Irreducible collineation groups with two orbits forming an oval ✪

A. Aguglia a, A. Bonisoli b, G. Korchmáros c

a Dipartimento di Matematica, Politecnico di Bari, Via Amendola, 70126 Bari, Italy
b Dipartimento di Scienze Sociali, Cognitive e Quantitative, Università di Modena e Reggio Emilia, Via Allegri 9, 42100 Reggio Emilia, Italy
c Dipartimento di Matematica, Università della Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy

Received 18 April 2006
Available online 13 April 2007

Abstract

Let G be a collineation group of a finite projective plane π of odd order fixing an oval Ω. We investigate the case in which G has even order, has two orbits Ω0 and Ω1 on Ω, and the action of G on Ω0 is primitive. We show that if G is irreducible, then π has a G-invariant desarguesian subplane π0 and Ω0 is a conic of π0.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Oval; Collineation group; Homology

1. Introduction

The famous theorem by Segre states that in the desarguesian projective plane PG(2, q), q odd, every oval consists of all points of a conic, see [20], [13, Theorem 8.2.4] and [14, Theorem 12.9]. Therefore the full collineation group of PG(2, q), q odd, fixing an oval is isomorphic to PΓL(2, q) and it acts on the points of the oval as in its 3-transitive permutation representation.

✩ Research supported by the Italian Ministry MIUR, Strutture geometriche, combinatoria e loro applicazioni.
E-mail addresses: aguglia@dm.uniba.it (A. Aguglia), bonisoli.arrigo@unimore.it (A. Bonisoli), korchmaros@unibas.it (G. Korchmáros).
In this paper we deal with ovals Ω and their collineation groups G in any projective plane of odd order n. From earlier work by Cofman, Kantor, Lüneburg and Korchmáros it emerged that certain conditions on the structure and the action of a collineation group on an invariant oval imply that the plane must be desarguesian. This initiated a still ongoing research activity aimed at characterizing the desarguesian plane by means of the collineation group fixing an oval. The deepest result so far states that if G acts primitively on Ω, then π is a desarguesian plane, Ω is a conic and, up to one exception, G is doubly transitive on Ω; see [2], and also Theorem 2. It has been conjectured that even transitivity on Ω implies that π is desarguesian, see [17].

Ovals with nice collineation groups are also known to exist in some non-desarguesian planes, notably in the Hughes planes, in the generalized Hughes planes of order 25 and 49, see [5], as well as in the Figueroa planes, see [7], and also Section 3. The collineation groups of these ovals have the following common properties:

1. G has two orbits on Ω, say Ω_0 and Ω_1;
2. G is 2-transitive on Ω_0.

This raises the problem of determining all collineation groups G whose action on an invariant oval Ω satisfies both conditions (1) and (2).

In investigating this problem, the key idea is to prove the existence of an involutory homology in G and use Hering’s work on collineation groups containing homologies. As a matter of fact, this can be done even if (2) is weakened to require only that G has even order and acts primitively on Ω_0.

The cases where G either fixes a triangle with vertices off the oval, or a point outside Ω (or, by duality an external line to Ω) have been already investigated, see [1,6]. In both situations, examples are known to exist.

In the remaining case, G is irreducible on π, that is, it fixes no point, line or triangle of the plane. Our main result is the following theorem.

Theorem 1. Let G be a collineation group of a finite projective plane π of odd order n such that:

(a) G fixes an oval Ω of π and the action of G on Ω yields precisely two orbits Ω_0 and Ω_1;
(b) G has even order and acts primitively on Ω_0;
(c) G is an irreducible collineation group.

Then the following holds:

(i) G contains some involutory homologies;
(ii) if π_0 denotes the substructure of π generated by the centers and axes of the non-trivial homologies in G while K_0 denotes the kernel of the action of G on π_0, then G/K_0 contains a normal subgroup which is isomorphic to $\text{PSL}(2, q)$ for some odd prime power q;
(iii) π_0 is a desarguesian subplane of odd order m, Ω_0 is a conic in π_0 and either $m = q$ and G/K_0 is 2-transitive on Ω_0 or $m = 9$, and G/K_0 acts on Ω_0 as A_5 or S_5 in their primitive representation of degree 10.

