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A 400-MHz Processor for the Conversion of Rectangular to Polar Coordinates
in 0.25-�m CMOS

David D. Hwang, Student Member, IEEE, Dengwei Fu, and Alan N. Willson, Jr., Fellow, IEEE

Abstract—This paper describes the architecture and IC im-
plementation of a rectangular-to-polar coordinate converter for
digital communication applications. The architecture core uses
small lookup ROMs, fast multipliers, and a single angle-rotation
stage. Area and latency are reduced in comparison with tradi-
tional methods. The processor, implemented in 0.25-m five-metal
CMOS, has 14-b in-phase and quadrature channel inputs and 15-b
magnitude and phase channel outputs. The phase and magnitude
calculations have a maximum error of 0.00024 (0.0078% of )
and 0.03 (1% of2 2), respectively. Computational latency is 19
cycles, and power dissipation is 470 mW at 2.5 V and 406 MHz
(Mconversions/s).

Index Terms—Application-specific integrated circuits, coordi-
nate conversion, CORDIC, digital communication, synchroniza-
tion.

I. INTRODUCTION

M ANY DIGITAL communication applications require the
efficient conversion of rectangular to polar coordinates,

i.e., a complex number represented as a vector withand
channels must be converted into polar representation (, )
using and , as shown in
Fig. 1. Often, only the phase must be precisely calculated from
the input data; the magnitude, if required at all, is only used for
coarse scaling.

The processor, along with a corresponding polar-to-rectan-
gular processor [1], can implement the M-ary phase shift
keying (PSK) receiver in [2], which requires high-precision
wordlengths. (See also the applications mentioned in [3].) In
CDMA and UMTS base-station applications, the processor
could provide coordinate transformations for downconversion,
as does the 24-b 95-MSamples/s rectangular-to-polar module
embedded within [4]. The general wide-band PM/FM demod-
ulators described in [5] require the extraction of the phase of
a complex number. In the receivers discussed in [6] and [7],
rapid phase extraction for clock and carrier synchronization
is crucial, particularly if a latency-sensitive feedback loop
is employed. The 16-b 50-MHz coordinate converter in [8]
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Fig. 1. Rectangular-to-polar conversion.

Fig. 2. Two-stage phase calculation.

would be able to perform this computation with a latency of
18 computational cycles. Our chip could be overclocked eight
times in such a system, providing an overall latency of only

computational cycles at the 50-MHz clock rate.

II. PRIOR ART

In many of the target applications, the essential component
of the algorithm is the extraction of the phase. There are
several common implementations for such a phase extraction,
which can be grouped into three categories: 1) ROM-based
approaches; 2) multiplierless approaches with limited memory,
such as CORDIC; and 3) modified CORDIC solutions.

The simplest method for complex value phase extraction em-
ploys a ROM lookup table [5] in which the and signals
access a ROM module which produces the phase. This method
provides the lowest latency of computation—a single memory
access—however, it is useful only for small-wordlength appli-
cations since ROM size increases exponentially with
input wordlength . A quotient and ROM technique calculates
the quotient and uses it to index the ROM table
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Fig. 3. Converter architecture.

which, in turn, produces [5]. This method lessens but still re-
tains the complexity problem. Obviously, other techniques are
needed for larger wordlength applications.

A technique suited for larger wordlength applications
is a multiplierless approach that requires limited memory:
CORDIC (Coordinate Rotation Digital Computer) [9], [10].
However, since an -bit input requires approximately
stages, the latency in CORDIC increases linearly with required
precision. In addition, being inherently sequential, with the
input of one stage depending on the result from the previous
stage, parallelizing CORDIC-based systems can be difficult.
Wordlength considerations also affect CORDIC structures.
Each CORDIC stage truncates the intermediate, values
to a fixed wordlength, causing truncation errors to propagate to
the output. To insure small errors, internal wordlengths must
be larger than the output precision. In the CORDIC-based
system of [11], 20-b internal wordlengths are required for a
14-b output, 14-stage design. Though CORDIC’s multipli-
erless feature reduces complexity, both latency and internal
wordlengths increase with increased precision requirements.
Moreover, multiplier techniques such as Booth-encoding
cannot conveniently be employed.

