
Abstract. Stochastic resonance (SR) provides a glaring exam-
ple of a noise-induced transition in a nonlinear system driven by
an information signal and noise simultaneously. In the regime of
SR some characteristics of the information signal (amplifica-
tion factor, signal-to-noise ratio, the degrees of coherence and

of order, etc.) at the output of the system are significantly
improved at a certain optimal noise level. SR is realized only
in nonlinear systems for which a noise-intensity-controlled
characteristic time becomes available. In the present review
the physical mechanism and methods of theoretical description
of SR are briefly discussed. SR features determined by the
structure of the information signal, noise statistics and proper-
ties of particular systems with SR are studied. A nontrivial
phenomenon of stochastic synchronization defined as locking
of the instantaneous phase and switching frequency of a bistable
system by external periodic force is analyzed in detail. Stochas-
tic synchronization is explored in single and coupled bistable
oscillators, including ensembles. The effects of SR and stochas-
tic synchronization of ensembles of stochastic resonators are
studied both with and without coupling between the elements.
SR is considered in dynamical and nondynamical (threshold)
systems. The SR effect is analyzed from the viewpoint of
information and entropy characteristics of the signal, which
determine the degree of order or self-organization in the sys-
tem. Applications of the SR concept to explaining the results of
a series of biological experiments are discussed.

1. Introduction

The word `noise' in ordinary consciousness is associated with
the term `hindrance'. It was traditionally considered that the
presence of noise can only make the operation of any system
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worse. There are well-known classical radiophysical problems
related to limitations of the sensitivity of amplifiers and to a
finiteness of the pulse bandwidth of oscillators due to the
presence of natural and technical noise [1 ± 3]. Fluctuation
phenomena are typical for all real systems because of the
discrete structure of matter and cannot be eliminated in
principal. Since L Boltzmann, the limitation of the purely
deterministic description of evolutionary processes has
become clear, which accelerated the development of statis-
tical physics. Founders of the theory of nonlinear oscillations
also realized this limitation. Already in 1933 they raised the
question of a statistical consideration of dynamical systems,
serving as a background for further studies in the field of
statistical radiophysics [4].

Recently it has been established that the presence of noise
sources in nonlinear dynamical systems can induce comple-
tely new regimes that cannot be realized without noise, for
example, noise-induced self-sustained oscillations [5]. These
effects were called noise-induced transitions [6]. The variety
and complexity of the transitions in nonlinear dynamical
systems produced the following questions, quite surprising
until recently: does noise always disorder a system's beha-
viour, or are there cases when noise enhances the degree of
order in a system or evokes improvement of its performance?
Recent studies have convincingly shown that in nonlinear
systems noise can induce new, more ordered, regimes, lead to
the formation of more regular structures or increase the
degree of coherence, cause the amplification of weak signals
and growth of their signal-to-noise ratio. In other words,
noise can play a constructive role, enhancing the degree of
order in a system.

Stochastic resonance (SR) is one of the most shining and
relatively simple examples of this type of nontrivial behaviour
of nonlinear systems under the influence of noise. The notion
of SR determines a group of phenomena wherein the response
of a nonlinear system to a weak input signal can be
significantly increased with appropriate tuning of the noise
intensity. At the same time, the integral characteristics of the
process at the output of the system, such as the spectral power
amplification (SPA), the signal-to-noise ratio (SNR) or input/
output cross-correlation measures have a well-marked max-
imum at a certain optimal noise level. Besides, an entropy-
based measure of disorder attains a minimum, showing the
increase of noise-induced order.

The term `stochastic resonance' was introduced by Benzi,
Sutera and Vulpiani [7 ± 9] in 1981 ± 1982, when they were
exploring a model of a bistable oscillator proposed for
explanation of the periodic recurrences of the Earth's ice
ages. The model described the motion of a particle subject to
large friction in a symmetric double-well potential, driven by
a periodic force. Two stable states of the system represented
the ice period and the optimal normal climate of the Earth.
The periodic force referred to the oscillations of the eccen-
tricity of the Earth's orbit. Estimations have shown that the
actual amplitude of the periodic force is far too small to cause
the system to switch from one state to another one. The
possibility of switchings was achieved with the introduction
of additional random force which induced transitions from
one potential well to another over the potential barrier of the
system.

In 1983, SR was studied experimentally in the Schmitt
trigger system where the SNR was first used to describe the
phenomenon [10]. In has been shown that the SNR at the
output of the Schmitt trigger subjected to a weak periodic

signal and noise increases with increasing noise intensity,
passes through amaximum and then decreases. By this means
there is an optimal noise level at which the periodic
component of the signal is maximized.

Thereafter the effect of SR has been found and studied in a
variety of physical systems, namely, in a ring laser [11], in
magnetic systems [12], in passive optical bistable systems [13],
in systems with electronic paramagnetic resonance [14], in
experiments with Brownian particles [15], in experiments with
magnetoelastic ribbons [16], in a tunnel diode [17], in super-
conducting quantum interference devices (SQUIDs) [18], and
in ferromagnetics and ferroelectrics [19 ± 21]. SR has equally
been observed in chemical systems [22 ± 24] and even in social
models [25].

It was shown that SR refers to a generic physical
phenomenon typical for nonlinear systems in which one of
the characteristic time scales is controlled by noise. The
physical mechanism of SR is rather simple and can be
illustrated using an overdamped bistable system.

SR: physical background. Let us consider qualitatively the
motion of a Brownian particle in a system with a symmetric
double-well potential U�x� � ÿ0:5x2 � 0:25x4 subjected to a
weak periodic force A sinot. In the absence of periodic
modulation (A � 0), the system possesses two characteristic
time scales. The first is defined by random walks of the
particle in the vicinity of one of the equilibrium positions
(the intrawell or local dynamics). The second time scale
characterizes the mean time of barrier crossing and refers to
the global dynamics of noise-induced transitions between the
potential wells. Note that the amplitude of the periodic force
A is assumed to be small in the sense that switchings between
the potential wells are excluded in the absence of noise. In the
frequency region the second time scale corresponds to the
mean rate (or frequency) of escape from a metastable state,
known as the Kramers rate [26, 27].

In the case of white noise, parabolic potential wells and a
relatively high potential barrier, the Kramers rate is described
by the Arrhenius law:

rK � 1

2p

�jU 00�0�jU 00�c��1=2 exp�ÿDU0

D

�
;

where U 00 � d2U�x�=dx2, c is the coordinate of the potential
minimum, DU0 is the barrier height, and D is the noise
intensity. The Kramers rate also determines the probabilities
of switching events.

In the presence of a periodic force the potential wells
oscillate periodically (Fig. 1). The probabilities of switching
events also become the periodic functions of time, and the
output signal contains a periodic component.

Figure 2 presents a time series at the output of a bistable
system with regard to the intrawell dynamics (a), a similar
time series showing only the barrier crossing events (two-state
filtering) (b), and the power spectrum (c) of the time series in
(b).

The periodic modulation of the potential leads to a
periodic modulation of both the barrier height DU '
DU0 � A sinot and the probability of a switching event. As
a result, the power spectrum of the output signal shows a
delta-peak at the modulation frequency and at its odd
harmonics (in the case of a symmetric potential). Assume
that the barrier height DU0, the modulation amplitude and
frequency are fixed. The Kramers rate rK will depend only on
the noise intensity D. When the noise intensity is small, the
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mean crossing time is too large and considerably exceeds the
modulation signal period. When the noise level is high, there
is a nonzero probability that the system repeatedly switches
within one signal period. By varying the noise intensity, one
can ensure a regime when the mean barrier crossing time is

close to the modulation signal period. Switching events will
occur on average in phase with the external periodic force.
Hence by varying the noise intensity, we can tune the
stochastic bistable system to a regime of maximal amplifica-
tion of themodulation signal and themaximal signal-to-noise
ratio. This has been confirmed theoretically and experimen-
tally.

Characteristics of SR. An explanation of the physical
mechanism of the phenomenon proper and the definition of
SR depend in many respects on which quantitative character-
istics of SR are calculated analytically and numerically or
measured in physical experiments. In the present work we use
the spectral power amplification (SPA) Z, the signal-to-noise
ratio (SNR) and the residence-time distribution density p�t�
of a particle in one of the potential wells as the main
characteristics of SR. In experiments the signal energy is
determined as an integral of the power spectral density over
the range of measured frequencies [28].

The signal-to-noise ratio is defined as the ratio between
the spectral power densities of a signal and noise at the signal
frequency. In this work we use a definition of the SNR
accepted in radiotechnics as the ratio of the signal energy to
the noise energyPS=PN. In the case of a harmonic signal at the
system input, the SNR can be determined experimentally as
the ratio of the height of the modulation signal spectral line
over the noise pedestal to the noise background level of the
power spectrum of the output signal.

As a result of random switchings, the output of a
stochastic bistable system without considering the intrawell
dynamics can be represented by a stochastic telegraph signal
(see Fig. 2b). The residence time for one of the potential wells
is a random quantity whose probability density p�t� in the
absence of modulation shows evidence of an exponentially
decreasing function [29]. When a modulation signal is added,
the probability density becomes structured and contains a
series of Gaussian-like peaks centred at t � nTs=2,
n � 1; 3; 5; . . ., where Ts is the modulation signal period. The
maxima of p�t� decay exponentially with n. In the regime of
SR the peak of p�t� at t � Ts=2 is the largest: the switchings
between the potential wells are in phase with the external
periodic signal and the mean residence time hti is most close
to half the signal period. The description of SR based on the
residence-time distributions, therefore, reflects a synchroni-
zation of system switchings by an external periodic force [30,
31].

Since the statistical properties of a telegraph signal depend
on the noise intensity, the probability density structure can be
controlled by noise variation. In this connection we have an
alternative approach to analyzing the mechanisms of SR,
based on the studies of residence-time statistics. Of course, the
physical mechanism of SR does not depend on how it is
described.

As has been noted, SR can be realized in stochastic
systems with a noise-controlled characteristic time scale. It is
absolutely clear that both the qualitative and quantitative
characteristics of SR are largely defined by the properties of
particular nonlinear systems. SR can be realized in bistable [7,
32] and monostable [33] dynamical systems as well as in the
oscillators of periodic and chaotic signals [34, 35]. SR can also
be observed in nondynamical or so-called threshold systems
[36, 37]. Characteristics and properties of SR must undoubt-
edly depend on the structure of signals applied to a nonlinear
system. This concerns in equal degree both informational and
noisy signals. The modulation signal can be harmonic or
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Figure 2. (a) Time series at the output of a bistable system; (b) a similar

time series which has been `two-state filtered'; (c) the power spectrum of

the filtered signal.
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multifrequency or be a narrow-band stochastic process [38].
The stochastic force can be closed to white noise but can also
have a finite correlation time and a bounded spectrum [39,
40]. Depending on the signal properties, noise and the
particular properties of nonlinear systems, SR is character-
ized by specific features. At the same time without regard to
the system characteristics and the structure of signals SR is
determined by its generic property of increasing the degree of
order in the output signal for the optimal level of noise. The
intention in this review is to stir up a consistent and, where
possible, brief discussion of all the above-mentioned aspects
of SR phenomenon.

Although it is only about 20 years since the effect of SR
was first observed, the number of publications on this
problem is huge and still growing. It is very difficult in the
frame of one review to cover all the currently available results
on SR. Themore so as there is no need for this. Four excellent
reviews [41 ± 44] on SR have been published and two special
international conferences were held, whose proceedings were
published [45, 46]. A comprehensive database containing
more than 300 publications on SR has been installed on the
Internet [47].

The authors of this review set themselves a rather modest
task of describing those results which have not been reflected
in the published reviews or have been covered there very
laconically. In this review we present the main results which
have been obtained together with our disciples and colleagues
during the last five years. We believe that the present review
together with those already published will allow our readers
to make the most complete view and will help them deeply
understand this surprising phenomenon.

2. Response to a weak signal.
Theoretical approaches

A theoretical description of SR meets a series of principal
difficulties. Even without external harmonic signal it is
impossible in the general case to find an exact solution of the
Fokker ± Planck equation for a time-dependent probability
density. For this reason we cannot calculate exactly the
correlation functions and power spectral densities. On the
other hand, with the periodic force taken into account, certain
additional difficulties arise due to the inhomogeneity of the
corresponding stochastic process in time.

Consider the model of an overdamped bistable oscillator
having become canonic for studying SR. The equation of
motion in dimensionless variables reads as

_x � xÿ x3 � A cos�Ot� f� �
�������
2D
p

x�t� �2:1�

and describes the motion of a Brownian particle (in the limit
of high friction) in a double-well potential U0�x� �
ÿx2=2� x4=4, driven by white noise x�t� with the intensity
D and periodic force f �t� � A cos�Ot� f�. The correspond-
ing Fokker ± Planck equation (FPE) for the probability
density p�x; t;f� is as follows

qp
qt
� ÿ q

qx

n�
xÿ x3 � A cos�Ot� f��po�D

q2p
qx2

: �2:2�

This equation can be also written in the operator form

qp
qt
� �L0 � Lext�t�

�
p ; �2:3�

where

L0 � ÿ q
qx
�xÿ x3� �D

q2

qx2

is the unperturbed Fokker ± Planck operator (A � 0) and
Lext�t� � ÿA cos�Ot� f� q=qx refers to the periodic pertur-
bation.

Difficulties of the first group are not connected directly
with SR and have been discussed in detail in the theory of
stochastic processes (see, for instance, Refs [1, 6, 48]). The
rapid progress of SR studies has required the establishment of
a common theory of stochastic diffusion processes with
periodically varying coefficients of drift and diffusion. Such
a theory was proposed in Refs [49 ± 51] and is an extension of
the Floquet theory to the case of FPE with periodic
coefficients. One of the main conclusions of the general
theory of periodically driven Brownian motion is the result
for the asymptotic mean hx�t�i or the response

hx�t�i �
X1
n�ÿ1

Mn exp
�
in�Ot � f�� ; �2:4�

where the complex amplitudes Mn depend on the noise
intensity D, signal frequency O and amplitude A. The SPA Z
at the fundamental frequency O is defined as [50]:

Z �
�
2jM1j
A

�2

: �2:5�

Difficulties related to the periodic nonstationarity can be
formally resolved by extending the system phase space using
an additional variable which determines the signal phase
evolution: _y � O. In order to calculate the spectral power
densities we average the results over the initial phase f which
is supposed to be a uniformly distributed randomquantity [2].

Analytical expressions for the spectral power amplifica-
tion and the signal-to-noise ratio can be derived via some
approximations. One of the main is a weak signal approxima-
tion when the response can be considered as linear. Other
approximations impose some restrictions on the signal
frequency. Further we shall study two approximate theories
of SR, namely, the two-state theory proposed in Ref. [28] and
the linear response theory [52 ± 54] having been applied to SR
in Refs [ 50, 55 ± 57].