Finally we remark that the above mentioned ovals in the Hughes, generalized Hughes and Figueroa planes are the known examples for Theorem 1.
2. Preliminary results

Basic facts on finite projective planes and their ovals can be found in [8] whereas we refer to [15] for what concerns finite groups. In particular $O(G)$ stands for the largest normal subgroup of odd order of a finite group G.

Let π be a projective plane of odd order n, Ω an oval of π and G a collineation group of π. We collect some previous results that will play a role in the proof of Theorem 1.

Proposition 1. (See [2, Proposition 2.1].) Any perspectivity of π fixing Ω is an involutory homology and either the center of σ is an internal point and the axis is an external line of Ω, or the center of σ is an external point and the axis is a secant of Ω. Furthermore any two distinct involutory homologies of π fixing Ω have both distinct centers and distinct axes.

Theorem 2. (See [2, Main Theorem].) Let G be a collineation group of π leaving Ω invariant and acting primitively on its points. Then π is desarguesian, Ω is a conic and either $n = q$ and G contains a normal subgroup acting on Ω as $PSL(2, q)$ in its doubly transitive representation, or $n = 9$ and G acts on Ω as A_5 or S_5 in their primitive representation of degree 10.

Theorem 3. (See [3, Theorem A].) Let G be a collineation group of π leaving Ω invariant. If G is non-abelian simple then $G \cong PSL(2, q)$ for $q \geq 5$ odd, and all involutions are homologies.

Proposition 2. (See [11].) If G contains non-trivial perspectivities, then the substructure π_0 of π generated by the centers and axes of non-trivial perspectivities of G is contained in each G-invariant subplane of π. Furthermore if G is an irreducible group, then π_0 is a subplane of π.

Let π_0 be as in Proposition 2. If $\pi_0 \neq \emptyset$ and G is irreducible we call π_0 the minimal Hering subplane and denote by K_0 the kernel of the action of G on π_0.

Proposition 3. (See [11].) Let G be an irreducible collineation group of π containing non-trivial perspectivities. Then G/K_0 contains exactly one minimal normal subgroup M, and M is either non-abelian simple or an elementary abelian of order 9. Furthermore M contains its centralizer in G/K_0.

Theorem 4. (See [4, Theorem 5.1].) Let G be an irreducible collineation group of π which preserves Ω and contains no involutory homologies. Then

$$G = O(G) \rtimes S,$$

with $S \cong Z_{2^h}$.

Theorem 5. (See [4, Theorem 5.5].) Let G be an irreducible collineation group of π which preserves Ω and contains non-trivial homologies. Then G/K_0 contains a unique minimal normal subgroup M_0 which is non-abelian simple and

$$K_0 = O(G) \rtimes S,$$

where $S \cong Z_{2^h}$.

The following lemmas come from [22] and [1], respectively.
Lemma 1. Let H be a collineation group of a finite projective plane π and let Δ be one of its point-orbits. Let N be a normal subgroup of H. If N fixes a point of Δ then Δ is pointwise fixed by N. If H acts primitively on Δ then either N fixes Δ pointwise or N is transitive on Δ. In the latter case if N is a minimal normal abelian subgroup of H then it is regular on Δ.

Lemma 2. Let H be a collineation group of a finite projective plane π fixing an oval Ω. Assume that H fixes at least three points on Ω. Then $\text{Fix}(H)$ is a subplane of odd order and the fixed points of H on Ω form an oval in π. Here $\text{Fix}(H)$ denotes the substructure of π consisting of the points and lines which are fixed by every collineation in H.

We are going to prove the following result.

Proposition 4. Let H be a collineation group of a finite projective plane π fixing an oval Ω and having two orbits on it. Let Δ be one of its two point-orbits on Ω with $|\Delta| \geq 3$. Let N be a non-trivial normal subgroup of H fixing Δ pointwise. If H acts primitively on Δ, then Δ is a conic in the odd order desarguesian subplane $\text{Fix}(N)$ of π.

