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Summary

The unification of two patterns both containing variables is an ubiquitous operation in Logic Programming and
in many Artificial Intelligence applications. Thus, many texts present unification algorithms. Unfortunately, at
least seven of these presentations are incorrect. The common error occurs when logic variables are represented as
binding lists; implementations that destructively update variable cells do not manifest the error. This note gives the
examples that uncover the error and presents a correction.
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The Problem

Correct unification algorithms have been known and employed at least since Robinson’s algorithm
��� �

was pub-
lished in 1965. The problem with the Robinson algorithm is that it applies substitutions, replacing variables with
their bindings, at each intermediate step of the algorithm. While correct, the algorithm creates many copies of
intermediate structures, generating unnecessary garbage. There are two common solutions to this problem. The
first, used by most PROLOG implementors, is to represent logic variables as cells that can be destructively up-
dated. When a variable is unified with a value, the variable’s cell is modified to point at the value. A trail of these
modifications must be kept so that they can be undone later, if the computation must backtrack.

The other solution, taken by the authors of at least six texts
��� ��� �	� 
�� �	� �

, is to build up a substitution list, and only
apply the substitution at the end of the algorithm. This approach doesn’t generate intermediate garbage, but it may
take more time, because it is necessary to search the substitution list for the values of variables. The trade-off is
justified when patterns are large relative to the number of variables in them. It is not just text books that follow this
model; the reasoning system MRS

������
also uses the same algorithm.

The following code is representative of the algorithm used in six of the sources
��� ��� ��� ��� ��� 

. The seventh



is
similar, except that it, like Prolog, chooses not to handle the occurs check. To be concrete, COMMON LISP code
is given rather than pseudo-code. Logical variables are restricted to the symbols X, Y and Z, and the result of a
unification is either a valid substitution or the constant fail. Substitutions are implemented as association lists of
variable/value pairs. The empty list represents a successful unification with no bound variables.

(defun unify (x y &optional subst)
(cond ((equal x y) subst)

((equal subst ’fail) ’fail)
((var? x) (unify-variable x y subst))
((var? y) (unify-variable y x subst))
((or (atom x) (atom y)) ’fail)
(t (unify (rest x) (rest y)

(unify (first x) (first y) subst)))))

(defun unify-variable (var val subst)
"Unify var with val, using (and possibly extending) subst."
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(cond ((equal var val) subst)
((bound? var subst)
(unify (lookup var subst) val subst))

((occurs-in? var val subst) ’fail)
(t (extend-subst var val subst))))

(defun occurs-in? (var x subst)
"Does var occur anywhere inside x?"
(cond ((equal var x) t)

((bound? x subst)
(occurs-in? var (lookup x subst) subst))

((consp x) (or (occurs-in? var (first x) subst)
(occurs-in? var (rest x) subst)))

(t nil)))

(defun var? (x) "Is x a variable?" (member x ’(X Y Z)))
(defun bound? (x subst) "Is x a bound variable?" (assoc x subst))
(defun lookup (var subst) (cdr (assoc var subst)))
(defun extend-subst (var val subst) (cons (cons var val) subst))

(Of course, the routines could be restructured to avoid the redundant searching of the subst list entailed by
following a bound? check with a lookup. Similarly, some of the calls to equal might be replaced with eq or
eql. The implementation is intended to be clear, but not optimal.)

Unfortunately, this algorithm (and each of the seven implementations) is incorrect. In unifying the variable X
against an expression y, this code correctly checks for the cases where X equals y, and where X occurs within y,
but if y is a variable that is bound to X, the function fails, as in the following example:

> (unify ’(p X Y) ’(p Y X))
FAIL

Here p would first match p creating the empty substitution; then X would be bound to Y, and with that substitution
the algorithm would next check if Y occurs in X. Since X is bound to Y, the occurs check would return true, and the
unification would fail.