Hybrid approaches which incorporate modified CORDIC
structures along with multipliers and/or memory attempt to
strike a compromise between complexity and latency. An
interpolation method of [12] divides an -rotation CORDIC
into two computational stages: a coarse stage replaces
CORDIC rotations with a lookup table and two multipliers,
while a fine stage uses CORDIC for the remainingrotations.
A Taylor series method (see also [12]) implements a coarse

stage with CORDIC for the first rotations and a
fine stage computing the residual angle using Taylor series
approximations as a single rotation via two multiplications
and without a trigonometric lookup table. Another two-stage
approach is presented in [13], where the coarse stage uses
CORDIC to perform rotations, then the remaining
angle is approximated by its first-order Taylor
series , computed either by convergence division or
by further CORDIC rotations and a ROM-based division.
Similar hybrid techniques are presented in [14]. In modified
CORDIC approaches, although the number of rotations is
reduced, latency still grows with (and indirectly, ) due to
the dependence on CORDIC to perform rotations.

III. A LGORITHM AND ARCHITECTURE

The method described here implements a two-stage phase
computation using a fixed number of rotations (one) regardless
of precision requirements. The coarse stage uses two ROMs
and a multiplier to calculate , an approximation of . It
starts by rotating toward the axis by the computed
angle using a two-multiplier butterfly structure, resulting in
the vector of Fig. 2. At this point, the residual angle

can be approximated by . The fine
stage performs this division to obtain via a reciprocal ROM
and multiplier followed by a Newton–Rhapson sharpening
stage using two multipliers. The final value . (A
magnitude calculation stage operates in parallel with the fine
phase computation stage.) The structure of the core processor,
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including all stages except for the input formatting stage, is
shown in Fig. 3.

Rigorous analysis [15] demonstrates that the ROM sizes are
on the order of words (32 words for ). The six
multipliers are not multipliers with full output precision,
but rather vary in size from to

to for
with truncation/rounding operations performed at the multi-
plier outputs. The proposed architecture’s scaling properties
should also be noted. Since the ROMs in the structure are on
the order of words, many of the input wordlengths
and multiplier wordlengths increase with by a factor of

. For example, if the input wordlength increases by
three bits, the ROM complexity would only increase by a factor
of two. (In comparison, the complexity would increase by a
factor of or in the prior art ROM-based and
quotient-based methods, respectively.) Also, for the method
presented here, many internal and multiplier wordlengths
would increase by only one bit for a 3-b input wordlength
increase. Traditional CORDIC would require a greater increase
of wordlength to compensate for truncation errors; for example,
three bits of additional internal wordlength are required (going
from 20 b to 23 b) as precision increases from to

in the CORDIC-like circuit of [11]. CORDIC would
also require three additional rotation stages, increasing latency.
Modified CORDIC algorithms often require an increased
number of rotation stages as wordlength precision increases.

The proposed algorithm can be considered a modified
CORDIC-like solution in that it possesses rotations, memory,
and multipliers. It is unique in that it requires one fixed rotation
using fast multipliers and memory rather than themultipli-
erless rotations of pure CORDIC or the multiplierless
rotations preceded/followed by fast multipliers (coupled with
memory) of the modified CORDIC solutions. Having a fixed
number of stages, latency can be reduced regardless of the
required precision by using efficient multiplier structures
(modified Booth). Each of the architecture stages is described
in further detail in the next sections.

A. Coarse Phase Computation Stage

This stage produces a coarse estimateof . Initially,
the five MSBs of , denoted , are used to access a
32-word ROM which performs reciprocation, producing

. The tangent of is calculated by multiplying this
value by and rounding to five fractional bits, obtaining

. Finally, is used to access a
33-word arctangent ROM which produces the coarse phase
estimate .

B. Fine Phase Computation Stage

This stage is used to calculate the residual angle .
It begins by rotating the vector clockwise by to
produce the vector lying radians above the axis,
as shown in Fig. 2. (Note, however, that can be positive or
negative.) This butterfly rotation can be described as

(1)

We note that the value of has been calculated in the
coarse stage. The butterfly stage also operates in parallel with
the arctangent ROM of the coarse stage, reducing latency. Once

is calculated, the fine stage proceeds to calculate
the value of . It can be shown that if

then with sufficiently
minimal loss of accuracy [15].

is calculated by using an approximation term multi-
plied by a Newton–Raphson sharpening term. The approxima-
tion term is obtained by using the same reciprocal ROM tech-
nique (and, if desired, the same reciprocal ROM itself) as in the
coarse stage and is represented as . However, the
approximation term does not meet the accuracy requirements of
the fine stage. To sharpen the accuracy, one iteration step of the
Newton–Raphson method [16] is applied. Using as an
initial guess for the zero of the function , a suf-
ficiently accurate result is obtained with one iteration of

. Hence, the fine angle is computed as

(2)

where is the approximation term and
is the sharpening term. In terms of architecture, the re-

ciprocal ROM output is multiplied by both (to form
the approximation term) and . The sharpening term is calcu-
lated by simply inverting the bits of (i.e., using its
one’s complement) which approximates with
an error much less than the final rounding of. The approxima-
tion term is multiplied by the sharpening term to produce.