2.1 Two-state theory of SR
Let us examine a symmetric bistable system with a discrete
state variable x�t� � �xm. Let n��t� be the probabilities of
residing the system in the corresponding state, satisfying the
normalization conditions n��t� � n��t� � 1. Introducing the
probability densities of switchings from one state to another
W��t� we arrive at the master equation

_n� � ÿ
�
W��t� �W��t�

�
n� �W��t� : �2:6�

This linear equation can be solved analytically for a given
W��t�. In Ref. [28], the following form was suggested for the
probability densities of switching:

W��t� � rK exp

�
�Axm

D
cosOt

�
: �2:7�

Without external force (A � 0), the probability densities of
switching coincide with the Kramers rate rK and are
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independent of time. For the model (2.1) the Kramers rate is
described by the following law if D < DU � 1=4:

rK � 1���
2
p

p
exp

�
ÿ 1

4D

�
: �2:8�

Here and further the Kramers rate is written in reduced
(dimensionless) quantities.

The master equation (2.6) adequately describes the
dynamics of the bistable overdamped oscillator when the
signal changes slowly enough so that relaxation processes in
the system go much more faster than the external force
changes. The equations for conditional probabilities
n��tjx0; t0�, which we need to calculate the autocorrelation
function, have the same form as (2.6). A solution of the linear
equation (2.6) can be obtained without any difficulty for the
case of a weak signal, i.e. Axm 5D. In this case one can
expand the switching rate in a Taylor power series and retain
the linear terms in the signal amplitude only. As a result, the
expression for the conditional probability reads as

n��tjx0; t0� � 1

2

(
exp
�ÿ2rK�tÿ t0�

�
�
�
2dx0;xm ÿ 1ÿ 2rKAxm cos�Ot0 � c�

D�4r2K � O2�1=2
�

� 1� 2rKAxm cos�Ot� c�
D�4r2K � O2�1=2

)
; �2:9�

where c � ÿ arctan�O=2rK�. Knowledge of the conditional
probabilities allows us to calculate any statistical character-
istics of the process. The mean value characterizing the
system's response and the spectral density that is necessary
for estimating the SNR are of great interest. The conditional
probability density is determined as p�x; tjx0; t0� �
n��t� d�xÿ xm� � nÿ�t� d�x� xm�. The mean value is
hx�t�jx0; t0i �

�
xp�x; tjx0; t0� dx. We are interested in the

asymptotic limit hx�t�i � limt0!ÿ1 hx�t�jx0; t0i, for which
from (2.9) we obtain

hx�t�i � A1�D� cos
�
Ot� c�D�� ; �2:10�

where the amplitudeA1�D� and the phase shiftc�D� are given
by the following expressions

A1�D� � Ax20
D

2rK

�4r2K � O2�1=2
; �2:11�

c�D� � ÿ arctan
O
2rK

: �2:12�

Knowing the signal amplitude at the output we can determine
the SPA as

Z � 4r2Kx
4
m

D2�4r2K � O2� : �2:13�

From (2.8) and (2.13) it follows that the SPA attains a single
maximum as a function of noise intensity D.

Similarly we can find the autocorrelation function

hx�t� t�x�t�jx0; t0i �
��

xyp�x; t� tjy; t�p�y; tjx0; t0� dx dy

and its asymptotic limit for t0 ! ÿ1. However, by virtue of
periodic modulation the autocorrelation function depends
not only on the time shift t but also periodically on the time t.
In order to calculate the spectral density one needs to perform
additional averaging over the period of the external force.
Such a procedure is equivalent to averaging over an ensemble
of the initial random phases and corresponds to experimental
methods for measuring the spectral densities and the correla-
tion functions. The expression for the spectral density G�o�
has the form

G�o� � GN�o� � p
2
A2

1�D�
�
d�oÿ O� � d�o� O�� �2:14�

and contains two components, namely, a periodic one
represented by a delta-function with an appropriate weight,
and a noisy component GN�o�:

GN�o� � 4rKx
2
m

4r2K � o2

�
1ÿ A2

1�D�
2x2m

�
: �2:15�

As seen from the last expression, the noise background is
represented by the sum of the unperturbed spectrum (for
A � 0)G

�0�
N �o� � 4rKx

2
m=�4r2K � o2� and a certain additional

term of order A2: GN�o� � G
�0�
N �o� � O�A2�. The spectral

density of the unperturbed system is determined by the noise
intensity D that is involved in the expression for the Kramers
rate rK (2.8). The explicit expression for the unperturbed
spectral density is given by formula (2.25). For small D, the
Kramers rate is small and the spectrum is centred in the low-
frequency range. With increasing noise intensity the Kramers
rate rises exponentially and the spectrum becomes more
uniform. The appearance of the additional term reducing
the noise background is explained by the fact that for the two-
state model the energy of the output process constitutes 2px2M
and does not depend on the signal amplitude and frequency.

The signal-to-noise ratio for the two-state model reads as

SNR � p
�
Axm
D

�2

rK �2:16�

with a single maximum at D � 1=4.

2.2 Linear response theory of SR
According to this theory the response of a nonlinear
stochastic system hx�t�i to a weak external force f �t� in the
asymptotic limit of large times is determined by the integral
relation [52, 54]

hx�t�i � hxist �
�1
ÿ1

w�tÿ t;D� f �t� dt ; �2:17�

where hxist is themean value of the unperturbed state variable
� f�t� � 0� of the system, and f�t� is the external disturbing
force. Without lack of generality, we set hxist � 0 for
simplicity. This condition holds for symmetric systems and,
in particular, for the base model (2.1). The function w�t� in
(2.17) is called the response function and for systems which in
the absence of perturbations are in thermodynamic equili-
brium, is connected with the correlation functions of the
unperturbed system via fluctuation-dissipation relations [58].
Let us discuss the application of linear response theory (LRT)
to SR using the overdamped bistable system (2.1) as an
example.

The fluctuation-dissipation theorem connecting the
response function w�t� and autocorrelation function K

�0�
xx �t�
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of the unperturbed system has the form [50, 51]

w�t� � ÿ 1�t�
D

d

dt
K �0�xx �t� ; �2:18�

where 1�t� is the Heaviside function. In order to calculate the
characteristics of the system response in the framework of
LRT we need to know the statistical properties of the system
in its unperturbed equilibrium or stationary state. For a
harmonic force the system response is expressed through the
susceptibility w�o� which is a Fourier transform of the
response function:


x�t�� � A
��w�o��� cos�Ot� c� ; �2:19�

where the phase shift c is given by

c � ÿ arctan
Im w�O�
Re w�O� : �2:20�

The SPA is defined as

Z � ��w�o���2 : �2:21�
The spectral density Gxx�o� at the system output takes the
form

Gxx�o� � G �0�xx �o� �
p
2
A2
��w�O���2

� �d�oÿ O� � d�o� O���O�A2� : �2:22�

In the framework of this theory we can derive the SNR as
follows

SNR � pA2
��w�O���2

G
�0�
xx �O�

: �2:23�

It is impossible to get an exact expression for the
autocorrelation function K

�0�
xx �t;D�. However, there are few

approaches to its approximate evaluation. The most precise
approach is based on the expansion of the Fokker ± Planck
operator in terms of eigenfunctions [32, 59]. The correlation
function can be represented therewith as a series gj exp�ÿljt�,
where lj are the eigenvalues of the Fokker ± Planck operator,
and gj are the coefficients which are computed by averaging
the corresponding eigenfunctions over the unperturbed
equilibrium distribution.

In the simplest case, when calculating the correlation
function one may take into account a least nonvanishing
eigenvalue lm that is related to the Kramers rate of the escape
from a potential well:

lm � 2rK �
���
2
p

p
exp

�
ÿ 1

4D

�
:

In this case the expressions for the correlation function and
the spectral density of the unperturbed system are

K �0�xx �t;D� � hx2ist exp�ÿlmt� ; �2:24�

G �0�xx �o� �
2lmhx2ist
l2m � o2

� 2
���
2
p

p hx2ist exp�1=4D�
2� p2o2 exp�1=2D� ; �2:25�

where hx2ist is the stationary value of the second cumulant of
the unperturbed system

hx2ist �
�1
ÿ1

x2pst�x� dx � C

�1
ÿ1

x2 exp

�
1

D

�
x2

2
ÿ x4

4

��
dx ;

�2:26�

and C is the normalization constant for the stationary
probability density. Such an approximation corresponds to
the two-state approach and cannot be applied for small noise
intensities �D5 1� and exposure to high-frequency external
disturbance.

Allowance for the intrawell dynamics in the correlation
function can be made by including an additional exponential
term in expression (2.24), which describes fast fluctuations
within potential wells. In this case the correlation function
reflects both the global dynamics (factor lm) and the local
intrawell dynamics [51, 57]:

K �0�xx �t;D� � g1 exp�ÿlmt� � g2 exp�ÿat� ; �2:27�

G �0�xx �o� �
2lmg1
l2 � o2

� 2ag2
a2 � o2

; �2:28�

where the factor a is derived from a linearized equation of
motion, and a � jU 00�xmin�j, xmin is the coordinate of the
potential minimum. For the particular example (2.1), a � 2.
The coefficients g1;2 in formula (2.27) are determined from the
expression for the correlation function and its derivative for
t � 0 and are equal to [51]

g1 � hx2ist ÿ g2 ;

g2 � lmhx2ist
lm ÿ a

� hx
2ist ÿ hx4ist
lm ÿ a

; �2:29�

hx4ist � C

�1
ÿ1

x4 exp

�
1

D

�
x2

2
ÿ x4

4

��
dx :

For the susceptibility in the two-state (single-exponent)
approximation we obtain

w�o;D� � 1

D

lmhx2ist
l2m � o2

�lm ÿ io� ; �2:30�

and with regard to the intrawell dynamics

w�o;D� � 1

D

�
g1l

2
m

l2m � o2
� g2a2

a2 � o2

�

ÿ io
�

g1lm
l2m � o2

� g2a
a2 � o2

�
: �2:31�

Knowing the susceptibility and the spectral density of the
unperturbed system one may find expressions for the SPA
(3.5) and the SNR (6.37) [51, 57].

In order to study the amplitude-frequency properties of
the system it is sufficient to consider the response to the
harmonic signal f �t� � A cos�Ot�. For the single-exponent
approximation, the SPA and the SNR read as

Z�O;D� � 1

D2

ÿhx2istlm�2
l2m � O2

; �2:32�

SNR � pA2

2D2
hx2istlm : �2:33�

The result of the SNR is the same as in the two-state adiabatic
theory [28]. Notice that the SNR (2.33) does not depend on
the driving frequency and passes through a maximum at
D � 0:125. The SPA Z possesses a frequency dependence and,
as seen from (2.32), is characterized by larger values in the
low-frequency range.
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Taking into account the intrawell dynamics, the SPA and
the SNR assume the form [51]

Z�O;D�

� �g1lm�
2 �a2� O2� � �g2a�2 �l2m� O2� � 2g1g2alm�alm � O2�

D2�l2m � O2��a2 � O2� ;

�2:34�
SNR � pA2

2D2

� �g1lm�
2 �a2 � O2� � �g2a�2 �l2m � O2� � 2g1g2alm�alm � O2�

g2a�l2m � O2� � g1lm�a2 � O2� :

�2:35�

The dependence of the amplification factor upon noise
intensity is shown in Fig. 3a for different values of the external
periodic signal frequency. As seen from the figure, both
approximations yield similar results in the range of the
maximal amplification [60].

The differences arise only for small noise intensities. The
theory taking into account only the global dynamics of
switchings between metastable states gives a vanishing Z
when D! 0. The inclusion of the intrawell dynamics leads
to the correct limit Z�O;D! 0� � 1=�a2 � O2�. In the limit
D! 0, the mean switching time from one potential well to
another one becomes exponentially large and over a time
equal to a great number of external force periods, the system
is unable to switch from one state to the other. Hence, for
smallD the bistable oscillator behaves as a linear system with
a characteristic time scale 1=a. When the driving frequency
decreases, the maximumof the amplification shifts to the area
of smaller noise intensities and the amplification factor itself
increases. As follows from Fig. 3a, the amplitude-frequency
characteristic of the system rises in the low-frequency region.
This property follows from the physical nature of fluctuation
processes in bistable systems where the noise energy is
transformed into the low-frequency dynamics of stochastic
switchings between metastable states. As a result, the
fluctuation spectrum in the low-frequency range at the
system output has a Lorentzian shape with a width governed
by the mean Kramers rate of switching events.

The SNR (2.35) as a function of noise intensity is
displayed in Fig. 3b. For small values ofD, the SNR diverges
and this fact can be explained by the contribution of the
periodically modulated local dynamics inside the potential
wells [28]. For sufficiently low driving frequencies the SNR
achieves its maximum at D � 1=8. However, with increasing
O, the SR effect disappears at all as the SNR becomes a
monotonically decaying function of noise intensity.

3. Stochastic resonance for signals
with a complex spectrum

In the majority of studies on SR the external force is a
harmonic signal of a small amplitude. A natural problem
arises to study the system response to multifrequency and
noisy signals. This is especially important for biological and
engineering applications. Signals recognized by living organ-
isms are often noisy and may not contain strongly periodic
components. The investigation of a system's response to the
quasi-harmonic signal with a finite spectral linewidth,
resulted from the fluctuation contribution, seems to be more
realistic.

An advantage of LRT is that it can be naturally extended
to the case of signals with a complex spectral composition.
The spectral density at the output takes the form

Gxx�o� � G �0�xx �o� �
��w�o���2Gff�o� ; �3:1�

where Gff�o� is the spectrum of the signal. Below we shall
discuss a series of examples which are of practical importance.