Proof. Since $|\Delta| \geq 3$, Lemma 2 yields that $\pi = \text{Fix}(N)$ is a subplane of odd order in π. If N had a fixed point on $\Omega \setminus \Delta$, then by Lemma 1 it should fix $\Omega \setminus \Delta$ pointwise, whence Ω should also be pointwise fixed by N, that is $N = \{\text{id}\}$, a contradiction. We conclude that N has no fixed point on $\Omega \setminus \Delta$. The set of fixed points of N on Ω is precisely Δ, which is thus an oval in π. If K denotes the kernel of the action of H on π we get that H/K induces a collineation group of π fixing an oval Δ and acting primitively on its points. By Theorem 2 the subplane π is desarguesian of odd order q, and Δ is a conic. \(\square\)

3. The case where Ω_0 is an oval in a subplane

Throughout this section G is a collineation group of a finite projective plane of odd order n fixing an oval Ω of π and satisfying properties (1) and (2) stated in the Introduction.

We further suppose that Ω_0 is an oval in a subplane π of odd order m. The group G preserves π and induces a collineation group \overline{G} on π. Since \overline{G} fixes Ω_0 and acts 2-transitively on its points, Theorem 2 in [16] implies that π is desarguesian, say $\pi = PG(2, p^r)$ for some odd prime p, and that the relation $PSL(2, p^r) \leq G \leq P\Gamma L(2, p^r)$ holds.

If we further assume that G acts faithfully on π or, equivalently, on Ω_0, then $\overline{G} = G$ and we even have $PSL(2, p^r) \leq G \leq P\Gamma L(2, p^r)$.

Since G is transitive on Ω_1, we have that $|\Omega_1|$ is a divisor of $|G|$ and so, in particular, $|\Omega_1| \leq |G| \leq |P\Gamma L(2, p^r)| = rp^r(p^{2r} - 1)$. We obtain the estimate

\[n + 1 = |\Omega_2| = |\Omega_1| + |\Omega_0| \leq rp^r(p^{2r} - 1) + p^r + 1 \]

whence,

\[n \leq rp^{3r} - (r - 1)p^r. \]

Since $r \geq 1$, this gives $n \leq rp^{3r}$ whence $n < p^{4r}$.

3.1. The desarguesian case

Let p be an odd prime and let r, k be positive integers. Assume $\pi = PG(2, p^r)$ to be the canonical subplane of $\pi = PG(2, p^{rk})$. Let Ω_0 be the irreducible conic of equation $x_0^2 - x_1x_2 = 0$ of π. The same equation defines an irreducible conic Ω of π whose points in π are those of Ω_0.

The setwise stabilizer of Ω in the full collineation group of π is isomorphic to $P\Gamma L(2, p^{rk})$ in its natural 3-transitive permutation representation and contains $PGL(2, p^{rk})$ as a normal subgroup.

The semilinear transformations whose coefficients lie in the subfield $GF(p^r)$ and whose companion field-automorphisms fix $GF(p^r)$ setwise form a subgroup isomorphic to $P\Gamma L(2, p^r)$, the linear part of which is $G = PGL(2, p^r)$.

One orbit of G on Ω is Ω_0 and the action of G on Ω_0 is the natural action of $PGL(2, p^r)$ on $GF(p^r) \cup \{\infty\}$. Observe also that G acts faithfully on π.

When does G act transitively on $\Omega_1 = \Omega \setminus \Omega_0$?

A necessary condition is that $|\Omega_1| = (p^{rk} + 1) - (p^r + 1) = p^r(p^{rk-1} - 1)$ be a divisor of $|PGL(2, p^r)| = p^r(p^{2r} - 1)$, which is the case if and only if k is 2 or 3.

We want to show that in either case G is indeed transitive on Ω_1. To this purpose we investigate the fixed points on Ω_1 of a non-identity transformation g in G.

If g has exactly one fixed point on Ω_0, then g is a transformation of order p and so, g has a unique fixed point on the whole of Ω and this fixed point is in Ω_0 already.

If g has two different fixed points on Ω_0, then since each non-identity transformation in G has at most two fixed points, these are the two fixed points of g on the whole of Ω.

