Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives:

Jaroslaw M. Wasikiewicz, Laila Abu-Sen, Andrew Horn, Jacobus M. Koelewijn, Adam V. S. Parry John J. Morrison, and Stephen G. Yeates.

Synthetic routes for molecules 10 and 11.
Tri/tetrabromo-3-fluoro-o-xylene (10)

$$
m+n=3 \text { to } 4
$$

A 1 L round-bottom flask was charged with $23.08 \mathrm{~g}(186 \mathrm{mmol})$ of 3-fluoro-o-xylene and $166 \mathrm{~g}(930 \mathrm{mmol})$ of N -bromosuccinamide (NBS) and 600 ml of carbon tetrachloride and a magnetic stirrer. The flask was flushed with N_{2}. Next a 200 W UV lamp was placed at a distance of 2 cm with the beam focused at the centre of the flask. The reaction progress was monitored by GS-MS measurements. After $6.5 \mathrm{~h} 100 \%$ of substrate was converted to tribromo-3-fluoro-o-xylene. Extended reaction time resulted in production of mixture of tri and tetrabromo-3-fluoro-o-xylene at the maximum ratio of 47 to 53% after 24 h . The resulting yellow liquid was washed with sodium thiosulphate, water and saturated NaCl solutions. Next it was dried with MgSO_{4}, filtered off and concentrated in vacuum giving 64.0 g of the mixture as a pale yellow waxy solid. CAUTION - this product was found to be a potent lachrymator.

Alternatively this material may be accessed by the Green Chemistry route below.
To methyl acetate (75 mL) was added 3-fluoro-o-xylene ($1 \mathrm{~g}, 8.05 \mathrm{mmol}$), NBS $(3.2 \mathrm{~g}, 17.98 \mathrm{mmol})$ and a few drops of hydrobromic acid with stirring. A condenser was attached and the reaction mixture was irradiated with a 60 W lightbulb for 48 h . The reaction was monitored by GC-MS until the degree of bromination stopped increasing. Workup as above gave a mixture of tri and tetrabromo-3-fluoro-o-xylene $\mathbf{1 0}(4.69 \mathrm{~g}, 66.18 \%)$ as a pale orange liquid which crystallised upon cooling. CAUTION - this product was found to be a potent lachrymator.

1,2-bis(dibromomethyl)-4-fluorobenzene (11)

Using the above method a 500 ml round-bottom flask was charged with $3 \mathrm{~g}(24.4 \mathrm{mmol})$ of 4 -fluoro- o-xylene and $21.5 \mathrm{~g}(120.8 \mathrm{mmol})$ of NBS and 300 ml of carbon tetrachloride and a magnetic stirrer. After $6.5 \mathrm{~h} 100 \%$ of substrate was converted to 21.5 g of the title material ($19.8 \mathrm{mmol}, 82 \%$). Analysis showed this was identical to the commercial material from Acros Organics. Mpt $92-97{ }^{\circ} \mathrm{C}$.

[^0]

Scheme S1. Synthetic route to fluorinated TIPS pentacenes.

Figures S1 below. ${ }^{1} \mathrm{H}$ NMR 400 MHz spectra of target compounds 1-fluoro-6,13-bis[triisopropylsilylethynyl]pentacene (6); 1,(8:11)-difluoro-6,13-bis[triisopropylsilyl-ethynyl]pentacene (7); 2-fluoro-6,13-bis[triisopropylsilyl-ethynyl]pentacene (8); 2,(9:10)-difluoro-6,13-bis[triisopropylsilyl-ethynyl]pentacene (9) followed by APCI mass spectrographs.

Molecule 6

Molecule 7

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Molecule 8

Molecule 9

Molecule 6

Molecule 7

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Molecule 8

| University of Manchester |
| :--- | :--- |
| $311253824(1,265)$ |
| 100 |

Molecule 9

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

R_{6} and $\left.\mathrm{R}_{13}=\frac{\overline{\mathrm{a}} \mathrm{b}}{\overline{\mathrm{a}}} \mathrm{Si} \mathrm{c}_{\mathrm{c}}^{\mathrm{C}}\right]_{3}$

Fig. S2. Structural key for NMR assignments of compounds 6-9.