3.1 Response of a stochastic bistable system to
multifrequency signal
Let us consider a weak signal possessing a discrete spectrum.
The external force f �t� can be represented in the form of a
Fourier series

f �t� � A
XM
k�1

ck cosOkt ; �3:2�

whereAck 5 1 are the small amplitudes of the harmonics, and
Ok are their frequencies. According to LRT the system
response reads as


x�t�� � A
XM
k�1

ck
��w�Ok;D�

�� cos��Ok � ck�t
�
: �3:3�

The response


x�t�� (3.3) contains the same spectral compo-

nents (3.2) but with different amplitudes and phases. In Eqn

D
10ÿ2

10ÿ1

100

101

102

10ÿ1 100

Z

SNR

10ÿ2
10ÿ3

10ÿ2

10ÿ1

100

10ÿ1 100
D

O � 0:01
O � 0:1
O � 0:5
O � 1:0

O � 0:01
O � 0:1
O � 0:5
O � 1:0

a

b

Figure 3. (a) Spectral power amplification Z (2.34) and (b) the signal-to-

noise ratio (2.35) as functions of the noise intensity D for different values

of the external periodic signal frequency. The dependences (2.32),

(2.33) obtained without regard to the intrawell dynamics are shown

by symbols �.
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(3.3), phase shifts ck for each harmonic are given via the
susceptibility as

ck�Ok;D� � ÿ arctan
Im w�Ok;D�
Re w�Ok;D� : �3:4�

In accordance with the linear response theory, SR measures,
such as the SPA and the SNR, are determined as follows [51,
55]

Z�Ok;D� �
��w�Ok;D�

��2 ; �3:5�

SNR�Ok;D� � p�Ack�2jw�Ok;D�j2
G
�0�
xx �Ok;D�

: �3:6�

The frequency dependence of the susceptibility provides
frequency distortions of the output signal. In order to
estimate the magnitudes of those distortions one can use the
ratio of the amplitudes of different harmonics at the output to
the same ratio at the input

E�Ok;Oj;D� �
��w�Ok;D�

����w�Oj;D�
�� : �3:7�

As follows from Eqns (2.32) ± (2.35), an overdamped
bistable oscillator (2.1) represents an amplifier with low-
frequency filtering of the signal at the output. The para-
meters of such an amplifier (the SPA and the SNR) are
controlled by the intensity of an external noise. The question
arises: is it possible, using such a device, to provide
amplification of information-carrying signals (for instance,
amplitude and frequency modulated signals) without signifi-
cant distortions? This problem has been discussed in Refs
[60 ± 62], where a positive answer has been given to this
question. If the conditions of SR are effected in the weak-
signal approximation and if its effective frequency range does
not exceed 25% of the carrier frequency, then all the
frequency components of the signal will be amplified almost
similarly and the output signal will contain practically no
linear distortions.

3.2 Stochastic resonance for signals
with a finite spectral linewidth
Actual periodic signals always possess a finite spectral
linewidth due to the presence of amplitude and phase
fluctuations of the oscillator [1 ± 3, 63]. Will SR be observed
for such signals and which features may it lead to if one takes
into account the finite width of the spectral line? The answer
to these questions is of great importance in practical
applications [38, 50].

As a model of a signal with a finite spectral linewidth we
took [38] so-called `harmonic noise' [64]. Harmonic noise is
represented by a two-dimensional Ornstein ±Uhlenbeck
process and is governed by the set of two stochastic
differential equations

_y � s ; _s � ÿGsÿ O2 y�
��������
2EG
p

n�t� ; �3:8�

where n�t� is a Gaussian white noise,


n�t�n�t 0�� � d�tÿ t 0�,

G is the parameter of dissipation, and E is the intensity of
harmonic noise. The spectral density Gyy�o� is a Lorentzian
one

Gyy�o� � 2EG

o2G 2 � �o2 ÿ O 2�2 : �3:9�

ForO > G=2, the spectral density (3.9) possesses a peak at the
frequency

op �
������������������
O 2 ÿ G 2

2

s
�3:10�

and is characterized by the FWHM Doin determined at the
half height of the peak maximum:

Doin �
��������������������
o2

p � Go1

q
ÿ

��������������������
o2

p ÿ Go1

q
; o1 �

������������������
O 2 ÿ G 2

4

s
:

�3:11�

It has been shown that for the case of a signal with a finite
spectral linewidth the SR effect can also be realized. More-
over, it has been established that the width of the spectral line
at the output of a bistable system can be reduced at an optimal
noise intensity [39].

3.3 Aperiodic stochastic resonance
As has been already mentioned, the spectra of signals
recognized by biological systems are very complicated. Can
SR be observed for such signals and what is its mechanism?
The answer to the first question is positive and was given in
Refs [65, 66] using neuron models. This kind of SR was called
aperiodic. It this section we shall show that aperiodic SR can
be described in the framework of LRT [67, 68].

In the case of an aperiodic signal having no peaks in its
spectrum the measures used for conventional SR (the SPA,
the SNR, and the residence-time distribution) are either
inapplicable or ineffective. The quantities characterizing the
transmission of a noisy signal through a system can be
computed on the basis of the cross-correlation functions (or
mutual spectral densities) between the input and output of the
system [110]. We suppose that an input signal s�t� applied to
the system gives rise to a stochastic process at the output x�t�.
Let us treat s�t� and x�t� as stationary stochastic processes. As
is known, the cross-correlation function Kxs�t� of the
processes s�t� and x�t� is defined as

Kxs�t� �
�1
ÿ1

�1
ÿ1

xsp�x; t; s; t� t� dx ds ; �3:12�

where p�x; t; s; t� t� is the two-dimensional joint probability
density of s�t� and x�t� processes. The mutual spectral density
is a Fourier transform of the cross-correlation function, i.e.

Gxs�o� �
�1
ÿ1

Kxs�t� exp�ÿiot� dt : �3:13�

Let us introduce the coherence functionG�o� in the following
way:

G 2�o� �
��Gxs�o�

��2
Gxx�o�Gss�o� : �3:14�

This quantity varies on the closed interval �0; 1� and governs
the degree of linear coherence of x�t� and s�t� processes at the
frequency o.

Let a stochastic system be characterized by the suscept-
ibility w�o;D�, where D is the internal noise intensity. The
signal s�t� is assumed to be weak. Suppose also that s�t� is a
Gaussian stationary stochastic process statistically indepen-
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dent of the internal noise of the system. The statistical
characteristics of the system response to the external signal
s�t� can be computed via LRT [68, 69]. For the mutual
spectral density Gxs�o� we have

Gxs�o� � w�o;D�Gss�o� : �3:15�
The spectral density at the output reads as

Gxx�o� � G �0�xx �o;D� �
��w�o;D���2Gss�o� ; �3:16�

where G
�0�
xx �o;D� is the spectral density of the unperturbed

system without driving signal. Inserting Eqns (3.15), (3.16)
into Eqn (3.14) we derive the coherence function in the linear
response approximation:

G 2�o� � 1ÿ G
�0�
xx �o;D�

G
�0�
xx �o;D� �

��w�o;D���2Gss�o;D�
: �3:17�

As seen from this formula, the coherence function is always
less than 1 and depends on the internal noise intensity D. As
has been shown in Ref. [68], the degree of coherence between
input and output is optimal at a certain noise level. As the
correlation time of the signal increases, the coherence of the
input and the output enhances. Hence, aperiodic SR is
described in the framework of general LRT in a similar
manner to the case of a periodic signal.

4. Nondynamical stochastic resonance.
Stochastic resonance in chaotic systems

In the previous section the main attention was paid to the
properties of SR depending on the structure of the input
signal. Specific nature of the dynamical system was not of
principal importance. However, both the qualitative and
quantitative SR features also depend on the particular type
of system which is used as a stochastic resonator. If we
interpret SR as a noise-induced enhancement of the coher-
ence between the output and input of a device, then this effect
can be realized in monostable nonlinear oscillators and even
in nondynamical (threshold) systems. SR is also observed in
chaotic systems demonstrating bistability in the sense of
noise-induced or purely dynamical intermittency.

In the present section we study SR effects whose
mechanisms and properties are mainly determined by the
type of system and its behaviour.

4.1 Stochastic resonance as a fundamental threshold
phenomenon
From the point of view of the transmission of information
(signal) through bistable systems in the regime of SR, the
transitions over a potential barrier play amajor role, while the
local intrawell dynamics is not important. Therefore, in
output signal processing the two-state approach is used
successfully. The output is interpreted as a random telegraph
process in which a periodic component of the fundamental
frequency is extracted via filtering. We may abandon
altogether the analysis of bistable dynamical systems and
treat stochastic resonance as a fundamental threshold effect.
In this case the act of transmitting is considered to be a
sequence of random events occurring when the sum of regular
and noisy components of the input signal intersects a given
threshold Cth:�

B sinot� x�t�� > Cth or < Cth : �4:1�

We examine SR using a conception of the nondynamical
threshold effect [36]. Instead of dynamic equations we
establish a set of rules as indicated in Fig. 4. Figure 4a
represents a subthreshold regular signal B sinot and
additive noise x�t�. In the absence of noise the signal
amplitude B is inadequate to achieve the threshold
Cth � D. When the noise is added, the threshold is crossed
and this occurs randomly.

Each time the threshold is crossed in one direction, a pulse
of a standard shape is generated. Thus, the threshold crossing
events give rise to a train of random-in-time pulses as shown
in Fig. 4b. The power spectrum of such a pulse train is shown
in Fig. 4c. This power spectrum is similar to that for a bistable
oscillator, except that it contains all the harmonics no of the
fundamental frequency. The SNR can be determined from
the power spectrum in the same manner as before. The
dependence of the SNR upon noise intensity demonstrates
the SR effect.

Threshold SR admits a simple theoretical description
under the following assumptions: (1) we use the standard
limitation of the adiabatic theory: o5 hni, where hni is the
mean threshold crossing rate; (2) we assume the pulses to be
uncorrelated, and (3) the width of the pulses t is assumed to be
limited and is negligibly small compared to the mean thresh-
old crossing time, i.e. t5 hniÿ1.

The nondynamical theory of SR is based on a classical
formula for the mean threshold crossing rate hni and the
assumption that the noise x�t� shows evidence of being
the Gaussian band-limited process with a cutoff frequency
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Figure 4. (a) Sinusoidal subthreshold signal plus noise; (b) threshold

crossings are marked by a sequence of standard pulses; (c) the power

spectrum of the pulse train.
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f0 [70]:

hni � g�D�
g�0�

� �
f 2S� f � df�
S� f � df

�1=2
� g�D� f0���

3
p

g�0� ; �4:2�

where D is the threshold, f0 is the cutoff frequency of a low-
frequency filter, and g�D�=g�0� is the Gaussian function

g�D�
g�0� � exp

�
ÿ D2

2s2

�
; �4:3�

where s2 is the noise variance.
If each threshold crossing event gives rise to a rectan-

gular pulse of width t and amplitude A, and if we assume
that t5 hniÿ1 and the pulses are uncorrelated, then
according to Campbell's theorem the power spectrum of
the pulse train is

PN� f � ' 1

2
A2t2hni � 1

2
A2t2

�
f0���
3
p
�
exp

�
ÿ D2

2s2

�
: �4:4�

Expression (4.4) characterizes the uniform noise spectrum.
Although the actual power spectrum is a slowly decaying
function of frequency (see Fig. 4c), Eqn (4.4) can be used as an
estimate of the power spectrum in a low-frequency range. The
mean amplitude of the random pulse train is

hVi � Athni � At
�

f0���
3
p
�
exp

�
ÿ D2

2s2

�
: �4:5�

We now add the small periodic signal B sinot that causes
the threshold to be modulated with the frequency o:
D! D0 � B sinot. As a result, the mean threshold crossing
rate hni and the mean amplitude hVi of the pulse train studied
also become time-dependent:

hVi�t� � Atf0���
3
p exp

�
ÿ 1

2s2
ÿ
D2
0 � 2D0B sinot� B 2 sin2 ot

��

' Atf0���
3
p

�
1ÿ B 2

4s2
ÿ D0B

s2
sinot� B 2

4s2
cos 2ot

�
; �4:6�

where we have used the simplifying condition B5 sD0.
Calculating the Fourier transform we obtain the power
spectrum of the signal with delta-peaks at frequencies o and
2o:

PS� f � � A2t2f 20
3

��
D0B

s2

�2

d�o� �
�
B 2

4s2

�2

d�2o�
�
exp

�
ÿD2

0

s2

�
:

�4:7�

For the signal with a fundamental frequency o we can
calculate the SNR using the well-known definition:

SNR � 10 lg

�
2f0D2

0B
2

s4
���
3
p

�
exp

�
ÿ D2

0

2s2

�
: �4:8�

The dependence of the SNR on the standard deviation s is
typical for SR.

We note that this simple and approximate theory captures
the basic features of the effect under consideration and is in
qualitative agreement with experimental and simulated data.
Amore detailed and accurate theory of nondynamical SR has
been developed in Ref. [37].

4.2 Stochastic resonance in chaotic systems
The situation when attractors of different types coexist in the
phase space is typical for systems demonstrating dynamical
chaos [71]. Without external noise a phase trajectory belongs
to either one or another attractor depending on the initial
conditions. The influence of external noise leads to the
appearance of random switchings between coexisting attrac-
tors of the system. The statistics of these switchings is defined
by the properties of the noise and the dynamical system.

A theoretical consideration of the influence of external
noise on the regimes of dynamical chaos is available in the
limits of small [72 ± 74] and large [75] Gaussian noise. The
theory of random perturbations of dynamical systems [76] is
based on the notion of a quasi-potential and has been recently
extended to systems with complex dynamics [77, 78]. Suppose
that a dynamical system has an attractor and for this object
there exists an invariant probabilistic measure. Let the system
be subjected to a weakGaussian noise with intensityD and be
described by the set of stochastic differential equations (SDE)

_xi � fi�x� � xi�t� ; i � 1; . . . ;N ; �4:9�

where


xi�t�xj�0�

� � 2Ddi; jd�t�. Then the stationary prob-
ability density p�x� can be written via the quasi-potential
F�x� as follows

p�x� / exp

�
ÿF�x�

D

�
: �4:10�

The quasi-potential, being an analogue of the free energy for
the nonequilibrium stationary state [63, 79], depends only on
state variables and parameters of the system and does not
depend on the intensity D. The quasi-potential takes the
minimal values on the attractor. If a few attractors coexist in
the phase space of the system, then F�x� possesses local
minima corresponding to these attractors, and in the
presence of weak noise we may formulate the Kramers
problem. For D5 1, the motion of the system involves a
slow time scale related to the mean time of escape from the
attraction basin of an attractor. The dependence of the mean
escape time upon the noise intensity is characterized by the
exponential law n�D� exp�DF=D�. If additionally to external
noise we apply a weak periodic signal to the system, which
cannot evoke transitions in the attraction basins of other
attractors, the phenomenon of SR has a right to be observed
[34, 35].

A principally different effect called deterministic stochas-
tic resonance has been recently revealed for systems with
chaotic dynamics [34, 35]. With the variation of control
parameters of a chaotic system a crisis of its attractors may
occur. As an example we can mention here the phenomenon
of two attractors merging leading to a `chaos ± chaos'
dynamical intermittency [80]. In this case a phase trajectory
spends a long time on each of themerged attractors and rarely
makes irregular transitions between them. We note that such
randomlike switchings occur in the absence of external noise
and are controlled via the deterministic law [81, 82]. For the
systems with a `chaos-chaos' intermittency, the mean resi-
dence time Ti of a phase trajectory to be on an attractor obeys
an universal scaling law [80 ± 83]

Ti / �aÿ acr�g ; �4:11�
where a is a control parameter, acr is its bifurcation value at
which a crisis occurs and corresponds to the onset of
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intermittency, and g is the scaling exponent. Hence, in this
case the control parameter plays the role of noise intensity. It
controls a slow time scale, the mean residence time, and,
consequently, the spectral properties of the system [83]. If the
system is driven by a periodic signal via variation of this
parameter, we can obtain a situation when the driving period
and the mean time of switching from one attractor to the
other coincide, i.e. the conditions of SR are realized. Notice
that the regimes of dynamical intermittency exhibit an
exponential sensitivity to external noise [82, 83] that makes
possible a realization of the conventional SR.

