Electroretinography in Dogs and Cats. Part I. Retinal Morphology and Physiology

András M. Komáromy
Patricia J. Smith
Dennis E. Brooks

Follow this and additional works at: http://repository.upenn.edu/vet_papers
Part of the Eye Diseases Commons, Ophthalmology Commons, and the Veterinary Medicine Commons

Recommended Citation

Dr. Komáromy was affiliated with the University of Pennsylvania from 2003-2012. Pages 346-347 were full page advertisements and have been removed. Blank pages were inserted to reflect accurate pagination. Part II can be found at http://repository.upenn.edu/vet_papers/50/

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/vet_papers/49
For more information, please contact repository@pobox.upenn.edu.
Electroretinography in Dogs and Cats. Part I. Retinal Morphology and Physiology

Abstract
Electroretinography is an important objective procedure that is used to assess the outer retina and follow the progression of and recovery from retinal disorders. This procedure is more sensitive than other diagnostic techniques, such as ophthalmoscopy, for determining subtle or early alterations in the outer retina. Electroretinography cannot, however, assess vision because an electroretinogram (ERG) may be normal in dogs and cats with cortical blindness or early stages of glaucoma. If retinal dysfunction is known or suspected, an ERG may be necessary. This two-part presentation provides general practitioners with information about this relatively noninvasive electrodiagnostic procedure in order to assist them in assessing the need for referral to a veterinary ophthalmologist or neurologist. Part I reviews the morphologic and physiologic characteristics of the retina; Part II will examine electroretinographic technique, interpretations, and indications.

Disciplines
Eye Diseases | Medicine and Health Sciences | Ophthalmology | Veterinary Medicine

Comments
Dr. Komáromy was affiliated with the University of Pennsylvania from 2003-2012.

Pages 346-347 were full page advertisements and have been removed. Blank pages were inserted to reflect accurate pagination.

Part II can be found at http://repository.upenn.edu/vet_papers/50/
Electroretinography is indicated when retinal dysfunction must be confirmed or ruled out.

KEY FACTS

- Electroretinography is more sensitive than other diagnostic techniques in determining subtle or early alterations in the outer retina, p. 343.
- Although it cannot assess vision, an electroretinogram can assist practitioners in evaluating the cause of blindness, p. 343.
- Rods outnumber cones in canine and feline retinas, p. 344.
- The electroretinogram is a mass response that measures the summation of the changes of membrane potentials in the entire retina, p. 348.
- The pathways of rods and cones must be evaluated separately, p. 348.

Electroretinography in Dogs and Cats. Part I. Retinal Morphology and Physiology

University of Florida
Andras M. Komaromy, Dr.med.vet.
Patricia J. Smith, MS, DVM, PhD
Dennis E. Brooks, DVM, PhD

Electroretinography is an important objective procedure that is used to assess the outer retina and follow the progression of and recovery from retinal disorders. This procedure is more sensitive than other diagnostic techniques, such as ophthalmoscopy, for determining subtle or early alterations in the outer retina. Electroretinography cannot, however, assess vision because an electroretinogram (ERG) may be normal in dogs and cats with cortical blindness or early stages of glaucoma. If retinal dysfunction is known or suspected, an ERG may be necessary. This two-part presentation provides general practitioners with information about this relatively noninvasive electrodiagnostic procedure in order to assist them in assessing the need for referral to a veterinary ophthalmologist or neurologist. Part I reviews the morphologic and physiologic characteristics of the retina; Part II will examine electroretinographic technique, interpretations, and indications.

MORPHOLOGIC CHARACTERISTICS OF THE RETINA

The retina has 10 layers that can be identified on histologic examination (Figure 1). The following brief discussion reviews these layers from the outside (i.e., closer to sclera) inward.

