A Survey on Image Classification Approaches and Techniques

Pooja Kamavisdar¹, Sonam Saluja², Sonu Agrawal³

M.E(Scholar), Computer Technology and Application, SSCET, Bhilai, India¹
M.E(Scholar), Computer Technology and Application, SSCET, Bhilai, India²
Senior Asst. Professor, Computer Science and Engineering, SSCET, Bhilai, India³

ABSTRACT: Object Classification is an important task within the field of computer vision. Image classification refers to the labelling of images into one of a number of predefined categories. Classification includes image sensors, image pre-processing, object detection, object segmentation, feature extraction and object classification. Many classification techniques have been developed for image classification. In this survey various classification techniques are considered; Artificial Neural Network(ANN), Decision Tree(DT), Support Vector Machine(SVM) and Fuzzy Classification.

Keywords: Image Classification, Artificial Neural Network, Decision Tree, Support Vector Machine, Fuzzy Classifier.

I. INTRODUCTION
Classification between the objects is easy task for humans but it has proved to be a complex problem for machines. The raise of high-capacity computers, the availability of high quality and low-priced video cameras, and the increasing need for automatic video analysis has generated an interest in object classification algorithms. A simple classification system consists of a camera fixed high above the interested zone, where images are captured and consequently processed. Classification includes image sensors, image pre-processing, object detection, object segmentation, feature extraction and object classification. Classification system consists of database that contains predefined patterns that compares with detected object to classify into proper category. Image classification is an important and challenging task in various application domains, including biomedical imaging, biometry, video-surveillance, vehicle navigation, industrial visual inspection, robot navigation, and remote sensing.

Classification process consists of following steps:
A. Pre-processing- atmospheric correction, noise removal, image transformation, main component analysis etc.

B. Detection and extraction of a object- Detection includes detection of position and other characteristics of moving object image obtained from camera. And in extraction, from the detected object estimating the trajectory of the object in the image plane.

C. Training: Selection of the particular attribute which best describes the pattern.

D. Classification of the object- Object classification step categorizes detected objects into predefined classes by using suitable method that compares the image patterns with the target patterns.

II. IMAGE CLASSIFICATION APPROACHES
Various image classification approaches are defined briefly:

1) On The Basis Of Characteristic Used:
A. Shape-based:
This method makes use of the objects’ 2D spatial information. Common features used in shape-based classification schemes are the points (centroid, set of points), primitive geometric shapes (rectangle or ellipse), skeleton, silhouette and contour.

B. Motion-based:
This method uses temporal tracked features of objects for the classification.

2) On The Basis Of Training Sample Used:
A. Supervised Classification:
The process of using samples of known informational classes (training sets) to classify pixels of unknown identity. Example: minimum distance to means algorithm, parallelepiped algorithm, maximum likelihood algorithm

B. Unsupervised Classification:
In this type of classification a method which examines a large number of unknown pixels and divides it into number of classes based on natural groupings present in the image values. Computer determines spectrally separable class and then defines their information value. No extensive prior knowledge is required. Example: K-means clustering algorithm.

3) On The Basis Of Assumption Of Parameter on Data:
A. Parametric classifier:
The parameters like mean vector and covariance matrix are used. There is an assumption of Gaussian distribution. The parameters like mean vector and covariance matrix are frequently generated from training samples. Example: Maximum likelihood, linear discriminant analysis.

B. Non Parametric classifier:
There is no assumption about the data. Non-parametric classifiers do not make use of statistical parameters to calculate class separation. Example: Artificial neural network, support vector machine, decision tree classifier, expert system.

4) On The Basis Of Pixel Information Used:
A. Per pixel classifier:
Conventional classifier generates a signature by using the combination of the spectra of all training set pixels from a given feature, the contributions of all materials present in the training set pixels is present in the resulting signature. It can be parametric or non-parametric the accuracy may not meet up because of the impact of the mixed pixel problem. Example: maximum likelihood, ANN, support vector machine and minimum distance.

B. Subpixel classifiers:
The spectral value of each pixel is assumed to be a linear or non-linear combination of defined pure materials called end members, providing proportional membership of each pixel to each end member. Subpixel classifier has the capability to handle the mixed pixel problem, suitable for medium and coarse spatial resolution images. Example: spectral mixture analysis, subpixel classifier, Fuzzy-set classifiers.

C. Per-field classifier:
The per-field classifier is intended to handle the problem of environmental heterogeneity, and also improves the classification accuracy. Generally used by GIS-based classification approaches.

D. Object-oriented classifiers:
Pixels of the image are united into objects and then classification is performed on the basis of objects. It involves 2 stages: image segmentation and image classification. Image segmentation unites pixels into objects, and a classification is then implemented on the basis of objects. Example: e Cognition.

5) On The Basis Of Number Of Outputs For Each Spatial Element:
A. Hard Classification:
Also known as crisp classification. In this each pixel is required or forced to show membership to a single class. Example: maximum likelihood, minimum distance, artificial neural network, decision tree, and support vector machine.

B. Soft classification:
also known as fuzzy classification. In this each pixel may exhibit numerous and partial class membership. Produces more accurate result.

6) On The Basis Of Spatial Information:
A. Spectral Classifiers:
This image classification uses pure spectral information. Example: Maximum likelihood, minimum distance, artificial neural network.

B. Contextual Classifiers:
This image classification uses the spatially neighbouring pixel information. Example: frequency-based contextual classifier.