We shall illustrate deterministic SR using a simple
example of a discrete system:

xn�1 � �axn ÿ x3n� exp
�
ÿ x2n

b

�
� A sinon�

�������
2D
p

x�n� : �4:12�

The system (4.12) is the one-dimensional cubic map
perturbed by a weak periodic signal (A5 1) and a delta-
correlated noise of intensity D. The exponential term is
introduced in order to prevent escapes of phase trajectories
to infinity.

Let us describe originally the behaviour of the unper-
turbed map (A � D � 0). At a < acr � 2:839 . . ., two chaotic
attractors are separated by the saddle point xn � 0 and
coexist in the phase space of the system. At a � acr, these
attractors merge with the onset of dynamical intermittency of
`chaos ± chaos' type.

First we study conventional SR before the crisis a < acr
when the switching events are due to external noise. Figure 5a

displays the dependences of the SPA and the SNR on the
intensity of an external noise D. Both the SPA and the SNR
pass through maxima at optimal noise levels. Simulations
have confirmed that the Kramers rate is close to the external
signal frequency at the optimal noise intensity D � Dopt.

Now we exclude noise (D � 0) and consider the system's
reaction to periodic disturbance in a regime when the
parameter a is slightly larger than its critical value, a > acr.
According to simulations, the mean switching frequency
monotonicallyincreaseswithincreasingparametera.Figure5b
shows the dependences of the SPA and the SNR on a. The
graphs illustrate the effect of deterministic SR, i.e. maxima of
the SPA and the SNR can be obtained by tuning the control
parameter in the range 2:85 < a < 2:88, when the Kramers
rate matches the external signal frequency.

The effects described above have a generic character,
which was verified by numerical simulations of various
discrete and flow systems demonstrating both noise-induced
intermittency and a crisis [34]. As an example we discuss SR in
the Lorenz model in the regime of noise-induced intermit-
tency. The Lorenz system [84] is a suitable model for studying
the influence of noise on the chaotic dynamics [85 ± 88] since
noise sources can be included into the equations of motion
using fluctuation-dissipation relations. A stochastic Lorenz
model is described by the following system of SDE:

_x � ÿsx� sy� x1�t� ;
_y � ÿy� rxÿ xz� x2�t� ;
_z � ÿbz� xy� x3�t� ;

xi�t�xj�0�

� � D di; j d�t� : �4:13�

Over the region of the parameter values s � 10, r � 210,
b � 8=3, corresponding to the existence of a quasi-attractor,
there are two symmetric chaotic attractors in the phase space
of the noise-free system. Noise induces `chaos-chaos' inter-
mittent behaviour of switchings between these attractors [88].

Neglecting the local chaotic dynamics on these attractors
and taking into consideration switchings only between them
(the two-state approximation), the correlation function
exponentially decreases: Kxx�t� / exp

�ÿ2r�D��, where r�D�
is the mean escape rate from the effective potential well. In
this way the susceptibility of the Lorenz system can be
estimated by the same expression as for an overdamped
bistable oscillator.

Let us add a weak periodic signal A sinOt to the first
equation of the set (4.13). In this case the spectral density will
contain a delta-peak at the signal frequency.

The simplest estimate for the SNR at the system output is

SNR / r�D�
D 2
� 1

D 2
exp

�
ÿDF

D

�
; �4:14�

where DF is the barrier height of the corresponding effective
potential. Numerical calculations of the SNR based on Eqns
(4.13) are in good agreement with this theoretical estimate.
Therefore, the expression for the SNR (4.14) is a rather
universal one, which describes the SNR for simple bistable
systems as well as for systems with complex dynamics. Notice
that the Lorenz model can be transformed into the form of a
bistable oscillator with inertial nonlinearity [71, 89]:

�u� g _u� u3 � �vÿ 1�u � 0 ; _v � h�bu2 ÿ av� ; �4:15�
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Figure 5. SNR (solid line) and SPA (dashed line) as functions of the noise

intensity D (upper: a � 2:5, A � 0:05, o � 0:1) and of the control

parameter a (lower: D � 0, A � 0:005, o � 0:1).
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where g��1� s�= �����������������
s�rÿ 1�p

, h��rÿ 1�ÿ1=2, b� �2sÿ b�= ���
s
p

,
and a � b=

���
s
p

. For large values r4 1, variable v�t� is slow
and after excluding it from (4.15) we arrive at the equation for
a bistable oscillator no longer containing the nonlinear
inertial term:

�u� g _u� a� b
a

u3 ÿ u � 0 : �4:16�

Therefore, in the limit of large r the Lorenz system can be
described in terms of a bistable oscillator, and this fact
guarantees the existence of SR.

5. Synchronization of stochastic systems

An application of the linear response theory yields good
results explaining the physical mechanism of the SR phenom-
enon. The question arises, why? We know that all stochastic
systems demonstrating SR are essentially nonlinear! The
reason is that the fundamental nonlinear properties of
stochastic systems are taken into account, in one approxima-
tion or another, when defining the correlation function of the
unperturbed system. The nonlinearity of the systemmanifests
itself in the dependence of the correlation function on the
noise intensity D. As a result, the susceptibility also depends
on D. The limitations of LRT lead to the requirement for the
amplitude of the disturbing signal to be extremely small.
Refusing this condition we shift the problem to a class of
principally nonlinear problems where LRT is no longer valid.

One of the important nonlinear effects accompanying SR
is synchronization. The synchronization of stochastic sys-
tems, which do not have any natural periodic components in
time series pertaining to the process realizations, is considered
to be a nontrivial phenomenon. Recently effects of forced
[90 ± 93] and mutual [94] stochastic synchronization have
been reported.

5.1 Synchronization of a stochastic bistable oscillator
In order to consider the synchronization effect in stochastic
systems we turn to the results obtained for the van der Pol
nonautonomous oscillator, which is a classical autooscillating
system with an isolated closed phase curve, driven by a
periodic force and noise [1 ± 3]. As is known, noise causes
fluctuations of the oscillation amplitude and phase. As a
result, the oscillation phase difference f�t� � F�t� ÿC�t� of
the oscillator, F�t�, and the external harmonic force, C�t�,
also fluctuates. The stochastic dynamics of f�t� for the
synchronized van der Pol oscillator can be qualitatively
described by the following SDE [1]:

_f � Dÿ E sinf� x�t� ; �5:1�

where D � Oÿ O0 is the frequency mismatch of the oscillator
and the external force (a frequency detuning), E is the
parameter of nonlinearity, x�t� is the Gaussian noise and the
amplitude fluctuations are neglected. As follows from Eqn
(5.1), the phase differencef�t� executes Brownianmotion in a
tilted periodic potential U�f� � ÿDfÿ E cosf. If the noise
intensity is small, the phase difference fluctuates for a long
time inside one of the potential wells (that means phase
locking) of U�f� and rarely jumps over the potential barrier
(loss of synchronization), demonstrating phase slips.

In contrast to a clear definition of the synchronization
process for deterministic systems, the notion of synchroniza-
tion is ambiguous for systems with noise and we have to use in

that case the notion of an effective synchronization. It can be
defined by imposing restrictions on (i) phase fluctuations, (ii)
frequency fluctuations, and (iii) the signal-to-noise ratio [3].
We give here the strongest definition of effective synchroniza-
tion: a system is effectively synchronized by a periodic force if
the mean time of phase locking is much greater than a period
of external harmonic force. A quantity which can be used as a
measure of effective synchronization is the effective diffusion
coefficient of the phase difference:

Deff � 1

2

d

dt

h

f2�t��ÿ 
f�t��2i : �5:2�

It can be shown thatDeff is proportional to the mean rate r of
escape from a well of periodic potentialU�f�, i.e.Deff � 4p2r,
and is inversely proportional to the mean time of phase
locking (or the mean interval between phase slips)
hT i � n2p=O0, n4 1 [1]. Therefore, we can define the
criterion of effective synchronization as

Deff 4 2p
O0

n
; n4 1 ; �5:3�

where n is an integer (n � 1; 2; . . .). This condition guarantees
that the phase is locked for at least n periods of the driving
force. The influence of additive noise on a synchronized self-
excited oscillator is well studied [1 ± 3]: the effective diffusion
coefficient grows with increasing noise intensity as the
synchronization conditions are impaired in the process.
Synchronization regions (for instance, Arnold's tongues) in
the parameter space of the system contract with enhancing
noise [100, 101]. In other words, noise acts against synchro-
nization by causing disorder (stochastic phase diffusion). We
will show further that in SR systems noise plays a radically
different role.

Let us go back again to the basicmodel of the overdamped
bistable oscillator and write its SDE as follows

_x � axÿ bx3 �
�������
2D
p

x�t� � A cos�O0t� c0� : �5:4�

The system governed by Eqn (5.4) does not possess any
natural deterministic frequency, but is characterized by a
noise-controlled time scale, i.e. the mean time of escape from
a potential well, which is matched by the mean switching
frequency in the frequency domain. A periodic signal
represents something like an external `clock' with respect to
the bistable oscillator. The interesting question arises: is this
external clock amenable to effectively synchronize the switch-
ing events in the stochastic bistable system? Although at first
sight it may look strange, the answer is positive. Now we pass
to the proof.

We assume that in SDE (5.4) a; b > 0; c0 � 0 and the
modulation amplitude A is small compared to the potential
barrier:

A < A0 � 2

3

�
a3

3b

�1=2

: �5:5�

Besides, we suppose that the modulation frequency is also
small and the adiabatic approximation may be applied.

In order to introduce the notion of an instantaneous phase
of an aperiodic signal we need to use the concept of an
analytic signal [95 ± 99]. The analytic signal w�t� is a complex
function of time defined as [96]

w�t� � x�t� � iy�t� � a�t� exp�iF�t�� ; �5:6�
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where y�t� is the Hilbert transform of the original process
x�t�:

y�t� � 1

p

�1
ÿ1

x�t�
tÿ t

dt : �5:7�

In the latter expression the integral is taken in the sense of the
Cauchy principal value. For a stochastic process x�t�, the
integral converges in the mean square sense. The instanta-
neous amplitude a�t� and the phaseF�t� of x�t� are defined as

a2�t� � x2�t� � y2�t� ; F�t� � arctan
y�t�
x�t� ; �5:8�

as well as the instantaneous frequency o�t� � dF�t�=dt is
written in the following way

o�t� � 1

a2�t�
�
x�t� _y�t� ÿ y�t� _x�t�� : �5:9�

Afterwards, the mean frequency


o�t�� is given by

hoi � lim
T!1

1

T

�T
0

o�t� dt : �5:10�

Finally, we introduce the instantaneous phase difference
between the output and input signals as

f�t� � F�t� ÿ O0t : �5:11�

The above-used concept of the analytic signal gives the
most general definition of the instantaneous amplitude and
phase, which is not unique. Generality is understood in the
sense that definitions (5.9) ± (5.11) take into account both the
local intrawell dynamics and global transitions between the
potential wells. From the other side, as research has shown,
the basic information on the processes in the system is
contained in a sequence of switching times and can be studied
by the method of two-state dynamics described above. In this
connection it is worth introducing an alternative definition of
the phase, which would be equivalent to a simplified
consideration with the intrawell dynamics excluded. Follow-
ing Ref. [30] let us consider only switching events. For this
purpose wemap the continuous stochastic process x�t� onto a
stochastic point process tk, where tk are the times when a
Brownian particle crosses the potential barrier. The residence
time between two subsequent switching events is then
T�t� � tk�1 ÿ tk; tk < t < tk�1. The corresponding dichoto-
mic process u�t� can be described by the equation

u�t� � xm sgn
�
cosF�t�� ; �5:12�

where xm is the distance between the potential barrier and a
minimum of the potential wells of the system defined by Eqn
(5.4), and F�t� is the phase specified as

F�t� � p
tÿ tk

tk�1 ÿ tk
� pk ; tk < t < tk�1 : �5:13�

Hence, the phase defined in this way is a piecewise-linear
function of time and gives an exact description of phase when
transitions between metastable states of the system are in full
synchrony with the external force, i.e. with the period 2p=O0.
The instantaneous frequency between the switchings is
constant and equals p=T�t�. According to this phase defini-

tion, the mean frequency reads as

hoi � lim
M!1

1

M

XM
k�1

p
tk�1 ÿ tk

; �5:14�

and is equivalent to the mean switching frequency of the
system [90].

Notice that both definitions of the instantaneous phase
lead to equivalent results after averaging.

Phase synchronization. Time series of the instantaneous
phase difference calculated using the analytic signal represen-
tation are shown inFig. 6a for different noise intensitiesD. It is
seen that there is an optimal valueD � 0:80 atwhich the phase
difference remains constant over a long time interval, i.e. we
observe the external noise-controlled effect of switching
frequency forced synchronization in the bistable stochastic
system. Forced synchronization can be detected in the same
manner using the second definition for the phase (5.13). The
mean frequencies against noise intensity are shown in Fig. 6b
for different values of the modulation amplitude. The data
were obtained using both definitions (5.6) ± (5.10) and (5.14)
and clearly demonstrate the effect of mean switching fre-
quency locking first reported in Ref. [90]. This figure displays
both the existence of a synchronization threshold and the
expansion of the synchronization region with increasing
modulation amplitude. Without external force (A � 0) the
mean frequencymonotonically grows followingKramers law.
For A5 1, the dependence hoi�D� shows a slightly marked
bend; at A � 2 we can clearly see a `plateau' where hoi no
longer depends on D. As the amplitude increases further,
A � 3, the synchronization zone is expanded [93].

In accordance with the definition of effective synchroniza-
tion, we need to calculate the effective diffusion coefficient
(5.2). The results are shown in Fig. 6c. As seen from the figure,
as the driving amplitude goes up, the dependences of Deff on
the noise intensity are characterized bymore andmore clearly
marked minima. Quantitative values ofDeff in the synchroni-
zation region indicate that the effect of frequency and phase
locking occurs over the time intervals which are about 103

times as long as the driving period. According to the
definition given above we can ascertain the presence of
effective synchronization at the fundamental tone manifest-
ing itself in phase and frequency locking by an external signal.
A nontrivial fact here is that an additional noise applied to the
system causes the phase dynamics of the system to be more
ordered: the phase difference diffusion slows down with
increasing noise intensity! Noise-induced ordering will be
discussed in detail in Section 7.

5.2 Forced stochastic synchronization of the Schmitt
trigger
When studying the synchronizing action of an external
periodic signal on stochastic bistable systems, the global
dynamics of transitions between metastable states is of much
interest. Hence, in order to explore the effect of synchroniza-
tion it is suitable to use an ideal bistable systemÐ the Schmitt
trigger [10, 102].

Experimental investigations of the mean switching fre-
quency for the Schmitt trigger were performed in Ref. [90].
Noise with a cutoff frequency fc � 100 kHz and a periodic
signal with frequency f0 � 100Hzwere applied to the Schmitt
trigger with a threshold voltage DU � 150 mV.