If g is fixed-point-free on Ω_0, then its characteristic polynomial $a(x)$ is an irreducible quadratic polynomial in $GF(p^r)[x]$. The splitting field of $a(x)$ is $GF(p^{2r})$, which is not a subfield of $GF(p^{3r})$. Therefore if $k = 3$, then g is also fixed-point-free on Ω_1 while if $k = 2$, then g has two fixed points on Ω_1.

In the former case the stabilizer in G of a point in Ω_1 is trivial and so G acts semiregularly on Ω_1. Therefore, $|G| = |\Omega_1| = p^r(p^{2r} - 1)$ and G is also transitive on Ω_1.

In the latter case the two fixed points of G are also fixed by the unique Singer cyclic subgroup S of G of order $p^r + 1$, containing g; the normalizer N of S in G exchanges the two fixed points of S and so, since N is the unique proper subgroup of G properly containing S, we have that the stabilizer in G of one such fixed point is precisely S. The G-orbit of this point has thus size $|G : S| = p^r(p^{2r} - 1)/(p^r + 1) = p^r(p^r - 1) = |\Omega_1|$ and we have that G is transitive on Ω_1.

Remark. In the previous construction, let σ be the automorphism defined as follows $GF(p^{rk}) \rightarrow GF(p^{3rk}), x \mapsto x^{p^r}$, and consider the subgroup \tilde{G} generated by G and σ. Clearly \tilde{G} has the same orbits on Ω as G; the subgroup $N = \langle \sigma \rangle$ is normal in \tilde{G} and fixes Ω_0 pointwise. The group \tilde{G} with the normal subgroup N yields thus an instance of the situation presented in Proposition 4.

3.2. The non-desarguesian cases

The above construction also works in some non-desarguesian planes.

Case (a). Let q be an odd prime power and let π denote the Figueroa plane of order q^3, see [10] and [12]. Let $P = PG(2, q^3)$ be the desarguesian plane of order q^3 from which π arises using Grundhöfer’s construction [10], as outlined below.
Let α be a planar collineation of order 3 of \mathcal{P} and let I denote the incidence relation of \mathcal{P}. The points and lines of \mathcal{P} fall into three disjoint classes each, depending upon the orbit structure under the group generated by α, namely:

$$\mathcal{P}_1 = \{ P \in \mathcal{P} \mid P^\alpha = P \},$$

$$\mathcal{P}_2 = \{ P \in \mathcal{P} \setminus \mathcal{P}_1 \mid P, P^\alpha, P^{\alpha^2} \text{ are collinear} \},$$

$$\mathcal{P}_3 = \{ P \in \mathcal{P} \mid P, P^\alpha, P^{\alpha^2} \text{ form a triangle} \}.$$

The lines classes L_1, L_2, and L_3 are defined dually. Note that the points of class \mathcal{P}_2 are precisely the non-fixed points on a fixed line (a line of class L_1) and so these lines contain no points of class \mathcal{P}_3. We define an involutory bijection $\mu : \mathcal{P}_3 \rightarrow L_3$ by $P^\mu = P^\alpha P^{\alpha^2}$ and $\ell^\mu = \ell^\alpha \cap \ell^{\alpha^2}$ for $P \in \mathcal{P}_3$ and $\ell \in L_3$.

Let $I_{33} = I \cap (\mathcal{P}_3 \times L_3)$. To construct the Figueroa plane, we modify the incidences in this portion; in particular we define a new incidence relation $I_\alpha = (I \setminus I_{33}) \cup I^*$ where $I^* \subseteq \mathcal{P}_3 \times L_3$ and is defined by $P I^* \ell$ if and only if $\ell^\mu I P^\mu$. The resulting incidence structure π is a non-desarguesian projective plane.

Now, let \mathcal{C} be a conic which is invariant under α. Observe that such a conic can contain neither a point from class \mathcal{P}_2, nor a tangent from class L_2. Let π_α be the subplane fixed by α, and let $\Omega_0 = \mathcal{C} \cap \pi_\alpha$. If Ω_0 is not empty then it is a conic in π_α. Define $\Omega = \Omega_0 \cup \Omega_1$ with $\Omega_1 = \{ \ell^\mu \mid \ell \text{ is a tangent to } \mathcal{C} \text{ of class } L_3 \}$.