C. Spectral-contextual classifiers:
This classification uses both spectral and spatial information initial classification images are generated using parametric or non-parametric classifiers and then contextual classifiers are implemented in the classified images. Example: combination of parametric or non-parametric and contextual algorithms.
7) **Multiple classifiers approach**:
Different classifiers have their own advantages and disadvantages. In this approach different classifiers are combined. Some of the method for combining multiple classifier are: Voting rules, Bayesian formalism, evidential reasoning, multiple neural network.

III. IMAGE CLASSIFICATION TECHNIQUES

TABLE I

DIFFERENT TECHNIQUES FOR CLASSIFICATION

<table>
<thead>
<tr>
<th>Classification method</th>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Neural network</td>
<td>ANN is a type of artificial intelligence that imitates some functions of the person mind. ANN has a normal tendency for storing experiential knowledge. An ANN consists of a sequence of layers, each layer consists of a set of neurones. All neurones of every layer are linked by weighted connections to all neurones on the preceding and succeeding layers.</td>
<td>It uses Non-parametric approach. Performance and accuracy depends upon the network structure and number of inputs.</td>
</tr>
<tr>
<td>Support Vector Machine</td>
<td>A support vector machine builds a hyper plane or set of hyper planes in a high- or infinite-dimensional space, used for classification. Good separation is achieved by the hyper plane that has the largest distance to the nearest training data point of any class (functional margin), generally larger the margin lower the generalization error of the classifier.</td>
<td>SVM uses Non-parametric with binary classifier approach and can handle more input data very efficiently. Performance and accuracy depends upon the hyperplane selection and kernel parameter.</td>
</tr>
</tbody>
</table>

Decision tree

DT calculates class membership by repeatedly partitioning a dataset into uniform subsets. Hierarchical classifier permits the acceptations and rejection of class labels at each intermediary stage. This method consists of 3 parts: Partitioning the nodes, find the terminal nodes and allocation of class label to terminal nodes.

DT are based on hierarchical rule based method and use Non-parametric approach.
Fuzzy Measure

In Fuzzy classification, various stochastic associations are determined to describe characteristics of an image. The various types of stochastic are combined (set of properties) in which the members of this set of properties are fuzzy in nature. It provides the opportunity to describe different categories of stochastic characteristics in the similar form.

<table>
<thead>
<tr>
<th>Classification method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Artificial Neural network | • It is a non-parametric classifier.
• It is an universal functional approximator with arbitrary accuracy.
• capable to present functions such as OR, AND, NOT
• It is a data driven self-adaptive technique
• efficiently handles noisy inputs
• Computation rate is high | • It is semantically poor.
• The training of ANN is time taking.
• Problem of over fitting.
• Difficult in choosing the type network architecture. |

Support Vector Machine

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| • It gains flexibility in the choice of the form of the threshold.
• Contains a non-linear transformation.
• It provides a good generalization capability.
• The problem of over fitting is eliminated.
• Reduction in computational complexity.
• Simple to manage decision rule complexity and Error frequency. | • Result transparency is low.
• Training is time consuming.
• Structure of algorithm is difficult to understand
• Determination of optimal parameters is not easy when there is nonlinearily separable training data. |

Fuzzy Measure

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| • Efficiently handles uncertainty.
• properties are describe by identifying various stochastic relationships. | • Without priori knowledge output is not good
• precise solutions depends upon direction of decision. |

Decision tree

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| • Can handle non-parametric training data
• Does not required an extensive | • The usage of hyperplane decision boundaries parallel to the feature axes may restrict their use in |

IV. CONCLUSION

This paper attempts to study and provides a brief knowledge about the different image classification approaches and different classification methods. Most common approaches for image classification can be categories as supervised and unsupervised, or parametric and nonparametric or object-oriented, subpixel, per-pixel and perfield or spectral classifiers, contextual classifiers and spectral-contextual classifiers or hard and soft classification. This survey gives theoretical knowledge about different classification methods and provides the
advantages and disadvantages of various classification methods.

REFERENCES

[5] Francesca Bovolo, Lorenzo Bruzzone, and Lorenzo Carlin, Member, IEEE "A NOVEL TECHNIQUE FOR SUBPIXEL IMAGE CLASSIFICATION BASED ON SUPPORT VECTOR MACHINE IEEE TRANSACTIONS ON IMAGE PROCESSING", VOL. 19, NO. 11, NOVEMBER 2010

[12] Jing Li, Nigel Allinson, Member, IEEE, Ducheng Tao, and Xuelong Li, Member, IEEE "MULTITRAINING SUPPORT VECTOR MACHINE FOR IMAGE RETRIEVAL" IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006

Biography

Pooja Kamavisdar obtained her B.E. in Computer Science & Engg. from Government Engineering College Raipur,(CG.) and pursuing Master of Engg in Computer Technology & Application from Shri Shankaracharya College of Engg & Tech ,Bhilai, CG. Her field of interest are Image Processing, Data Mining,Computer Network.

Sonam Saluja obtained her B.E. in Computer Science & Engg. from Chouksey Engineering College ,Bilaspur,(CG.) and pursuing Master of Engg in Computer Technology & Application from Shri Shankaracharya College of Engg & Tech ,Bhilai, CG. She has published a paper in’ National Seminar on Application of Artificial Intelligence in Bioinformatics/Life Sciences (AAIBLS) 2013’. Her field of interest are Image Processing, Software Engineering.

Prof. Sonu Agrawal received his M.Tech(Gold Medalist) degree in Computer Technology from National Institute of Technology (NIT) Raipur, India in 2008. He is pursuing Ph.D. from CSVTU, Bilai. He has eight years long experience in the field of teaching. His research areas are Image Processing, Face Recognition and its enhancement. His research work has been published in many national and international journals.