In accordance with the output signal, which represents a
telegraph process and is registered by a computer, we
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measured the mean frequency using definition (5.14). The
results of measurements are shown in Fig.7. For a weak
signal, the dependence of the mean frequency on the noise
intensity obeys Kramers law. With increasing signal ampli-
tude, the dependence is qualitatively different: there is a range
of noise intensities where the mean frequency practically does
not change with increasing noise and, within the limits of

experimental accuracy, remains equal to the signal frequency.
The effect of mean switching frequency locking is observed
(see Fig. 7a) [90].

Repeating the measurements of the mean frequency for
different values of the amplitude and phase of the signal one
may obtain synchronization regions on the parameter plane
`noise intensity ± amplitude of periodic force', where themean
frequency matches the signal frequency. Synchronization
regions resembling Arnold's tongues are shown in Fig. 7b.
As seen from the picture, there is a threshold amplitude Ath

from which the effect of mean frequency locking is observed.
When the threshold is achieved, the periodic signal starts to
effectively control the stochastic dynamics of switchings.
With increasing signal frequency, the synchronization is
adversely affected: the synchronization regions contract,
and the threshold value of the signal amplitude increases
(see Fig. 7b).

Figure 8 illustrates the residence-time probability density
P�t� of the trigger in one of the metastable states for different
noise intensities. For aweak noise,P�t� exhibits peaks centred
at odd multiples of the half signal period. Inside the
synchronization region the mean residence time in one of the
states coincides with the half period and the residence-time
probability density possesses a single well-marked peak at
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t � T0=2. For a high noise (VN � 115 mV), beyond the
synchronization region, the mean time for switchings is
much less than the half period. In one period the system
switches repeatedly from one state to another, and a peak
corresponding to short switching times appears. The peak
centred at the half signal period is smeared and coherence of
the output signal is destroyed.

The Schmitt trigger is modelled by the equation [28]

y�t� Dt� � sgn
�
Ky�t� ÿ x�t� ÿ A sinOt

�
; �5:15�

where K � 0:2 characterizes the operating threshold of the
trigger, x�t� is the exponentially correlated Gaussian noise
with correlation time tc � 10ÿ2, and the intensity D is
governed by an Ornstein ±Uhlenbeck process

_x � ÿ 1

tc
x�D

����
2

tc

s
w�t� ; 


w�t�w�t� t�� � d�t� : �5:16�

The dependences of the mean switching frequency of the
trigger versus noise intensity obtained by numerical simula-
tion of Eqns (5.15), (5.16) for different values of the
modulation amplitude have completely verified the experi-
mental results shown in Fig. 7a. The dynamics of the phase
difference resulting from definition (5.13) seemed to be
qualitatively equivalent to the case of the bistable oscillator
(see Fig. 6a). This confirmed the effect of trigger switching
phase locking by external signal at an optimal value of the
noise intensity.

From the findings presented above it follows that an
external periodic signal of sufficient amplitude synchronizes
the stochastic dynamics of the switching events. Note two
importantmoments. Although the signal amplitude is beyond
the limits of applicability of the linear response theory, it
remains so small that in the absence of noise the system
cannot be switched. Therefore, noise is a necessary part of the
phenomenon being considered. This phenomenon is accom-
panied by instantaneous phase and mean frequency locking.
What is more, in the synchronization regime the level of phase
fluctuations is substantially reduced, i.e. the effective diffu-
sion coefficient is minimized.

5.3 Mutual stochastic synchronization of coupled bistable
systems
Now we consider the simple case of two symmetrically
coupled overdamped bistable oscillators described by the
SDE [94, 103]

_x � axÿ x3 � g�yÿ x� �
�������
2D
p

x1�t� ;
_y � �a� D�yÿ y3 � g�xÿ y� �

�������
2D
p

x2�t� : �5:17�
In the last set of equations the parameter a determines the
Kramers frequency of the first subsystem without coupling,
D is the parameter of detuning of the second system with
respect to the first, and g is the coupling coefficient. The
white noise sources x1�t� and x2�t� are assumed to be
statistically independent:



xi�t�xj�t� t�� � di; jd�t�. The lat-

ter means that for g � 0 the stochastic processes x�t� and y�t�
in the subsystems will also be statistically independent. We
also assume the intensities of uncorrelated noises to be
identical: D1 � D2 � D. A detailed bifurcation analysis of
this system was made in Ref. [94].

Since individual subsystems are bistable, we assume the
processes x�t� and y�t� to be synchronized if the transitions
betweenmetastable states in the subsystems occur at the same
time moments. The value of detuning parameter D � ÿ0:5
represents faster motion in the second subsystem y�t�. It has
been established experimentally that for weak coupling the
processes in the subsystems are nonsynchronized. By increas-
ing the coupling coefficient the process in the second
subsystem becomes slower, and for a sufficient value of g the
processes in the subsystems become coherent [94, 103].

To quantify the synchronization process we use the
coherence function defined by the expression

G 2�o� �
��Gxy�o�

��2
Gxx�o�Gyy�o� ; �5:18�

where Gxy�o� is the mutual spectral density of the processes
x�t�, y�t�, while Gxx�o� and Gyy�o� are the power spectra of
x�t� and y�t�, respectively.

The coherence function obtained numerically from the
simulation of SDE (5.17) is shown in Fig. 9a for different
values of the coupling coefficient. The stochastic processes
x�t�, y�t� are coherent in the low-frequency range correspond-
ing to the Kramers frequencies of the subsystems.

Let us explore the evolution of the characteristic time
scales of the subsystems as one varies the coupling coefficient.
For g � 0, the natural time scales of the subsystems are
represented by the Kramers rates (frequencies) rx, ry of
escape from a metastable state:

rx �
���
2
p

a
p

exp

�
ÿ a2

4D

�
;

ry �
���
2
p �a� D�

p
exp

�
ÿ�a� D�2

4D

�
: �5:19�

The dependence of the mean switching frequencies on g is
shown in Fig. 9b.With increasing coupling strength the mean
frequencies of the partial subsystems come closer together.
The coherence function characterizes only a degree of linear
dependence and contains no information about the phases of
the processes. The instantaneous phase of the processes in the
subsystems can be introduced on the basis of the switching
times t xi , t

y
j in a similar manner as was done in the previous

section. Numerical simulation of the dynamics of instanta-
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neous phase difference f�t� � Yx�t� ÿYy�t� has shown the
effect of phase synchronization for g > 1: the phase difference
remains constant over long time intervals.

5.4 Forced and mutual synchronization of switchings
in chaotic systems
As has been already noted, the effect of deterministic SR is
realized in chaotic systems in the regimes of `chaos ± chaos'
intermittency. In this case the mean frequency of irregular
switching events is governed by a control parameter (see
Section 4.2).

If these phenomena are united by a deep physical general-
ity, then in chaotic systems with strong interactions one must
observe the effect of synchronization of switchings which is
qualitatively equivalent to that described above for stochastic
bistable systems. And this is actually so. For illustrative
purposes we shall discuss forced and mutual synchronization
of switching events in systems with deterministic chaotic
dynamics.

Forced synchronization. Let us turn again to map (4.12)
and consider the regime of `chaos ± chaos' intermittency for
a > acr � 2:839 . . . Let us study the system's dynamics in the
absence of external noise for a large enough amplitude A of

the external periodic force. Then the switching process is
principally nonlinear and its statistics depends essentially on
the parameters a, A and o. Using the two-state method we
evaluate the evolution of the residence-time probability
density p�t� on a single attractor as parameter a is varied.
The results are shown in Fig. 10 and qualitatively follow the
data presented in Fig. 8. At a certain value a � 8:34 the
distribution possesses a single Gaussian-like peak with a
maximum at t � 0:5. This means that the mean frequency of
switchings between chaotic attractors coincides with the
external force frequency.

The effect of mean switching frequency locking by the
external signal is illustrated in Fig. 11a for different values of
parameter a. With increasing signal amplitude, the synchro-
nization region expands as expected. As seen from Fig. 11b,
this region is a typical synchronization zone as for the Schmitt
trigger (Fig. 7b) and also demonstrates a threshold character
of synchronization. Hence, the effect of forced synchroniza-
tion of the switching frequency in a deterministic chaotic
system is confidently observed and proves to be equivalent to
the effect of noise-induced stochastic synchronization,
described in Sections 5.1 and 5.2.

The effect of mean switching frequency locking is
universal and manifests itself in a wide class of dynamical
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systems with intermittency. As an example we shall study the
nonlinear Chua system realizing the regime of dynamical
intermittency [35, 83]. Chua's circuit is described by a set of
equations

_x � a
�
yÿ h�x�� ;

_y � xÿ y� z ; �5:20�
_z � ÿby� F�t� ;

where h�x� � m1x� 0:5�m0 ÿm1�
ÿjx� 1j ÿ jxÿ 1j� is the

piecewise-linear characteristic of the system with fixed
parameters m0 � ÿ1=7, m1 � 2=7, and F�t� � a cosoct is
the external periodic force.

As was shown in Ref. [83], the switching process in the
chaotic bistable system (5.20) has a purely dynamical nature.
We again apply the two-state approach. Let parameter b be
fixed, namely, b � 14:286. The dynamics of the system
depends on a as well as on the amplitude a and frequency oc

of the external signal. Without driving signal (a � 0) an
intermittency is realized for a � 8:8. With increasing a, when
a > 8:8, the mean switching frequency (the analogue of the
Kramers frequency) monotonically increases. We choose the
amplitude value a � 0:1 when the system response to the
external force is, in principle, nonlinear.

The results of numerical calculations of the return-time
probability density p�t� for different values of a have shown a
surprising similarity to the data obtained for the Schmitt
trigger and displayed in Fig. 8. For a certain value a � 8:8325,

the probability density p�t� has a single Gaussian-like peak
near t � 1. This means that the mean switching frequency
coincides with the external force frequency. The effect of
forced synchronization is registered. This manifests itself in
the mean switching frequency locking by the periodic signal.
The numerical data are presented in Fig. 12 and illustrate
synchronization regions on the parameter plane `external
signal amplitude ± control parameter a'. These regions are
qualitatively similar to Arnold's tongues as in the case of the
Schmitt trigger (Fig. 7b). The only difference is that, as the
signal frequency increases, the threshold of the synchroniza-
tion process practically does not change and the width of the
synchronization regions is increased. These differences are
caused by the nonlinear properties of the system (5.20) and do
not relate to the nature of the observed phenomenon. More
detailed calculations demonstrate that the effect of mean
switching frequency synchronization in systems (4.12) and
(5.20) corresponds to the effect of phase synchronization,
which is completely equivalent to the cases of the Schmitt
trigger and the overdamped oscillator considered above.

Mutual synchronization. As an example of mutual
synchronization of switching events, we shall examine the
dynamics of two coupled Lorenz models [104]

_x1 � s�y1 ÿ xÿ 1� � g�x2 ÿ x1� ;
_y1 � r1x1 ÿ x1z1 ÿ y1 ;

_z1 � x1y1 ÿ z1b ; �5:21�
_x2 � s�y2 ÿ x2� � g�x1 ÿ x2� ;
_y2 � r2xÿ 2ÿ x2z2 ÿ y2 ;

_z2 � x2y2 ÿ z2b :

We choose the parameters to be: s � 10, r1 � 28:8, r2 � 28,
and b � 8=3, when the Lorenz attractor is realized in each of
the subsystems [84, 87]. The Lorenz attractor in an individual
system may be treated as a generalized bistable oscillator
where irregular switching events occur with a mean frequency
controlled by the parameter g. The introduction of coupling
(g > 0) must cause changes of the mean switching frequencies
in each of the subsystems and lead to the effect of mutual
synchronization of switchings.
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As calculations carried out in the two-state approxima-
tion have shown, themean switching frequencies h f1i and h f2i
practically coincide for a coupling coefficient g > 5. More-
over, numerical simulation of the dynamics of the instanta-
neous phase difference between x1�t� and x2�t� processes has
confirmed the effect of mutual synchronization: for g > 5, the
phase difference approaches zero at times significantly
exceeding the mean switching time. Therefore, the effect of
mutual synchronization takes place for strong coupling
between two chaotic bistable oscillators.

6. Stochastic resonance and synchronization of
ensembles of stochastic resonators

The effect of SR can be significantly enhanced if an array of
coupled bistable systems is taken instead of a single one [105 ±
108]. It has been found out that at optimal values of the noise
intensity and the coupling coefficient the SNR in an array
attains its maximal level, demonstrating an array-enhanced
SR effect [103, 109]. We consider first the case of extremely
weak coupling when the interaction between individual
stochastic resonators might be neglected.

A model under study contains N subsystems, each
demonstrating SR. Partial subsystem SRk possesses an
internal noise xk�t�. In addition, the internal noises in the
subsystems are statistically independent. Each resonator is
subjected to the same input signal s�t� which may be
aperiodic. The outputs of the elements are converged onto a
summing centre giving a collective response xM�t�:

xM�t� � 1

N

XN
k�1

xk�t� : �6:1�

This model is widely used in practice as the simplest method
for increasing the signal-to-noise ratio [110]. When the
number of elements in the array is sufficiently large (N4 1),
the internal noises at the collective output disappear due to
averaging and the SNR increases proportionably to the
number of elements. This model is truly nontrivial because
each element is treated as a stochastic resonator. Hence,
besides enhancement of the SNR, it is also possible to
amplify significantly the signal. Synchronization of an
ensemble by an external signal is also of great interest. We
note that this model has important biological applications
relating to, for example, a simple network of sensory neurons
[111] and a model of ion channels [112, 113]. A similar model,
where self-excited systems were used as individual elements,
has been studied in Ref. [114]. Using this model, the
important effect of `stochastic resonance without tuning'
was established in Ref. [115]: on increasing the number of
elements in the array the dependence of the SNR on the noise
intensity disappears beyond a certain small threshold value.

6.1 Linear response theory for arrays of stochastic
resonators
In the case of a weak signal s�t� the statistical properties of the
response of a single stochastic system can be calculated via
LRT. The problem is to compute the spectral characteristics
of the collective response xM�t� [68].

