations. The strain S288C ura3Δ0 was used as a

control (WT).

https://doi.org/10.1371/journal.pone.0216622.g007

Fig 8. Two pathways of γ-EVG synthesis in S. cerevisiae. A. Synthesis from valine, glutamate and glycine. B. Synthesis from the dipeptide

VG.

https://doi.org/10.1371/journal.pone.0216622.g008
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The results obtained in this work did not allow us to identify the prevalent pathway of γ-

EVG formation in wild-type cells cultivated in minimal medium because the γ-EVG level

under these conditions was close to the detection limit. However, in the strain overexpressing

GSH1 and GSH2 cultivated in the medium supplemented with valine and glycine, γ-EVG was

clearly produced by Gsh2p from γ-EV and glycine. Most of the γ-EV produced under these

conditions was apparently produced by Gsh1p because the γ-GGT reaction is reversible, and

in the case of increasing γ-EV concentrations, γ-GGT degraded this peptide (see below).

The results of the present work are also associated with the study of the turnover of GSH

and other γ-glutamyl peptides in yeast cells. The GSH concentration in cells is regulated by the

synthesis and degradation of this peptide. The half-life of GSH in cells growing in medium

supplemented with (NH4)2SO4 as a nitrogen and sulfur source was estimated in various studies

as being 990 and 174 min [33, 67], respectively. Additionally, according to Jasper and coau-

thors, the half-life of GSH was dependent on the nitrogen source [33]. In our experiments, the

transfer of the γ-glutamyl group from GSH to valine was found to not be inhibited by ammo-

nium ions (Fig 5.) This finding differed from previously obtained results, in which synthesis of

γ-glutamyl derivatives of glutamate and glycine occurred in NH4
+-free medium only [33].

According to our data, both Ecm38p and the (Dug2p-Dug3p)2 complex could transfer the γ-

glutamyl group from GSH to valine, and deletion of either ECM38 or DUG2 did not decrease

the synthesis of γ-EV (Fig 5). This indicated that in addition to the synthesis of γ-EV, both

enzymes participated in the γ-EV degradation, when the concentration of this peptide exceeds

a certain threshold. Therefore, the turnover of other γ-glutamyl peptides, not only GSH,

occurred in the yeast cells. Notably, this result also applies to the dipeptide γ-GC, the precursor

of GSH. This finding should be considered for further development of the recently constructed

strain to produce this compound [68].

The study of the γ-EVG synthesis pathway expanded our knowledge regarding enzymes

associated with GSH degradation. To the best of our knowledge, we have demonstrated here

for the first time the ability of the (Dug2p-Dug3p)2 complex to transfer the γ-glutamyl group

from GSH to peptides or amino acids, as well as the ability of Dug1p to digest dipeptide VG.

The effects of γ-EVG on the properties of yeast extract as a food additive obviously depend

on the strain and cultivation conditions used. The γ-EVG levels observed in cells grown in

minimal synthetic medium was low, but the levels increased when the medium was supple-

mented with valine and glycine and further increased when GSH1 and GSH2 were overex-

pressed. In WT yeast cells, the regulation of these genes is dependent on several factors,

including stress response [69] and the availability of sulfur-containing amino acids [70].

Therefore, during actual fermentation, the expression of GSH1 and GSH2 can increase signifi-

cantly depending on cultivation conditions, and if valine and glycine are present in the

medium or are produced because of peptide degradation, the amount of γ-EVG produced can

be significant. Synthesis of γ-EVG from the dipeptide VG seems to have no biotechnological

value at first glance because of the high price of dipeptides. However, yeast may be cultivated

in complex media, which can contain large amounts of peptides, and these peptides can serve

as acceptors for the transfer of γ-glutamyl groups from GSH. In this respect, the prevention of

VG degradation by inactivation of DUG1 observed in our study is particularly interesting. It is

reasonable to propose that Dug1p may be active toward other dipeptides, and strains with

DUG1 mutations could produce large amounts of γ-glutamyl peptides.
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