The retinal pigment epithelium (RPE) consists of a layer of flat polygonal cells located between the choroid and the photoreceptor layer (Figure 1). Because the RPE adheres more closely to the choroid than to the remaining retinal tissue, there may be a space between the RPE and the photoreceptor layer (the remnant of the optic vesicle). Most retinal detachments or separations occur in this so-called subretinal space, which actually is an intraretinal space. The RPE cells have several important functions, including the transport of nutrients from the choroid to the outer layers of the retina, phagocytosis of outer...
The photoreceptor layer contains the inner and outer segments of rod and cone photoreceptors. The inner segment contains the nuclear material and the outer segment contains the photosensitive molecules (rhodopsin in rods) located in disk-shaped, double-sided membranes. The outer segment of photoreceptor cells are closely packed together parallel to the incoming light in a radial fashion. Rods are narrower and longer than cones, except in the central retina. The outer segments of rods and cones contain light-absorbing pigmented molecules located in the photoreceptor layer. The nuclei of bipolar, amacrine, and interplexiform cells are neurons that are connected to each other and that interconnect photoreceptors. The axons of amacrine and bipolar cells synapse with dendrites of ganglion cells in the inner plexiform layer.

The ganglion cell layer, which contains retinal ganglion and neuroglial cells (Figure 1), is the innermost cellular layer of the retina. This single layer of cells is sparse except in the area centralis, where it can be two to three layers thick. Axons of ganglion cells course toward the optic nerve head in the nerve fiber layer (Figure 1).
The basement membrane of Müller cells forms the innermost layer of the retina, which is the internal limiting membrane (Figure 1). In dogs and cats, the retina has a holangiotic vascular pattern that accommodates direct blood supply to most of the sensory retina. In cats, three pairs of cilio-retinal arteries and veins originate around the periphery of the optic disk. In dogs, 15 to 20 cilio-retinal arteries and three to four major veins radiate from the optic disk. Additional smaller veins join the larger veins on the optic disk of dogs. The larger vessels are around the area centralis, thereby leaving what appears on ophthalmoscopic examination to be a vessel-free zone; in reality, however, a capillary network is present. In dogs, the major retinal arteries and veins lie in the nerve fiber layer and ganglion cell layer and usually do not bulge into the vitreous body. Two dense vascularplexuses are formed by the smaller arterioles, capillaries, and venules: an inner vascularplexus located in the ganglion cell layer and an outer vascularplexus located between the inner nuclear layer and the outer plexiform layer. Between these two plexuses lies a third rudimentary vascularplexus in the inner plexiform layer. The bilaminar vascular pattern disappears toward the ora serrata, with only one vascularplexus in the ganglion cell and inner plexiform layers. Near the optic disk (peripapillary area), a supplementary capillaryplexus is present in the thickened nerve fiber layer. Blood vessels are completely lacking in the outer layers of the retina (i.e., from the outer nuclear layer up to and including the RPE). Therefore, these layers receive oxygen and nutrients primarily through diffusion from the choroid. If retinal detachment occurs, such diffusion to the photoreceptors subsides and the retinal cells atrophy.

PHYSIOLOGIC CHARACTERISTICS OF THE RETINA

Because rods function more effectively than do cones in low or scotopic illumination, the rods are well suited for night vision. They produce considerably lower visual acuity (resolution) in several shades of gray; however, rods are useful for motion detection. In comparison, cones are useful for vision during daylight or photopic illumination and can rapidly adapt to repetitious stimuli; however, cones are less sensitive to light and therefore do not respond to low levels of illumination. Cones are responsible for color vision. In addition, because of the minimal degree of convergence found in the neural connections with inner retinal layers, cones can provide better resolution than rods can. Because only rods can function at scotopic levels of illumination and cones do not respond to these levels, color vision is minimal in very dim light. In contrast, cones can func-
Page 346 was a full page advertisement and has been removed.
Page 347 was a full page advertisement and has been removed.
Figure 4—Flicker-fusion frequency (1 flash/sec = 1 Hz) as a function of light intensity of the stimulus (log-fl-L; units of luminance: 1 foot-lambert [fL] = 3.426 candelas/m² [cd/m²]) in the retinal development of (A) control dogs and (B) dogs with early retinal degeneration (erd). The flicker-fusion frequency is defined as the frequency of the flickering light at which flickers are perceived to fuse into a constantly illuminated light. (A) In young dogs, flicker responses can be elicited by high-intensity stimuli only and the curve contains what is referred to as the cone branch. By 30 days of age, the curve is bipartite, with a rod branch at lower light intensities and an angle or break point between the rod and cone branches. With time, peak fusion frequencies increase at each intensity level and the break point shifts toward the left. (B) Dogs with 9-erd have a bipartite curve, but the break point between the rod and cone branches is displaced toward the right on the intensity axis. The rod branch never matures and is lost by 89 days of age. The cone branch degrades slowly, and responses in older affected animals (103 to 285 days of age) can only be recorded by using maximum light intensities. For comparison, flicker-fusion data for Norwegian elk hounds with rod dysplasia (rd) are included. In dogs with this disease, the rod branch cannot be recorded and the cone branch is normal. (From Acland GM, Aguirre GD: Retinal degeneration in the dog: I. Early retinal degeneration [erd] in Norwegian elk hounds. Exp Eye Res 44(4):501, 1987. Reprinted with permission. Comparative data for rod dysplasia obtained from Aguirre GD: Retinal degeneration in the dog: 1. Rod dysplasia. Exp Eye Res 26(3):233–253, 1978.)