C. Input Formatting and Quadrant Mapping Stages

Before the phase computation stages, an input formatting
stage is employed to map the original circuit inputs into values
suitable for the conversion algorithm [15]. For highest phase
accuracy, the inputs to the IC, and , must be mapped to a
corresponding and within the first octant in the range

and . After the phase computation
stages, the quadrant mapping stage forms the sum
and remaps this phase to the original quadrant. The quadrant
mapping stage uses two multiplexers as well as a five-word
phase ROM which stores the rounded values of 0,, , ,
and , as well as an additional rounding bit.

D. Magnitude Computation Stage

The magnitude computation stage operates in parallel with
the fine phase computation stage. The magnitude of a given
complex number can be calculated as .
Since the coarse angle is an approximation of , similarly

approximates . Therefore, the arctangent
ROM is expanded to store as well as . In the magnitude
computation stage, the value of is multiplied by the ROM
output to produce . Since the original IC inputs
and were scaled, the value ofis also appropriately scaled.
The final value of has a maximum error of 0.03. For many
applications, a high-precision magnitudeis not necessary.
For those applications requiring higher precision, interpolation
algorithms can be used in a modified design.
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TABLE I
IC SPECIFICATIONS

E. Hardware Optimization

Hardware optimization techniques are used to reduce area
while retaining functionality. As shown in Fig. 3, there are three
ROM modules in the system, having 33, 32, and 5 words. To
implement each of the ROM modules would require the full-
custom layout of each ROM, which would be costly in design
time. However, since each ROM is small, each is easily imple-
mented as a combinational logic circuit using standard cells. In-
ternal wordlengths are also reduced. First, each bus is minimized
in keeping within our error-bound analysis [15], producing the
minimum wordlengths required for proper output accuracy. In
addition, except the formatting stages, virtually every bus holds
a nonnegative number. Taking advantage of this fact, these buses
are encoded using positive instead of two’s complement arith-
metic, saving one bit on every bus. Also, we retain only informa-
tion-bearing bits, dropping portions of buses known to be zero
at all times.

IV. CHIP CHARACTERISTICS ANDTEST RESULTS

The prototype IC [17] was implemented in a 0.25-m five-
metal 2.5-V TSMC CMOS technology using a library from Ar-
tisan Components. The IC inputs are 14-b two’s complement

and in the range , , with two integer and
twelve fractional bits. The IC outputs are 15-bit two’s comple-
ment and in the ranges and ,
each with three integer and twelve fractional bits. The circuit
is packaged in an 84-pin Kyocera ceramic package. The core
area is 0.484 mmand consists of 100 229 transistors. The cir-
cuit was tested on a custom-designed PC board and employed
built-in self-test (BIST) to verify the core processing speed and
various random test vectors to verify functionality and accu-
racy. The IC operated at 2.5 V at a maximum frequency of
406 MHz (Mconversions/s), while dissipating 470 mW. The IC
also operated at 1.8 V at a maximum frequency of 260 MHz
(Mconversions/s), while dissipating 140 mW. The maximum
error in the computation of was less than one output LSB,

of , and the maximum error in
the computation of was less than 0.03 (123 LSB, 1% of ).
The total computational latency is 19 cycles. A summary of the

Fig. 4. IC photomicrograph.

test results and chip specifications is given in Table I. A pho-
tomicrograph of the prototype IC is shown in Fig. 4.

V. CONCLUSION

An efficient rectangular-to-polar conversion algorithm has
been introduced for digital communications applications. The
conversion architecture is composed primarily of a two-stage
phase computation and a parallel magnitude computation. A
digital IC has been fabricated which implements the architec-
ture in a 2.5-V 0.25-m CMOS technology. As communica-
tions applications require increasing wordlengths and accuracy,
the value of this algorithm may grow increasingly evident in
comparison to ROM-based, traditional CORDIC, and modified
CORDIC solutions.
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