Tables S1 below. NMR assignments of fluorinated TIPS-pentacenes. Where not entered assignment uncertain.
Compound 6

	$\delta \mathbf{H p p m}$	3J (H,H)	3J (H,F)	4J (H,F)	$\delta \mathbf{C p p m}$	1J (C,F)	2J (C,F)	3J (C,F)	4J (C,F)
1					158.96	256.6			
2	7.06	7.31	10.48		107.62		19.4		
3	7.38	8.51,		5.55	125.12			7.38	
		7.38							
4	7.78	8.58			124.59				4.6
4a					132.41			7.4	
5	9.34				126.25				3.7
$\begin{aligned} & \text { 5a, 6a, 7a, 11a, } \\ & 12 \mathrm{a}, 13 \mathrm{a} \end{aligned}$					$\begin{aligned} & 130.29, \\ & 130.31, \\ & 130.65, \\ & 130.75, \\ & 130.84, \\ & 132.98, \end{aligned}$				
6,13					$\begin{aligned} & 119.15, \\ & 118.40 \end{aligned}$				Both 1.9 long range
7,12	9.32				$\begin{aligned} & \hline 126.45, \\ & 126.34, \end{aligned}$				
8,11	7.95-8.04				$\begin{aligned} & \hline 128.70, \\ & 128.65 \end{aligned}$				
9,10	7.40-7.48				$\begin{aligned} & 126.21, \\ & 126.17 \end{aligned}$				
14	9.61				120.18			3.7	
14a					123.98		18.5		
a					$\begin{aligned} & \hline \text { 107.49, } \\ & \text { 107.82 } \end{aligned}$				
b					$\begin{aligned} & \hline 104.26, \\ & 104.41 \end{aligned}$				
c	$\begin{aligned} & 1.34- \\ & 1.43 \end{aligned}$				$\begin{aligned} & \text { 18.93, } \\ & \text { 18.97 } \end{aligned}$				
d	$\begin{aligned} & 1.34- \\ & 1.43 \end{aligned}$				$\begin{aligned} & 11.60, \\ & 11.63 \end{aligned}$				

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors:
Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Compound 7

	$\delta \mathbf{H p p m}$	3J (H,H)	3J (H,F)	4J (H,F)	$\delta \mathrm{Cppm}$	1J (C,F)	2J (C,F)	3J (C,F)	4J (C,F)
$1(8,11)$					158.95	255.3			
$2(9,10)$	7.07	7.31	10.59		$\begin{aligned} & 107.86 \\ & 107.91 \end{aligned}$		20.519 .1		
3 (9,10)	7.38	8.51, 7.38		5.30	$\begin{aligned} & 125.31 \\ & 125.37 \end{aligned}$			$7.3 \quad 7.3$	
$4(8,11)$	7.78	8.77			$\begin{aligned} & 124.58 \\ & 124.64 \end{aligned}$				4.44 .4
4a (7a,11a)					$\begin{aligned} & 133.20 \\ & 133.22 \end{aligned}$			8.87	
$5(7,12)$	9.34				$\begin{aligned} & 126.31 \\ & 126.43 \end{aligned}$				4.44 .4
5a, 6a,12a,13a					$\begin{aligned} & \hline 130.40 \\ & 130.59 \\ & 130.86 \\ & 131.05 \end{aligned}$				
6.13 (anti)					119.26				
6,13 (syn)					$\begin{aligned} & 118.51 \\ & 120.03 \end{aligned}$				
14 (7,12 for $\left.{ }^{1} \mathrm{H}\right)$	9.619 .62				$\begin{aligned} & 120.27 \\ & 120.39 \end{aligned}$			2.93 .7	
14a (8a, 12a)					$\begin{aligned} & 124.18 \\ & 124.25 \end{aligned}$		18.319 .1		
a (anti)					108.23				
a(syn)					$\begin{aligned} & 107.89 \\ & 108.56 \end{aligned}$				
b (anti)					104.08				
b (syn)					$\begin{aligned} & 103.93 \\ & 104.23 \end{aligned}$				
c (anti)	$\begin{aligned} & 1.34- \\ & 1.40 \end{aligned}$				18.92				
c (syn)	$\begin{aligned} & 1.34- \\ & 1.40 \end{aligned}$				$\begin{aligned} & 18.87 \\ & 18.98 \end{aligned}$				
d (anti)	$\begin{aligned} & \hline 1.34- \\ & 1.40 \end{aligned}$				11.62				
d (syn)	$\begin{aligned} & \hline 1.34- \\ & 1.40 \end{aligned}$				$\begin{aligned} & 11.60 \\ & 11.65 \end{aligned}$				

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors:
Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Compound 8