Theorem 6. The point set Ω is an oval in the Figueroa plane π.

Let π_0 be a subplane of $PG(2, q^3)$ of order q. Then π_0 is a subplane of π as well. Furthermore, every collineation β of $PG(2, q^3)$ fixing π_0 defines a collineation of π, that is, β is an inherited collineation of π. In particular, the linear collineation group $PGL(2, q)$ of π_0 which preserves Ω_0 (and \mathcal{C}) gives rise to an (inherited) collineation group $G \cong PGL(2, q)$ of π. By the construction of Cherowitzo’s oval (called “ovali di Roma” in [7]), G preserves Ω. Furthermore, G acts on Ω_0 as $PGL(2, q)$ in its sharply 3-transitive permutation representation, while the action of G on Ω_1 is the same as the action of $PGL(2, q)$ on $\mathcal{C} \setminus \Omega_0$. In particular, G is transitive on Ω_1.

Case (b). Let q be an odd prime power and let π be a projective plane of order q^2 which has a collineation group $\Gamma \cong PGL(2, q)$. Suppose that Γ satisfies the following conditions:

(i) every involution in G is a homology;

(ii) no two distinct involutions of G have the same center, or the same axis.

By [5, Theorem 1], Γ preserves a desarguesian subplane π_0, and one of the three orbits of G in π_0 is an irreducible conic Ω_0 of π_0. Suppose that G has also the following property:

(*) a cyclic subgroup of maximal order of G fixes a point L in $\pi \setminus \pi_0$.

Let Δ be the G-orbit of such a fixed point L. Then by [5, Theorem 2], the set $\Omega = \Omega_0 \cup \Delta$ is an oval in π. Clearly, G preserves Ω such that Ω_0 is a 2-transitive orbit while Δ is a transitive orbit of G.
The above construction is known to provide ovals with properties (1) and (2) in the desarguesian plane and in the Hughes plane, as well as, in the generalized Hughes planes of order 25 and 49.

Let π be the Hughes plane of order q^2 constructed from the Dickson near-field R, see [14]. Denote by π_0 the desarguesian subplane of π of order q arising from the kernel $F = GF(q)$ of R.

Let Γ denote the collineation group of π. We know that Γ is the product $\Sigma \rtimes \Theta$, where Σ contains the extension to π of the projectivities of π_0 and Θ contains the collineations of π which are induced by the automorphisms of R. We have $\Sigma \cong PGL(3, q)$ and $\Theta \cong \text{Aut}(R)$, see [19].

Let Ω be the Room oval obtained from the conic C in π_0 of equation $xy = z^2$, see [18]. The oval Ω is invariant under the group which contains the extensions to π of the projectivities of π_0 fixing the conic C. Hence, there exists a subgroup G of Γ such that:

(I) $G \cong PGL(2, q)$;

(II) G fixes Ω acting on C in its natural 2-transitive permutation representation.

The group G was proved to act transitively on $\Omega \setminus C$ in [5]. Therefore, G has each of the properties (i), (ii) and (i∗). As it was pointed out in [5], the generalized Hughes plane of order q^2 has a collineation group $\Gamma \cong PGL(2, q)$ satisfying conditions (i) and (ii). Since the values of q for which a generalized Hughes plane exists are 5, 7, 11, 23, 29, 59, a computer aided exhaustive search seems possible to decide whether Γ also satisfies the condition (i∗). This has been done so far for $q = 5, 7, 11$, see Section 3 in [5]. In the two smallest cases $q = 5, 7$, but not for $q = 11$, the answer has been affirmative. Actually, the generalized Hughes plane of order 121 has a collineation group $G \cong PSL(2, 11)$ satisfying all three conditions (i), (ii) and (i∗). Nevertheless, the G-invariant conic Ω_0 of π_0 does not extend to an oval of π.

4. Proof of Theorem 1

The first step is to prove (i) of Theorem 1.

Proposition 5. G contains involutory homologies.