CONE TYPES ■ PHOTOTRANSDUCTION

This advertisement has been removed.
The Compendium March 1998

DARK ADAPTATION ■ FLICKER FUSION ■ ROD AND CONE RESPONSE

TABLE I
Conditions That Favor the Isolation of Responses

<table>
<thead>
<tr>
<th>Response of Rods</th>
<th>Response of Cones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation to dark</td>
<td>Adaptation to light</td>
</tr>
<tr>
<td>Weak stimuli</td>
<td>Intense stimuli</td>
</tr>
<tr>
<td>Low flicker rate</td>
<td>High flicker rate</td>
</tr>
</tbody>
</table>

events that involve excitation and inhibition of various neural cells takes place within the retina. The recorded summation of all these changes of electrical membrane potentials in the entire retina as a function of time is the ERG (Figure 3). Because both rod and cone pathways contribute to an ERG, the responses of rods and cones must be considered separately to evaluate retinal dysfunction. The following factors must be considered.13

First, rods and cones have different spectral sensitivities. Rods are most sensitive to green (506 nm in dogs and 501 nm in cats), whereas cones are most sensitive to violet (429 to 435 nm in dogs and 450 nm in cats) and yellow-green (555 nm in dogs and cats).8-11,14 Clinically, longer wavelengths (e.g., red) are used for evaluating the physiologic responses of cones and shorter wavelengths (e.g., blue) for evaluating the responses of rods, even though the overlapping spectral sensitivities of rods and cones make a differentiation with light of different wavelengths almost impossible.

The maximum sensitivity of rods is much greater than that of cones. Because the maximum sensitivity of rods requires adaptation to total dark, the light levels that are used to detect the responses of rods are lower than the levels needed to detect the responses of cones.

The sensitivity of rods decreases when background illumination is added. In contrast, cones can adapt to additional light faster and can continue to maintain the same degree of sensitivity. Adaptation to light depends on the ability of the photoreceptor to reopen light-sensitive cation channels by decreasing Ca2+ intracellular concentration in the photoreceptor cells. Such feedback, which is often referred to as Ca2+ feedback, is believed to be accelerated in cones and not in rods.12

Rods and cones vary in the way they respond to flickering light.13 The frequency of flickering light at which the flickers are perceived to fuse into a constantly illuminated light is called flicker-fusion frequency.16 If the flicker-fusion frequencies are recorded as a function of light intensity, a flicker fusion response curve is obtained (Figure 4).17,28 Rods lose the ability to respond to individual flickers of light at a much lower frequency (below 20 Hz) than do cones. The flicker-fusion response curve is normally bipartite; that is, flicker-fusion frequencies of rods occur at lower light intensities and those of cones at higher light intensities. Clinically, flicker-fusion tests further characterize rod and cone function.

The conditions that favor the isolation of rod and cone responses are summarized in Table I.

SUMMARY

Familiarity with the structures of the retina and an understanding the functions of cones and rods are essential when evaluating diagnostic ERGs. Part I of this two-part presentation provides practitioners with the knowledge required to examine the retina; the indications for and technique of performing an ERG as well as its interpretation are discussed in Part II.

ACKNOWLEDGEMENTS

The authors thank William W. Dawson, MS, PhD, Department of Ophthalmology, University of Florida, and Ron Ofri, DVM, PhD, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Israel, for reviewing this manuscript as well as Ms. Delena McTeer and Mr. Butch Sapp, Department of Small Animal Clinical Sciences, University of Florida, for their technical assistance.