It has been argued
�

that the unifier is not intended to be called with the same variables on both sides, but the
same problem can arise even without sharing of variables between the two arguments:

> (unify ’(q (p X Y) (p Y X)) ’(q Z Z))
FAIL

In implementations that do not do the occurs check, the example above returns successfully:

> (unify ’(p X Y) ’(p Y X))
((Y . X) (X . Y))

While valid under the interpretation of non-iterated substitution, in practice the substitution list is used as a partial
map, where substitutions must be done repeatedly until all bound variables are eliminated. Thus, while the call to
unify terminates, an application of the resulting substitution would not. Another example makes this clear:

(unify ’(p X Y a) ’(p Y X X))

This example results in an infinite loop without the occurs check, and failure with the check, even though there is
a valid unification where both variables are bound to a.
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The Solution

Fortunately, there is a simple way to avoid these difficulties. The following version of unify-variable adds a
single condition to eliminate circular binding lists:

(defun unify-variable (var val subst)
"Unify var with val, using (and possibly extending) subst."
(cond ((equal var val) subst)

((bound? var subst)
(unify (lookup var subst) val subst))

;; New condition: dereference val when it is a variable
((and (var? val) (bound? val subst))
(unify var (lookup val subst) subst))

((occurs-in? var val subst) ’fail)
(t (extend-subst var val subst))))

This operation is called dereferencing because it replaces a variable with its value. Notice the symmetry of the
second and third clause: if either var or val is a bound variable, then it is replaced by its value. Together, these
two clauses enforce the policy that no substitution contains circular bindings (because extend-subst will not
be called with a bound value), and no call to occurs-in? references a bound variable.

This modification leads to the correct result in the problematic cases:

> (unify ’(p X Y) ’(p Y X))
((X . Y))

> (unify ’(p X Y a) ’(p Y X X))
((Y . A) (X . Y))

Conclusions

This note uncovers a widespread error in unification algorithms, an error that shows up, among other places, in
one of the best-regarded books on introductory programming, one of the standard Introductions to AI, and several
highly-regarded books on COMMON LISP. It is somewhat surprising that an algorithm that has been studied in
such detail

��� ��� �
should still be presented incorrectly. The publication of seven erroneous versions of the algorithm

does show that the error is not easily uncovered by testing. This may be because all of the texts present the unifier
in conjunction with a backward chaining logic-programming system. These systems rename variables before each
backward chaining step, so there can be no common variables between the two arguments to unify. The only
way the error can come up is when higher order predicates, like q below, are used.

> (unify ’(q (p X Y) (p Y X)) ’(q Z Z))

Apparently, such higher-order predicates are used infrequently enough that casual testing did not reveal the bug. It
is interesting to speculate why standard PROLOG-based unification algorithms

����� ���
do not have this bug. In these

algorithms it is more obvious that dereferencing is needed because they explicitly deal with the destructive manip-
ulation of pointers; in writing the loop that follows pointers one is immediately confronted with the possibility of
a circular chain, and therefore can see how to avoid constructing one.

Functional Programming advocates have claimed that assignment (to a variable or data structure) is dangerous
because it violates referential transparency. Curiously, this note shows that for unification, the functional approach
is error-prone, while the procedural, state-modification approach tends to lead to a correct solution.

Another reason why the PROLOG-based algorithms are correct may be that they do not handle the occurs
check. Thus, there are more inputs that can put these algorithms into an infinite loop, forcing their authors to find
and correct the bug. The LISP-based unifiers terminate on such examples, so the bug is harder to detect.

In conclusion, the LISP-based unifiers implement variable binding with an association list rather than with
pointers. With this implementation, it is tempting to use the built-in function assoc instead of doing a proper
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dereferencing. It appears that the seven texts in question all succumbed to this temptation. They all failed to either
test the resulting code sufficiently or attempt even an informal proof of correctness. Either approach could have
uncovered the bug that has remained hidden until now.
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