Denote the spectral density at the output of the kth
element by Gkk�o�, the cross spectral density of the kth and
mth elements by Gkm�o� and the spectral density at the
summing output by GMM�o�. The spectral density GMM�o�
is derived immediately from (6.1) as follows

GMM�o� � 1

N 2

"XN
k�1

Gkk�o� �
XN
k�1

XN
m�1
k 6�m

Gkm�o�
#
: �6:2�

In the absence of the signal Gkm�o� � 0 by virtue of the
statistical independence of the internal noises in the elements.
Each element of the array has a known susceptibility
wk�o;D�, where D is the intensity of internal noise. For the
spectral density at the output of the kth element we have

Gkk�o� � G
�0�
kk �o;D� �

��wk�o;D���2Gss�o� ; �6:3�

where G
�0�
kk �o;D� is the spectral density of the kth element

without a signal, andGss�o� is the spectral density of the input
signal. The cross spectral densityGkm�o� is determined as [68]

Gkm�o� � w�k�o;D� wm�o;D�Gss�o� ; �6:4�
where the symbol � denotes complex conjugation. In the
absence of the signalGkm�o� � 0. Substituting (6.3), (6.4) into
(6.2) we obtain the spectral density of the collective output

GMM�o� � 1

N 2

XN
k�1

G
�0�
kk �o;D�

� Gss�o�
N 2

XN
k�1

XN
m�1

w�k�o;D�wm�o;D� : �6:5�

The cross spectral density of the collective output and the
input signal GsM�o� reads as

GsM�o� � Gss�o�
N

XN
k�1

wk�o;D� : �6:6�

The relations obtained allow one to determine all the
necessary SR measures, in particular, the coherence function
and the SNR. In order to simplify our analysis we consider an
array of identical elements with susceptibility w�o;D� �
wk�o;D� and unperturbed spectral density G

�0�
xx �o;D� �

G
�0�
kk �o;D�. For this case we have the following expressions

for the spectral densities

GMM�o� � 1

N
G �0�xx �o;D� �

��w�o;D���2Gss�o� ; �6:7�

GsM�o;D� � w�o;D�Gss�o� : �6:8�

In the limit N!1, the first item in Eqn (6.7), answering for
the internal fluctuations in the elements of the array,
disappears and the whole ensemble behaves as an equivalent
linear system with the transfer function w�o;D�.

Let the input signal s�t� be represented by a broadband
Gaussian noise with zero mean and the spectral density
Gss�o�. We are interested in the coherence function G�o�
and the correlation coefficient C1 linking the input with
collective output:

G 2�o� �
��GsM�o�

��2
GMM�o�Gss�o� ; C1 � hxM; si������������������

hs2ihx2Mi
q : �6:9�

Inserting (6.7) and (6.8) to (6.9) we obtain the expression for
the coherence function which is valid for weak signals:

G 2�o� �
��w�o;D���2Gss�o�

G
�0�
xx �o;D�=N�

��w�o;D���2Gss�o�
: �6:10�
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WhenN!1, the coherence function tends to 1, as it should
for a linear system. AsN becomes large, the dependence of the
coherence function on D and on o is no longer observed, as
seen from formula (6.10). In other words, the output signal
can be optimized for any internal noise intensity, beginning
with a certain small value.

Let a weak input signal s�t� be the sum of the periodic and
noise components, i.e. s�t� � n�t� � A sinOt. The SNR at the
input is fixed:

SNRin � pA2

Gnn�O� ; �6:11�

where Gnn�o� is the spectral density of the noisy component.
The spectral density of the collective output will also consist
of a noisy background and a d-peak corresponding to the
periodic part of the signal:

GMM�o� � 1

N
G �0�xx �o;D� �

��w�o;D���2
� �Gnn�o� � pA2d�oÿ O��: �6:12�

The SNR of the collective output, SNRout, can easily be
derived from the last expression. However, of much more
interest is the ratio of the SNR at the output to the SNR at the
input:

Z � SNRout

SNRin
� 1ÿ G

�0�
xx �O;D�

G
�0�
xx �O;D� �N

��w�O;D���2Gnn�O�
: �6:13�

This ratio is always less than 1, unless N tends to infinity,
when the input and output SNRs coincide. Although, as
follows from the analysis above, the SNR at the output of the
ensemble of stochastic resonators cannot be improved com-
pared to the SNR at the input, the periodic component of the
signal can be significantly amplified by

��w�O;D��� times.
Estimation of the number of elements necessary to achieve

a given ratio Z is of practical importance. This number can
easily be found from Eqn (6.13):

N � G
�0�
xx �O;D���w�O;D���2Gnn�O�

Z
1ÿ Z

: �6:14�

For an array of stochastic resonators the dependence N�D�
demonstrates a minimum at a certain optimal noise intensity.
Therefore, at an optimal noise level the required value of the
ratio Z can be reached for aminimal number of elements in the
array [68].

6.2 Synchronization of an ensemble of stochastic
resonators by a weak periodic signal
In the limit of an infinite number of elements in the array and
in the absence of external noise the collective response of the
array to a weak periodic signal is a periodic function of time

x1M�t� � A
��w�O;D��� cos�Ot� c� ; �6:15�

where c is the phase shift defined as

c � ÿ arctan
Im w�O;D�
Re w�O;D� : �6:16�

Situations when the number of elements is large but finite are
of great interest. As examples from biology we can mention

here populations of neuron-receptors [111] and arrays of ion
channels in cell membranes [112, 113]. How much does the
process at the collective output of the ensemble reflect the
input signal? The previous sections have given an answer to
this question only in terms of the averaged characteristics,
such as the SNR and the coherence function.

As has been shown in Section 5, for a single stochastic
resonator, synchronization of the output and input is possible
only for a large enough amplitude of signal. In the case of an
array of stochastic resonators the internal noise is reduced
due to averaging at the summing output, so that it is possible
to synchronize an array of stochastic resonators with an
arbitrary weak periodic signal [116].

As an example we refer to an ensemble of Schmitt triggers

xk�t� Dt� � sgn
�
Kxk�t� ÿ xk�t� ÿ Z�t� ÿ A sinOt

�
; �6:17�

where K is the operating threshold of the trigger, xk�t� is the
internal noise in the kth element, and Z�t� is a weak external
noise. In the numerical simulationsK � 0:2, the internal noise
was assumed to be Gaussian exponentially correlated noise
with correlation time tc � 0:01 and intensity D. The external
noise was also Gaussian coloured noise with the same
correlation time and intensity Q � 0:03. We chose the
amplitude of the periodic signal A � 0:03 and the frequency
O � 0:5, at which the phenomenon of stochastic synchroniza-
tion did not occur in a single element.

To quantify the synchronization of the collective output
we use the notions of the mean frequency (5.10), (5.14) and
the instantaneous phase (5.13). The mean frequency hoi is
shown in Fig. 13a as a function of the internal noise intensity
for different numbers of elements N in the array. For a single
element N � 1, the dependence hoi�D� is exponential.
However, with an increasing number of elements the
exponential law is violated and for a large enough N
(N5 100) the effect of hoi-frequency locking takes place.
This phenomenon is similar to synchronization of a single
bistable resonator as the signal amplitude increases (see
Fig. 6b and Fig. 7a). But in our case the signal amplitude is
small and the synchronization can be achieved by virtue of the
increase of the number of elements in the array.

The synchronization effect is also verified by calculations
of the instantaneous phase difference of the collective output
and the periodic signal. The results are shown in Fig. 13b. At
an optimal internal noise intensity (D � 0:06), the phase
difference remains constant for long time intervals. As has
been already noted, the mean value of these time intervals can
be estimated using the effective diffusion coefficient Deff of
the phase difference. As the calculations have shown, at an
optimal noise intensity the effective diffusion coefficient is
minimal. When the number of elements N in the array
increases, the absolute value of the diffusion coefficient
decreases, and the optimal intensity D of internal noise shifts
to the range of smaller values.

The synchronization phenomenon described above is
observed for any elements demonstrating SR as one varies
the internal noise, including elements which can be repre-
sented by neuron models.

6.3 Stochastic resonance in a chain with finite coupling
between elements
When stochastic resonators are coupled, we may further
optimize the amplification properties of the system as the
coupling coefficient is varied [103, 105, 106, 108]. In this
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section we consider a chain of coupled systems with two
discrete states, namely, a chain of coupled spins. The system is
modulated by a periodic external (magnetic) field. Each spin
is able to flop due to thermal noise. The elements are coupled
via magnetic interaction. This model is one of the best studied
systems of coupled elements and goes back to R Glauber
(1963) [117]. In this connection the stochastic dynamics of a
chain of coupled spins has come to be known as Glauber's
dynamics.

Glauber's dynamics was used for finding SR in ferro-
magnetic systems. In this case the flip-flop rate awas constant
and temperature-independent, so that SR takes place only
when there is an interaction between spins. Numerical
experiments on a two-dimensional Ising model performed in
Ref. [20] have confirmed the existence of SR. The authors of
Ref. [118] found an optimal coupling for a given temperature
T in a spin chain with a constant flip-flop rate a.

We make use of the idea that a chain of coupled spins can
be considered as the simplest prototype of coupled bistable
stochastic resonators [109]. Notice that the flip-flop rate of a
single spin in Glauber's model is assumed to be temperature-
dependent. In addition to Glauber approximation we suggest
that the transition rate a between states s � �1 and s � ÿ1 of

an individual uncoupled spin obeys an Arrhenius-type law
[27]

a � a0 exp
�
ÿ 1

T

�
; �6:18�

where it is supposed that a0 � 1.
A similar assumption about the temperature dependence,

i.e. on noise intensity, was fundamental in the two-state
theory [28] considered above for a single bistable system (see
Section 2.1), where an element with two states, say s � �1,
and stochastic switchings between them, described by the
master equation

_p�s� � ÿp�s�W�s; t� � p�ÿs�W�ÿs; t� ; �6:19�

were considered. In Eqn (6.19), p�s� is the probability of
residing element in state s at time t, and W�s; t� denotes the
transition probability per unit time for a flip-flop s! ÿs. In
the presence of a weak slowly varying periodic field the
transition rates can be written as

W�s; t� � a
2

ÿ
1ÿ sb cos�Ot� f�� ; �6:20�

and in the limit t0 ! ÿ1 we can derive an expression for the
SNR. The signal amplitudeA enters the rates via b � A=T. In
the continuous-state bistable systems such transition rates
can be gained with sufficiently small amplitudes in the
framework of the adiabatic approach.

To extend the two-state theory to coupled systems we
consider a chain of infinitelymany spins.We examine one or a
few spins embedded in this chain. The state of the chain,
which is specified by the sequence �s � �. . . ; sk ÿ 1; sk;
sk � 1; . . .� �sk � �1�, is occupied with probability p��s�.
The transition rates for a single element retain the form used
in the two-state theory. In addition, the transition rates in
coupled systems should depend on the states of the elements
to the left and to the right with relation to a chosen element.
Following Glauber consideration we write down the transi-
tion rates in the form

Wi�si� � a
2

�
1ÿ si

g
2
�siÿ1 � si�1�

�
: �6:21�

For a positive g, formula (6.21) gives enhanced rates for a
parallel ordering of the spins. According to Glauber, the
transition rates lead to a stationary state of the system
characterized by the equilibrium distribution (the Ising
model)

peq��s� � Zÿ1 exp
�
ÿ 1

T
H
�
� Zÿ1 exp

�
1

T

X
i

Jsisi�1

�
;

�6:22�
whereZÿ1 is the normalization constant. For lack of external
action, the principle of detailed balance implies that

Wi�si�peq�. . . ; siÿ1; si; si�1; . . .�
�Wi�ÿsi�peq�. . . ; siÿ1;ÿsi; si�1; . . .� ; �6:23�

which is satisfied by choosing

g � tanh
2J

T
: �6:24�

Here the parameter J has meaning of a coupling coefficient.
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Figure 13. (a)Mean frequency hoi of the collective output for the ensemble
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Taking into account the spin interaction of the type given
by Eqn (6.21) and a periodic modulation by an external
magnetic field as in (6.20) we obtain the transition rates in
the following form:

Wi�si� � a
2

�
1ÿ g

2
si�siÿ1 � si�1�

ÿ b
�
si ÿ g

2
�siÿ1 � si�1�

�
cos�Ot� f�

�
: �6:25�

One can easily check that insertion of a Hamiltonian

H � ÿm
X
i

H�t�si ÿ J
X
i

sisi�1 �6:26�

into the equilibrium distribution (6.22) leads in the adiabatic
limit under detailed balance conditions (6.23) to
b � tanh�mA=T� or b � mA=T for small amplitudes A. For
simplicity, we set m � 1. The evolution of probabilities p��s� is
governed by the master equation

_p��s� �
X
k

Wk�ÿsk� p�. . . ; skÿ1;ÿsk; sk�1; . . .�

ÿ
X
k

Wk�sk�p�. . . ; skÿ1; sk; sk�1; . . .� : �6:27�

Apart from the harmonic external force and the temperature-
dependent rates (6.18) this is Glauber's dynamics of the Ising
model in the weak-field limit [117].

Note that the suggested model is an expansion of the two-
state model [28] to the case of a chain of coupled bistable
elements.

From Eqn (6.27) it follows that dhski=dt�ÿ2


skWk�sk�

�
.

This allows us to derive the set of differential equations for the
first moments



sk�t�

�
:

dhski
dt
� ÿahski � ab cos�Ot� f� � ag

2

ÿhskÿ1i � hsk�1i�
ÿ abg

2
�rkÿ1; k � rk; k�1� cos�Ot� f� ; �6:28�

where ri; j�t� �


si�t�sj�t�

�
. The system (6.28) is unclosed

because it contains cross correlators ri; j�t�. The closure of
the system can be obtained by linearizing over parameter b. In
this case the correlators ri; j may be taken from the unper-
turbedmodel (b � 0). The stationary values of the correlators
are ri; j � Z jiÿjj, where Z � gÿ1

ÿ
1ÿ

�������������
1ÿ g2

p � � tanh�J=T�
[117].

We can further simplify the closed system being defined.
Since all spins are uniformly forced by a magnetic field and
their number is infinite, then, as the initial distribution of
spins is forgotten, it is impossible to distinguish any single
spin from the others. In other words, all spins will have the
same statistics and the spin indices in Eqn (6.28) may be
dropped. Taking into consideration the assumption that b is
small, we arrive at the simplified equation for the mean state
variable:

dhsi
dt
� ÿa�1ÿ g�hsi � ab

�������������
1ÿ g2

p
cos�Ot� f� : �6:29�

Evidently, the dynamics of hsi is identical to that of the mean
state variable of an uncoupled spin with a renormalized
relaxation rate a�1ÿ g� and modulation amplitude
ab

�������������
1ÿ g2

p
. In the limit of small external force amplitudes

b � A=T and the asymptotic solution of Eqn (6.29) reads as

s�t�� � q cos�Ot� f� c� ;

q � qs

�
1� O2

a2�1ÿ g�2
�ÿ1=2

; tanc � ÿ O
a�1ÿ g� ; �6:30�

where qs is the response to a static signal �O � 0�:

qs � A

T

�����������
1� g
1ÿ g

s
� A

T
exp

�
2J

T

�
: �6:31�

Since the magnitude of the static response should not exceed
unity (qs � 1), expression (6.31) imposes additional restric-
tions on the parameters of the system for which the suggested
approximations retain their validity:

A5 min

�
T;T exp

�
ÿ 2J

T

��
: �6:32�

The spectral density of the spin state is determined from
the correlation function



sk�t�sk�t� t��, where the periodic

non-stationarity is removed by additional averaging h if
over a uniformly distributed initial phase of the signal.
Introducing the correlation function

ckk�t; t� �

�
sk�t� ÿ qk�t�

��
sk�t� t� ÿ qk�t� t���

we find




sk�t�sk�t� t���f � 
ckk�t; t��f � q2

2
cosOt : �6:33�

The second term on the right of Eqn (6.33) gives a d-function
with pq2 weight at the signal frequency. The first term forms
the continuous part of the spectrum. For our purposes it is
sufficient to approximate the continuous part of the spectrum
by the spectral density of the unperturbed system. In this case
the stationary correlation function c�t� does not depend on
the initial phase of the signal or on the spin index. In
accordance with Glauber's theory c�t� is defined as

c�t� � exp
ÿÿajtj� X�1

n�ÿ1
Z jnjIn

ÿ
agjtj� ; �6:34�

where In
ÿ
agjtj� is the modified Bessel functions. The spectral

density reads as [119]

G�o� � 4Re
1� Zs2

s1�1ÿ Zs2� ; o > 0 ; �6:35�

where s1 �
�����������������������������������
�a� io�2 ÿ �ag�2

q
and s2 � ag�a� io� s1�ÿ1.