	$\delta \mathbf{H p p m}$	3J (H,H)	3J (H,F)	4J (H,F)	δ C ppm	1J (C,F)	2J (C,F)	3J (C,F)	4J (C,F)
1	7.55		10.01	$\begin{aligned} & 2.02(4 \mathrm{~J} \\ & \mathrm{H}, \mathrm{H}) \end{aligned}$	109.61		21.2		
2					160.40	250.1			
3	7.23-7.29				118.61		29.3		
4	7.96-8.03				131.69			8.8	
4a					130.09				1.8
5	9.23				126.96				2.9 (5J)
$\begin{aligned} & 5 \mathrm{a}, 6 \mathrm{a}, 7 \mathrm{a}, 11 \mathrm{a}, \\ & 12 \mathrm{a}, 13 \mathrm{a} \end{aligned}$					$\begin{aligned} & 129.78 \\ & 130.49 \\ & 130.81, \\ & 132.11 \\ & 132.25 \\ & 132.41 . \end{aligned}$				
6,13					$\begin{aligned} & \text { 117.83, } \\ & 118.70 \end{aligned}$				2.7 long range
7,12	9.31				$\begin{aligned} & 126.28, \\ & 126.36 \end{aligned}$				1.7 long range
8,11	7.96-8.03				$\begin{aligned} & \hline 128.65, \\ & 128.66 \end{aligned}$				
9,10	7.41-7.46				$\begin{aligned} & 126.07 \\ & 126.16 \end{aligned}$				
14	9.33				126.95				2.7
14a					132.09			9.2	
a					$\begin{aligned} & \hline 107.32, \\ & 107.41 \end{aligned}$				
b					$\begin{aligned} & 104.42, \\ & 104.48 \end{aligned}$				
c	1.35-1.41				18.98				
d	1.35-1.41				11.63				

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors:
Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Compound 9

	$\delta \mathrm{H} \mathrm{ppm}$	3J (H,H)	3J (H,F)	4J (H,F)	$\delta \mathrm{C} \mathrm{ppm}$	1J (C,F)	2J (C,F)	3J (C,F)	4J (C,F)
$1(8,11)$	7.54		9.84	$\begin{aligned} & 1.77(4 J \\ & \mathrm{H}, \mathrm{H}) \end{aligned}$	109.67		20.5		
$2(9,10)$					$\begin{aligned} & \hline 160.40, \\ & 160.50 \end{aligned}$	$\begin{aligned} & 251.0, \\ & 251.0 \end{aligned}$			
$3(9,10)$	7.23-7.29				$\begin{aligned} & \hline 118.75, \\ & 118.68 \end{aligned}$		$\begin{aligned} & 29.5, \\ & 29.5 \end{aligned}$		
$4(8,11)$	7.99	9.33		5.80	$\begin{aligned} & \hline 131.67, \\ & 131.68 \end{aligned}$			$\begin{aligned} & 8.3, \\ & 9.2 \end{aligned}$	
4a (7a,11a)					$\begin{aligned} & \text { 130.28, } \\ & 130.30 \end{aligned}$				$\begin{aligned} & \text { 2.2, } \\ & 1.9 \end{aligned}$
$5(7,12)$	9.22				$\begin{aligned} & \hline 126.92, \\ & 127.01 \end{aligned}$				$\begin{aligned} & \text { 2.9, } \\ & 2.2 \text { (5J) } \end{aligned}$
$\begin{aligned} & \text { 5a, 6a,12a,13a } \\ & \text { and 4a } \end{aligned}$					$\begin{aligned} & 129.78 \\ & 129.95 \\ & 130.30 \\ & 130.70 \\ & 131.00 \\ & 131.02 \end{aligned}$				
6,13 (anti)					118.19				
6,13 (syn)					$\begin{aligned} & \text { 118.16, } \\ & 118.21 \end{aligned}$				
$\begin{aligned} & 14(7,12) \\ & \text { (anti) } \end{aligned}$	9.31				125.36,				2.2
14 (7.12) (syn)	9.31				$\begin{aligned} & 125.28 \\ & 125.46 \end{aligned}$				1.5
14a (7a,11a)					$\begin{aligned} & 132.11, \\ & 132.29 \end{aligned}$			$\begin{aligned} & 10.1, \\ & 8.3 \end{aligned}$	
a (anti)					107.58				
a (syn)					$\begin{aligned} & \text { 107.49, } \\ & 107.67 \end{aligned}$				
b (anti)					104.23				
b (syn)					$\begin{aligned} & \hline 104.18, \\ & 104.30 \end{aligned}$				
c	1.35-1.39				18.96				
d	1.35-1.39				11.61				

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Fig. S3 UV-VIS fluorescence spectra of $\mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, 10$ compounds in toluene. Solvent spectrum was used as a baseline and substracted from compound spectra. Absorbance and fluorescence intensity were normalised against maximum peaks.

Fig. S4 DSC of pentacene derivatives. Fully reversible transitions of compounds $\mathbf{1}$ (black), $\mathbf{6}$ (blue) and $\mathbf{7}$ (green) shown. For compounds $\mathbf{8}$ and $\mathbf{9}$ transition was not detected.

Fig. S5 Optical microscope images of crystals of 1, 6, 7, 8, and 9 exposed to heating and cooling cycle. Heating to $150^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$; holding for 5 min at $150^{\circ} \mathrm{C}$; cooling down to room temperature.

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Fig. S6 below. Powder XRD of compounds 6, 7, 8 and 9 . Samples were exposed to thermal treatment at the heat/cooling rates $10^{\circ} \mathrm{C} / \mathrm{min}$ and XRD patters taken at the indicated temperatures.