About the Authors

Drs. Komaromy, Smith, and Brooks are affiliated with the Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida. Drs. Smith and Brooks are Diplomates of the American College of Veterinary Ophthalmology and have doctorate degrees in Comparative Ophthalmology.

REFERENCES

7. De Schaperijver L, Simoons P, Lauwers H: Morphologic study of the retinal microvasculature in the dog. Prog Vet...

ARTICLE #6 CE TEST

The article you have read qualifies for 1.5 contact hours of Continuing Education Credit from the Auburn University College of Veterinary Medicine. Choose only the one best answer to each of the following questions; then mark your answers on the test form inserted in Compendium.

1. Retinal detachment leads to degeneration of photoreceptor cells primarily because
 a. the rods and cones are mechanically damaged.
 b. blood flow through the retinal blood vessels of the detached retina decreases.
 c. the rods and cones are more exposed to light.
 d. oxygen and nutrient diffusion from the choroid decreases.

2. Which of the following statements about photoreceptor cells is false?
 a. The outer segments of rods and cones contain light-absorbing molecules.
 b. Progressive retinal atrophy primarily affects photoreceptor cells.
 c. Inner segments can be found in rods but not in cones.
 d. Rods are usually narrower and longer than cones.

3. Which of the following statements about RPE is true?
 a. RPE cells transport nutrients from the choroid to the outer layers of the retina.
 b. The potential space between the RPE and the photoreceptor layer is known as the subretinal space.
 c. RPE cells are normally devoid of pigment over the choroidal tapetum.
 d. all of the above

4. Which statement about the flicker-fusion response is incorrect?
 a. Flicker-fusion frequencies change with light intensity.
 b. Rods respond better to flickering light above 20 Hz.
 c. Flicker-fusion frequencies of rods are recorded at low light intensities.
 d. Flicker-fusion tests are clinically useful to characterize the function of rods and cones.

5. Which of the following statements about the retina is incorrect?
 a. Rods outnumber cones in dogs and cats.
 b. The number of rods is greatest toward the periphery of the retina, whereas the number of cones is greatest in the area centralis.
 c. In cats, the ratio of cones to rods is about 11:1 in the area centralis and 65:1 in the periphery of the retina.
 d. The density of all layers decreases toward the periphery.

6. Which statement about the spectral sensitivity of rods and cones in dogs and cats is true?
 a. Rods are most sensitive to green light and cones to either violet or yellow-green light.
 b. The spectral sensitivities of rods and cones overlap.
 c. Rods are most sensitive to blue light and cones to either violet or yellow-green light.
 d. a and b

7. Which of the following methods allows the clinical differentiation of rods and cones?
 a. variation of flicker rates
 b. adaptation to light and dark
 c. variation in light intensity of the stimulus
 d. all of the above

8. Which of the following statements about Müller cells is true?
 a. The nuclei of Müller cells are located in the inner nuclear layer.
 b. Müller cells form the external limiting membrane.
c. Müller cells have nutritive and supportive functions.
d. all of the above

9. Which of the following statements about the canine and feline retina is false?
 a. The retina consists of the RPE and the nine layers that form the neurosensory portion of the retina.
 b. Most of the sensory retina receives a direct blood supply.
 c. The inner nuclear layer contains the nuclei of the retinal ganglion cells.
 d. The axons of the retinal ganglion cells are located in the nerve fiber layer.

10. Which of the following statements about photoreceptor cells is true?
 a. Rods function more effectively in scotopic illumination.
 b. Cones provide better visual acuity.
 c. Rods can rapidly adapt to repeated stimuli.
 d. a and b

Dermatoses (continued from page 283)

8. Epiteliotropism of atypical lymphocytes is pathognomonic for which of the following diseases?
 a. cutaneous T-cell lymphoma
 b. vasculitis
 c. SLE
 d. lymphomatoid granulomatosis

9. Cutaneous vasculitis may be associated with
 a. neoplasms.
 b. drug reactions.
 c. infectious diseases.
 d. all of the above

10. Which of the following statements about antinuclear antibody tests is true?
 a. They must be interpreted with caution.
 b. Low titers can be present in old animals.
 c. Low titers may be present in animals with various diseases.
 d. all of the above

This advertisement has been removed.