Now we can obtain analytic expressions for the SPA and
the SNR. Both measures are calculated for a single spin
embedded in a chain of infinite length. The SPA,
r � �q=A�2, is given by the explicit expression,

r � 1

T 2
exp

�
4J

T

�(
1�

�
O exp�1=T�

1ÿ tanh�2J=T�
�2)ÿ1

: �6:36�

The SNR normalized on the square of the signal
amplitude is

SNR � pq2

A2G�O� �
pr

G�O� : �6:37�
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In the limit of zero coupling (J! 0) the latter expression
yields the SNR (2.16) which is derived for a single element in
the framework of the two-state theory [28]:

SNR0 � pa
4T 2

� p
4T 2

exp

�
ÿ 1

T

�
: �6:38�

The SPA (6.36) as well as the renormalized SNR (6.37)
depend on three parameters: (i) the temperature T; (ii) the
coupling coefficient J, and (iii) the signal frequency O. For a
finite value of the signal amplitude A relation (6.32) sets a
lower boundary for T and an upper boundary for J. But these
restrictions are not principal since in the framework of the
weak-field approximation the signal amplitude may be taken
to be arbitrarily small.

The dependence of the amplification factor r on J andT is
shown in Fig. 14. This quantity possesses a single maximum
for any time-varying signal as the temperature and the
coupling coefficient are varied. The partial derivatives of the
SPA taken with respect to the temperatureT and the coupling
coefficient J vanish for values �Tmax; Jmax� which can be
obtained from the transcendent equations

Jmax � ÿTmax

4
ln�2Tmax ÿ 1� ; �6:39�

O2 � exp

�
ÿ 2

Tmax

� �2Tmax ÿ 1�2
Tmax�1ÿ Tmax� : �6:40�

For a finite and real Jmax, the condition Tmax > 1=2 should be
valid. In this case Eqn (6.40) has a unique solution
1=2 < Tmax < 1 for any signal frequency O > 0. The corre-
sponding Jmax may be found from Eqn (6.39). The magnitude
of the maximal amplification factor is given as

rmax �
1ÿ Tmax

T 2
max�2Tmax ÿ 1� : �6:41�

From (6.39), (6.40) and (6.41) we can establish the following
properties of the maximum. As the signal frequency O varies
from very large to vanishingly small values, the optimal
temperature Tmax falls from 1 to 1=2. In this case the optimal
coupling coefficient J � Jmax and maximal amplification
increase from vanishingly small to very large magnitudes.

We compare the SPA of coupled and uncoupled elements.
Let the amplification factor of the uncoupled spin bemaximal
at a certain temperature T0 derived from the transcendent

equation

O2 � exp

�
ÿ 2

T0

�
T0

1ÿ T0
�6:42�

and lie within the interval 0 < T0 < 1. The maximal amplifi-
cation is given as r0 � �1ÿ T0�=T 2

0 . Since Jmax is always
positive, then for any O > 0 the maximal SPA of the coupled
element always exceeds the amplification factor of the
uncoupled element. In the general case, using (6.40) and
(6.42), one may show that Tmax is always larger than T0.
However, at relatively high frequencies O > 1 the coupling-
induced amplification enhancement becomes vanishingly
small. Here the amplification maximum is located at T � T0

and J � 0.
At low signal frequencies, the amplification is improved

by means of ferromagnetic coupling between spins, whereas
at high frequencies such an improvement does not exist. The
SPA in the low-frequency range qualitatively repeats the
effect which was found analytically in Ref. [106] in a system
of globally coupled bistable elements. Nevertheless, the
amplification behaviour at high frequencies, where with
increasing coupling the amplification enhancement is not
observed, is a peculiarity of the Glauber model.

The SNR for a single spin demonstrates a similar
behaviour. This quantity can be enhanced (compared to the
uncoupled chain) via an appropriate coupling between
elements [119].

7. Stochastic synchronization as noise-enhanced
order

As has been outlined in Ref. [41], one may associate the
switching events with an information flow through a bistable
system. Information about the amplitude and the phase of the
signal is contained in the times between system's switchings.
Indeed, one of the major motivations for SR research is the
idea of gaining information transmission through an opti-
mally tuned stochastic bistable filter. The most appropriate
measure describing the information transmission through a
bistable system is the spectrum of Shannon conditional
entropies [120, 121]. In contrast to other measures (a linear
version of transinformation) used in Refs [122, 123] and
quantifying the degree of linear dependence between the
input and the output of the system, the hierarchy of Shannon
conditional entropies [124 ± 126] characterizes correlations of
all higher orders and in the limit is considered to be a measure
of the order (disorder) in the system.

The information±theoretical analysis requires the intro-
duction of a symbol alphabet corresponding to the stochastic
dynamics of the system. For bistable stochastic systems, a
binary alphabet is natural. It consists of two symbols, for
instance, `0' and `1', which correspond to the state of the
system to the left and to the right with relation to the barrier.
Let in � i1; . . . ; in be a binary subsequence of length n or a
word of length n (n-word). The stationary probability
(estimated from its relative repetition frequency) of such an
n-word is denoted by p�in�. If a sequence contains a periodic
component, then temporal correlations will be reflected by a
highly structured n-word distribution function. The resi-
dence-time distribution may serve here as its analogue. In
order to quantify the degree of order that rules these
structures we employ the Shannon entropy [124] which is
applied to the n-word distribution
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Figure 14. SPA as a function of the temperature T and of the coupling

coefficient J. Signal frequency O � 0:01.
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Hn � ÿ
X

�in�2f0;1gn
p�in� log2 p�in� : �7:1�

The n-block entropy Hn is interpreted as the average
information necessary to predict an appearance of the n-
word �i1; . . . ; in�.

The conditional or dynamical [125, 126] entropies are
introduced for n � 1; 2; . . . by the following way:

hn � Hn�1 ÿHn �
�
ÿ
X
in�1

p�in�1jin� log2 p�in�1jin�
�
�in�
; �7:2�

where the angle brackets h i indicate averaging over the
prehistory in. This definition is supplemented by `the initial
condition' h0 � H1. In Eqn (7.2), p�in�1jin� denotes the
appearance probability for the symbol in�1 conditioned by
the n preceding symbols in. The dynamical entropies hn are
interpreted as the average information necessary to predict
the symbol in�1 (or gained after its observation) with given
prior knowledge of in. In other words, hn characterizes the
uncertainty in prediction of the next symbol in a sequence in.
This amount of information is usually decreased by correla-
tions between symbols in a sequence. The limit of hn when
n!1, i.e.

h � lim
n!1 hn ; �7:3�

is named the source entropy [127]. The source entropy
determines the minimal amount of information necessary to
predict the next symbol in a sequence with given knowledge
on the whole prehistory of the process. Only for periodic
sequences is this quantity equal to zero. The source entropy is
the universal measure of order (disorder) of the system. As is
known, the source entropy is connected with the Kolmo-
gorov ± Sina|̄ entropy [128, 129].

7.1 Dynamical entropy and source entropy in the regime
of stochastic synchronization
We apply the information±theoretical approach to the
experimental data obtained for the Schmitt trigger. Binary
random sequences generated by a Schmitt trigger were stored
in a computer via an analog-digital converter. Simultaneously
we recorded the input sequences (the signal and the signal plus
noise) which were also represented by 0's and 1's depending
on their sign. In all experiments the length of sequences was
15000Dt, where Dt is the step of sampling. The optimal
sampling step was chosen to be approximately a twelfth of
the signal period: Dt � T0=12 � 8:33� 10ÿ4 s. We chose the
regime of synchronization of stochastic switchings of the
trigger when the mean switching frequency is locked. This
regime occurs for a signal amplitude A � 100 mV.

In order to compare the residence-time distributions at the
input and output of the trigger we performed the relevant
calculations in the form of histograms. A pronounced peak
corresponding to the external signal period is observed at the
input only for a small noise intensity. This peak monotoni-
cally vanishes with an increase of noise. At the output, on the
contrary, there is an optimal noise level at which a similar
peak is mostly pronounced. Naturally, the optimal noise
intensity corresponds to SR.

It is reasonable to suggest that a symbolic sequence
generated by the Schmitt trigger will be maximally ordered
in the regime of stochastic synchronization or SR. Hence, one
may expect the following scenario for the source entropy

behaviour. For very weak noise, when the trigger switching
events are very rare, the sequence is characterized by a large
redundancy, and the entropy is small. With increasing noise,
the entropy should increase and then decrease attaining a
minimum due to SR and rise again when the dynamics of the
system is fully controlled by noise.

The picture described above was completely verified by
the calculations performed from experimental data [120, 121].
All entropy measures were computed by averaging over 20
time series of length 1500Dt. The results are shown in Fig. 15a.
The curves in this figure display a well marked minimum
around the expected noise intensity. Thus, the predictability
of the output sequences can be maximized by tuning the noise
intensity! This important effect cannot be principally
observed at the output of conventional linear filters.

The increase of predictability implies an enhancement of
ordering in the output sequence. With application to
stochastic resonance, entropies reflect an amplification of a
periodic component of the output signal and for a certain
optimal noise level we may speak about noise-enhanced order
in time. Themost ordered statemeans that amaximal number
of switching events takes place during a time equal to the half
signal period, and the output is characterized by the longest
correlations.
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Figure 15. (a) Dynamical entropies hn �n � 0; 1; . . . ; 15� vs. noise intensity.
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The source entropy h may also be estimated via the
residence-time distribution [130]:

h � H� pres�
htresi ; �7:4�

where H� pres� denotes the Shannon entropy of the residence-
time distribution, and htresi is the mean residence time. In
Fig. 15b we plotted the source entropy h�D� calculated from
the residence-time distribution as a function of the noise
intensity, which is equivalent to the above-considered
Shannon conditional (dynamical) entropies: the well-pro-
nounced minimum corresponding to mostly ordered state of
the system is observed at the optimal noise intensity. Detailed
numerical simulations have shown that the minimum of
entropies refers to the SR regime when the output SPA is
maximal [120, 121].

Notice that the minimum of the dependence of the source
entropy on the noise intensity is observed only for large
enough amplitudes of the periodic signal, when the synchro-
nization phenomenon of trigger stochastic switchings occurs.
In the case of a weak signal, when the response of a stochastic
system to the signal is basically linear, the entropy mono-
tonically grows with increasing noise and tends to 1 in the
limit of high noise level [121].

7.2 Stochastic resonance and Kullback entropy
We now turn to the question: when and how do the input and
output of a stochastic resonator match? An information±
theoretical measure used for this purpose is given by the
Kullback entropy K� p0; p� characterizing the proximity of
two distributions p0 and p [131]:

K� p0; p� �
X
i

pi log2
pi

p 0
i

: �7:5�

The Kullback entropy determines the amount of information
gained by replacing an initial distribution p0 by a final
distribution p due to some transformation. K� p0; p� is always
nonnegative and it vanishes if and only if p0 and p are
identical. For the SR conditions it is natural to identify p0

with the trigger input distribution p0i � p in
n �in�, and pwith the

output distribution pi � p out
n �in�. Let us consider two cases of

the input distribution: firstly, the input distribution is
calculated from the signal plus applied noise, and, secondly,
the input distribution is calculated from the periodic signal
alone.

The calculated Kullback entropy for the first case is
shown in Fig. 16a; n ranges from 1 to 8. Common to all
curves is a relatively pronounced minimum at D � 40 mV,
indicating that for this value of the noise intensity the
distributions of the input and output match maximally.
However, it does not mean that the output sequence
maximally reflects the periodic structure. For very weak
noise the input sequence is closest to the periodic structure
whereas the trigger output sequence is intermittent (long parts
are present with identical symbols). Accordingly both
distributions are vastly different. With increasing noise
intensity towards the SR region the periodic component of
the input sequence gets blurred. But now the output signal
acquires more and more periodic structure. Hence, both
distributions converge at a value of the noise intensity that is
less than the resonance one (D � 60 mV). We note that the
value D � 40 mV exactly corresponds to the onset of the
synchronization (the mean switching frequency locking) as
clearly seen from Fig. 7a.

Figure 16b gives theKullback entropy for the second case,
when the initial distribution is taken from a purely periodic
signal. In this case both distributions are closest when the
output sequence maximally reflects the periodic structure of
the signal and the Kullback entropy takes its minimum in the
region of SR at D � 60 mV. We note that for n < 7 the
Kullback entropy equals zero in the region of synchroniza-
tion because the switchings are synchronized by the signal
over time intervals exceeding the half period.

7.3 Enhancement of the degree of order in an ensemble of
stochastic oscillators in the SR regime
The fact that the degree of order is enhanced in the regime of
SR is also verified when analyzing the collective output of an
ensemble of stochastic resonators driven by a weak periodic
signal. In order to calculate the source entropy of the
collective output of an array we introduce a symbolic
description

u�t� � 0; xM�t� < 0 ;

1; xM�t�5 0 :

�
�7:6�

The calculated results for the source entropy h are shown in
Fig. 17.
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For a single element, N � 1, the entropy monotonically
increases with increasing internal noise intensity D and then
saturates. When the number of elements goes up, the
behaviour of the entropy qualitatively changes. For a weak
internal noise, the residence times are exponentially large and
the symbolic sequence generated by the array is characterized
by high redundancy. As a result, the entropy is close to zero.
With increasing D, the source entropy rises and reaches a
maximum at the internal noise intensity corresponding to the
boundary of the synchronization region, when the mean
frequency is locked. Starting from this value the source
entropy falls, approaches a minimum at a certain optimal
internal noise intensity, and finally rises again. Hence, with
increasing internal noise intensity the collective output of the
array of stochastic resonators becomes more ordered. We
underline that in contrast to the synchronization of a single
element by a periodic signal with large amplitude, in the case
of an ensemble of stochastic resonators the entropy decreases
for weak signals and, hence, single elements remain non-
synchronized. Extensive numerical investigations have shown
that the values of the noise intensity which minimize the
source entropy and the diffusion coefficient are the same as
the optimal noise level maximizing the output SPA of a single
element.