Molecule 6

Molecule 7

Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors: Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

Molecule 8

Molecule 9

Thin Film Transistors

Field effect transistors were created for the compounds 6, 7, 8, 9 and tips-Pentacene (1). Thin films were characterised by X-ray diffraction and atomic force microscopy and transistors were created and analysed using conventional thin film transistor techniques.

All materials and devices were prepared on heavily doped silicon ($\mathrm{n}++$) substrates with 290 nm of thermally grown silicon dioxide. The substrates were cleaned by washing and sonication in acetone, propan-2-ol and methanol followed by UV-Ozone treatment. The surfaces of the substrates were then treated with octadecyltrichlorosilane (OTS) monolayers to reduce the surface energy, passivate traps and improve thin film growth. OTS treatment was done by spin coating of an OTS solution from chloroform, 3 times in ambient conditions. Unreacted OTS was removed by sonication in chloroform and dried at $105{ }^{\circ} \mathrm{C}$. OTS treated substrates were all washed with organic solvents and dried with nitrogen before being transferred to the vacuum chamber for thin film deposition.
Evaporation of the organic semiconductors was performed in a modified Edwards Auto306 vacuum evaporator with a base pressure of 5×10^{-7} mbar. Nominally, 50 nm of compounds $\mathbf{1 , 6 , 7 , 8}$ and $\mathbf{9}$ was deposited onto substrates held at $40^{\circ} \mathrm{C}$ at a rate of $0.5 \mathrm{As}^{-1}$
To create thin film transistors the as prepared substrates were transferred to a separate Edwards Auto500 vacuum evaporator (base pressure $3 \times 10^{-7} \mathrm{mbar}$) for gold evaporation. Nominally, 50 nm of gold was deposited on top of the organic layers at a rate of $1 \mathrm{As}^{-1}$ through a shadow mask.
The thin films were characterised using a Park XE100 atomic force microscope in tapping mode and a Bruker D8 discover X-ray diffractometer for out-of-plane X-ray diffraction. Transfer and output curves were obtained and device performance was analysed in the saturation regime using the standard equation.

$$
I_{D}=C_{i} \frac{W}{2 L} \mu_{s a t}\left(V_{G}-V_{T}\right)^{2}
$$

Where, I_{D} is the source-drain current, C_{i} is the capacitance, W the channel width, L the channel length, $\mu_{\text {sat }}$ is the saturation mobility, V_{G} is the swept gate voltage and V_{T} is the threshold voltage. The transistors had a channel width of $2000 \mu \mathrm{~m}$ and a channel length of $60 \mu \mathrm{~m}$, the 290 nm silicon dioxide with OTS monolayer was calculated to have a capacitance of approximately $11.7 \mathrm{nFcm}^{-2}$.

Out-of plane X-ray diffraction, Figure S7, shows reflections from the (00n) plane.. All compounds show very similar crystal structure with d-spacing between 16.1-16.6 A. Compounds $\mathbf{6}$ and 7 diffraction peaks are slightly shifted to slightly lower angles than the others. Interestingly the atomic force microscopy images, Figure S8, show that compounds $\mathbf{6}$ and 7 thin film morphology is strikingly different than for tips-Pentacene (1) whereas compounds $\mathbf{8}$ and $\mathbf{9}$ show very similar structure in crystallite size and shape.

Figure S7. Out-of-plane, x-ray diffraction for compounds 1, 6, 7, 8 and 9.

Figure S8. Atomic force microscopy for compounds $\mathbf{1 , 6 , 7 , 8}$ and $\mathbf{9}$. Scale bar is $2 \mu \mathrm{~m}$.
All devices fabricated were tested in an inert nitrogen glovebox. A probe station connected to an Agilent E5270b parameter analyser was used to obtain output and transfer curves, Figure S9. All devices showed similar mobility on the order of $10^{-2} \mathrm{~cm}^{2} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~s}^{-1}$ (summarised in Table 2), consistent with previous findings for this class of material. Further, all devices exhibited a threshold voltage close to zero, high on/off current ratio, currents of approximately $10 \mu \mathrm{~A}$, less than $1 \mathrm{~V} \cdot \mathrm{dec}^{-1}$ sub-threshold swing and only small hysteresis.

Figure S9. Transfer and output curves for compounds 1, 6, 7, 8 and 9

Figure S10: Plots of $\ln \left(A_{\mathrm{t}} / A_{0}\right)$ versus time t at $1 \times 10^{-5} \mathrm{M}$ in toluene at room temperature of compounds $1,6,7,8$, and 9

[^0]: Supplementary Information for Towards Solution Processable Air Stable P-type Organic Semiconductors:
 Synthesis and Evaluation of Mono and Di-Fluorinated Pentacene Derivatives.