8. Stochastic resonance and biological
information processing

The SR effect is widely used to explain many physical and
chemical processes and phenomena as well as for creating a
number of technical devices. For example, on the basis of SR
onemay design an amplifier with a power amplification of the
periodic signal attaining ' 30 dB when the integral power of
external noise exceeds the energy of the information-carrying
signal by 60 ± 70 dB [132]. Under certain conditions, in the
presence of high noise level one may supply not only effective
amplification, but also extract the signal from the noise when
the SNR at the output is significantly larger than the SNR at
the input [133].

However, from the point of view of fundamental natural
sciences, applications of SR to sensory biology are most
interesting and, perhaps, most important. There are several

reasons to believe that living organisms have adapted with
evolution to use the inevitable internal noise and noisy
environment for optimal detection and extraction of useful
information. In particular, it has been demonstrated by
research of sensory processes in the hydrodynamically
sensitive mechanoreceptors of the crayfish [134, 135] and the
air motion-sensitive receptors of the cricket [123]. These
sensory systems in both animals were presumably evolved
for the purpose of long-range detection of predators: in the
case of the crayfish Ð a hungry fish, and in the case of the
cricket Ð a wasp, which seeks to lay eggs within the body of
the animal. For successful predator avoidance crayfishes are
adept at detecting well in advance the nearly periodic signal of
the water vibrations generated by the tail of a swimming
predator fish on the background of water turbulence, and
crickets Ð the periodic air vibrations due to the wing beats of
wasps on the background of a noisy environment. As has been
shown, the theory of non-dynamical or threshold SR is
capable of explaining the sensory mechanisms of these
animals. What is more, this theory makes possible a
qualitative explanation of the peculiarities of human visual
perception [136, 137].

8.1 Stochastic resonance in the mechanoreceptors of the
crayfish
The mechanoreceptor system of the crayfish is located in its
tailfan and is illustrated in Fig. 18. The tailfan has approxi-
mately 250 long hairs which are connected to the interneurons
within the ganglion by sensory neurons collected into nine
nerve roots.

The tailfan has the 6th, or terminal, ganglion with its pair
of photoreceptor cells. As seen from Fig. 18, neural impulses
can be registered at the sensory neurons, or on the photo-
receptor output neuron. In order to record the neuron signals,
the microelectrodes were surgically introduced into desired
parts of the crayfish receptor system. The hairs were
stimulated by relative fluid motions in the directions shown
in Fig. 18. These motions are typically sinusoidal, of
amplitude 10 to 100 nanometers, at frequencies from 5 to
100 Hz, and velocities 100 to 1000 microns per second. The
responses of a photoreceptor cell can be studied in the
presence of both hydrodynamical stimulation and light
beam of uniform intensity on the photoreceptive area.
Environmental noise was used as the random source. The
experimental protocols necessary for this research have been
well-developed [134].
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Figure 18. Mechanoreceptor system of the crayfish.
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Measurements of the SNR of the crayfish sensory neuron
as a function of the external noise intensity have demon-
strated the effect of SR. The experimental results are shown
by the squares in Fig. 19, where the theory is exhibited by the
solid curve and a FitzHugh ±Nagumo simulation is depicted
by the diamonds. These results suggest that the mechanor-
eceptor system provides signal detection in environmental
noise of an optimal intensity. Moreover, the signals best
detected are sinusoidal in the frequency range around 10 Hz.
This is the frequency characteristic of water vibrations
induced by swimming fish. Such water waves travel faster
than the fish itself thus providing an early warning of the
crayfish.

A major question concerning the internal noise of sensory
(and other) neurons remains open. Virtually all neurons are
noisy [138, 139], and some are much more noisier than can be
accounted for by equilibrium statistical processes [140].
Experiments designed to seek SR in the crayfish sensory
neurons have been performed by controlling the internal
noise through the variation of temperature of the prepara-
tion. Unfortunately, SR has not been observed yet.

8.2 The photoreceptor system of the crayfish
There is another way to control the internal noise of a neuron,
which has resulted in observation of SR. The light falling on a
photoreceptive area embedded in the 6th ganglion mediates
the internal noise of that neuron (see Fig. 18) [135]. Our
current state of knowledge of the detailed mechanism of the
interplay between light intensity and the level of neuron
internal noise is far from satisfactory. The neural output at
this location is determined by the complex (and largely not
understood) computational processes occurring within the
ganglion. However, recordings from the photoreceptor out-
put neuron as the light intensity is varied have shown that an
increase of the light intensity causes the internal noises to
grow. This fact suggests the possibility of studying the
influence of the internal noise of a neuron on its ability for
periodic signal detection. In the experiments, hydrodynamic

stimuli were applied to the crayfish receptors as usual, but the
signal-to-noise ratio was measured for different light inten-
sities. The experimental data surely confirmed the SR effect
controlled by light intensity.

The experimental results outlined above have been
confirmed in a recent experiment on SR with crickets [123].
The crickets make use of a similar wasp avoidance system.
The cricket has two rear appendages which are covered with
hair mechanoreceptors. Each receptor is connected to a set of
interneurons in a terminal ganglion very much like that of the
crayfish. The hairs respond to air vibrations and have
characteristic frequencies of 80 to 150 Hz. (By contrast, the
crayfish mechanoreceptive system responds to hydrodynamic
stimuli of 8 to 25 Hz.) The wing beats of the wasp, the main
predator of the cricket, lie within this frequency range.

The SR experiment on the cricket was designed withmany
improvements. For example, modern information transmis-
sionmeasures rather than the simple SNRmeasure were used.
A weak periodic stimulus was applied to the appendages in
the form of air flows to which random motions (noise) were
added. The results showed an optimal external noise intensity
for which the transinformation from stimulus to interneurons
in the ganglion was maximum.Moreover, the results brought
out that the addition of external noise to a weak periodic
signal could also improve the neural-action potential timing
precision.

8.3 SR as a tool for quantifying human visual processes
Practically in all the experiments on studying SR effect, the
computer analysis of signals at the input and output of the
systems under consideration was employed, which lent
support to the conclusion about a presence of signal
amplification (or information gain) under the action of
intensity-optimal noise. But does the animal or a human
actually make use of this enhanced information? That cannot
be shown by any direct electrophysiological recording, but
instead must be tested integrally in behavioural, that is
psychological, experiments in humans. The original motiva-
tion of such experiments was to replace the complex
computer-assisted data analysis with a human perception
(interpretation). Thus psychophysics experiments were
designed to explore the human ability to interpret noise-
enhanced visual information. Will this visually perceived
information depend on the noise intensity in a nonlinear
way similar to the SR effect? Is it possible to introduce any
quantitative criterion for the optimal interpretation of visual
information? These questions were answered in Ref. [137].
The answer is positive.

The experiments have been described in detail elsewhere
[137] and so will only briefly be outlined here. A picture was
digitized on a 256 level gray scale and displayed on a
computer monitor as an image of 256 by 256 pixels. The
picture was then sunk beneath a threshold. The gray values of
all pixels lie beneath the threshold so the image on the
monitor is blank. Noise is then added to this threshold
image by choosing a number from a zero-mean Gaussian
distribution and adding this to the image pixel-by-pixel. The
noise in each pixel is uncorrelated with the noise in any other
pixel. Some pixels now contain gray levels above the thresh-
old, and these are shown completely black. The remaining
pixels (with gray levels below the threshold) are shown white.
If the noise added is too small, only a few pixels contain
information about the image and the resulting picture is
difficult to interpret. If the noise is too large, there is overly

0 0.2 0.4 0.6

Effective noise voltage, V

0.8 1.0 1.2

12

S
N
R
,d

B

10

8

6

4

2

Figure 19. Crayfish sensory SR is illustrated by the squares, compared to

the theory (solid line) and FitzHugh ±Nagumo simulation (̂ ).

32 V S Anishchenko, A B Neiman, F Moss, L Schimansky-Geier Physics ±Uspekhi 42 (1)



much randomness in the picture and it is again difficult to
interpret. An optimal noise level results in the mostly
interpretable picture. An example is shown in Fig. 20. Note
that one can see the picture very well in Fig. 20b, which shows
the optimal noise added. The effects on the human visual
system are dynamical, and an interactive animation may be
seen on the World Wide Web (http://neurodyn.umsl.edu/sr).
In the dynamical presentation, the noise correlation time also
has an effect which can be observed at the Web site.

In the psychophysical experiment, subjects were presented
with a series of pictures contaminated with noise of varying
intensity and/or correlation time. The image used was a
standard pattern used in visual psychophysics experiments.
Subjects were asked to identify the fine (pleasant) detail of the
pattern. Their perceptive threshold Ath was measured.

Example data of the perceptive threshold as a function of
the noise level for one subject are shown in Fig. 21. Notice
that the perceptive threshold registered by the subject is
minimum when the information transmitted by the picture
to the visual cortex is maximum. Thus the characteristic
feature of SR appears in this experiment as a minimum in
the perceptive threshold. This fact can be substantiated on the
basis of the approximate theory of threshold SR. The
standard equation (4.8) describing SR is rewritten as a signal
amplitude equation and solved for a multiplicative constant

Ath, which has the dimension of signal power. All coefficients
are lumped into single constant K, which is used as the only
adjustable parameter in fitting the psychophysical data with
the theory. The equation for Ath is shown in legend to Fig. 21
together with the dependenceAth�s� and experimental data in
the figure itself. Note that the fit is not excellent, but is
surprisingly good in view of the implicit assumptions. In
particular, Eqn (4.8) was derived for a single stochastic
resonator. But brain processes are rather complex, so there
is no reason to suppose that a single-element equation would
describe the experimental findings.

Notice that the fitting constant K applies to a single
individual subject and is a measure of his or her ability to
detect and interpret fine details in a noise-contaminated
visual picture. This ability varies considerably from subject-
to-subject. However, the dependence presented in Fig. 21
holds for all subjects. What is important, the constant K for
different subjects does not change in time. Each subject was
tested three times in three sessions separated by at least one
day and often as much as a week. The repeatability for an
individual subject over the three sessions is worth noting.
Moreover, three of the subjects were recalled after approxi-
mately a year.Within the limits of experimental accuracy 10 ±
15% the values ofKwere unvaried. The findings indicate that
the experiment produces robust and repeatable results.

9. Conclusions

In the framework of this review we have analyzed nonlinear
phenomena over a wide class of bistable systems simulta-
neously driven by information-carrying signals of different
structures and internal or external noise of a given statistics.
All the cases considered here have confidently shown that
noise of an optimal intensity can be used to improve certain
characteristics of the signal at the output of a bistable system.
This phenomenon is known as stochastic resonance. The
noise plays a constructive role and can be beneficial to
increase different coherence measures as well as the degree
of order in the system. From this point of view, SR can be
treated as a noise-induced transition, when the degree of
order in the system is enhanced due to noise.

Let us summarize briefly themajor results of this work. As
was shown in Section 3, SR can be used to amplify signals
with amplitude and frequency modulation of low-frequency
carrier signals on a background of noise of relatively high
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Figure 21. Example of data on perceptive thresholdAth�K1s exp�D2=�2s2��
versus effective noise intensity s; K � 0:36 and D � 81.
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Figure 20. Three pictures of a boy at different noise intensities added to the subthreshold image.
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intensity. Distortions of the signal cannot be avoided, but
they can be minimized by choosing optimal noise and tuning
operating characteristics of the system. When a narrow-band
(quasi-monochromatic) noisy signal with a finite spectral
linewidth is used, then it is possible to minimize the effective
width of the spectral line of the output signal. SR is also
realized for information-carrying signals with a wide con-
tinuous frequency spectrum. A quantitative measure of the
degree of order here is the coherence function attaining its
maximumwhen SR occurs. The extension of the SR theory to
non-dynamical (or threshold) systems (4.1) is of great interest.
The theory of threshold SR is able to describe the active
processes in neuron systems and to explain the results of a
series of interesting biological experiments (Section 8).

The results on SR in chaotic systems (4.2) are interesting
as well. Noise-induced switchings between two chaotic
attractors are in agreement with the general conception of
the physical mechanism of SR. In contrast to the simple
bistable oscillator, here we have `an interaction' of two
metastable states with complex intrawell dynamics. If a two-
state approach taking into account only the switching events
is applied, then we observe no significant differences. SR
observed in the regime of dynamical intermittency (in the
absence of noise) is a principally new phenomenon. In this
case the effective Kramers time is determined by the system
parameter and the SR regime takes place at an optimal value
of the control parameter at which the mean switching
frequency matches the driving frequency.

One of the basic problems of the review was a detailed
analysis of the new phenomenon, i.e. stochastic synchroniza-
tion of bistable systems (Section 5). Many researchers have
indicated in their papers that SR is conditioned by synchro-
nization. But this point was not wholly clear [93]. In this
review we have given a clear definition of effective stochastic
synchronization, presented a theory of this effect based on the
classical works on synchronization of autooscillations in the
presence of noise, and presented the results of full-scale and
numerical experiments, which completely confirm the theore-
tical conclusions. Now we can confidently conclude that for
finite force amplitudes the effect of instantaneous phase and
switching frequency locking takes place over a finite range of
system parameter values (in the synchronization region). As a
result, there is a range of noise intensities (or another control
parameter) where the mean switching frequency is nearly
constant and equal to the modulation frequency. As is
known, synchronization is one of the possible mechanisms
of self-organization in nonlinear systems. The extension of
the definition of effective synchronization to a wide class of
bistable stochastic systems allows one to understand more
clearly the physical mechanism of enhancement of order in
noisy bistable systems. As was shown in Section 7, only in the
regime of stochastic synchronization do the dynamical
entropy and the source entropy reach their minima, indicat-
ing an enhancement of order or self-organization in the
system.

In Section 6 we studied SR in ensembles of stochastic
resonators. We considered ensembles of noninteracting
elements, of nondynamical elements and ensembles of
coupled elements. We showed that the SR effect can be
significantly enhanced in an array compared to a single
bistable element. The SNR at the ensemble output in the
regime of SR can be close to the SNR at the input with a large
amplification factor of the input signal. The array of
stochastic resonators, in contrast to a single bistable ele-

ment, demonstrates the effect of stochastic synchronization
for an arbitrarily weak external periodic signal. In addition,
the dependence of coherence function on frequency disap-
pears with increasing number of elements in the ensemble.We
applied the linear response theory and showed explicitly the
effect of SR without tuning: in order to observe SR in a large
array one needs only the presence of noise of any intensity.
This conclusion is very important since it explains the
mechanism of `noise tuning' in systems of sensory neurons.

Finally, in Section 8 we discussed the results of applica-
tions of the SR theory to a possible explanation of the ability
of living organisms to detect weak signals in a noisy enough
environment. We showed certainly that in the regime of SR
some living organisms detect a weak informational signal
most efficiently.
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