Proof. We distinguish two cases according to whether the group action on Ω_0 is faithful or not. In the former case the assertion follows from [1, Proposition 1]. Thus, suppose that the kernel K of the group action on Ω_0 is not trivial.

Since G is an irreducible group, $|\Omega_0| \geq 4$ and hence, Proposition 4 implies that Ω_0 is a conic in the odd order desarguesian subplane $\text{Fix}(K)$ of π. In particular, we have that $|\Omega_1|$ and $|\Omega_0|$ are both even. If all involutions in G are Baer involutions, then applying Theorem 4 it follows that $G = O(G) \rtimes S$, where $S \cong Z_2^s$, $s \geq 1$. Since $|O(G)|$ is odd, $O(G)$ cannot be transitive on Ω_0 and Lemma 1 implies that $O(G)$ must fix Ω_0.

If $O(G) \neq \{\text{id}\}$, then $O(G)$ fixes no point on Ω_1 and again by Proposition 4, $\text{Fix}(O(G))$ is a desarguesian subplane of π. Hence Theorem 2 implies that the group \overline{G} induced by G on $\text{Fix}(O(G))$ contains either $PSL(2, q)$ or A_5. But this leads to a contradiction as \overline{G} is isomorphic to a subgroup of the cyclic group Z_2^s.

Therefore $O(G)$ is trivial and G is a cyclic group of order 2^s. On the other hand G primitive on Ω_0 implies $s = 1$ and hence $|\Omega_0| = 2$, which contradicts the irreducibility of G. □
Therefore the substructure π_0 generated by the centers and axes of the non-trivial homologies of G is non-empty. Furthermore since G is irreducible, Proposition 2 implies that π_0 is a subplane of π.

Now, applying Theorem 5 shows that the kernel K_0 of the group action on π_0 is

$$K_0 = O(G) \ltimes S,$$

where S is a cyclic group of order 2^h, $h \geq 0$. In addition the factor group $G_0 = G/K_0$ can be viewed as a strongly irreducible collineation group of π_0. Therefore, taking into account Proposition 3 and Theorem 5, it follows that G_0 contains a unique minimal normal subgroup M_0 which is non-abelian simple, and the centralizer $C_{G_0}(M_0)$ is trivial.

Proposition 6. If K_0 is trivial then Ω_0 is the full intersection of π_0 and Ω. Furthermore π_0 is a desarguesian subplane of odd order m, Ω_0 is a conic in π_0, and $\text{PSL}(2,q) \leq G \leq \text{PGL}(2,q)$ up to isomorphism.

Proof. If K_0 is trivial then $G_0 = G$ and thus by Theorem 3, G contains a minimal normal subgroup $M = M_0$ which is isomorphic to $\text{PSL}(2,q)$, with $q \geq 5$ odd. Furthermore, since $C_G(M) = \{\text{id}\}$, $M \trianglelefteq G \trianglelefteq \text{Aut}(M)$, that is, $\text{PSL}(2,q) \trianglelefteq G \leq \text{PGL}(2,q)$ up to isomorphism.

Next step is to show that Ω_0 is contained in π_0. As the group G preserves π_0, we have just to prove that $\pi_0 \cap \Omega_0 \neq \emptyset$.

First we observe that the action of G on Ω_0 is faithful, that is, G is a permutation group on Ω_0. In fact, if the kernel K of the action of G on Ω_0 were not trivial, then by Proposition 4, $\text{Fix}(K)$ would be a G-invariant subplane of π. In particular the axes and the centers of the involutory homologies of G would belong to $\text{Fix}(K)$, that is, K would fix π_0. But then, K would be a subgroup of K_0 which implies $K = \{\text{id}\}$, a contradiction.

We consider the action of M on Ω_0, and G is a primitive permutation group on Ω_0, it turns out that M acts transitively on Ω_0. Furthermore, to show that M is not regular on Ω_0, assume on the contrary that $G_A \cap M = \{\text{id}\}$ for every $A \in \Omega_0$. Then $G = G_A \ltimes M$. Since the factor group $\text{PGL}(2,q)/\text{PSL}(2,q)$ is commutative, see [9], $G_A \cong (G_A \ltimes M)/M$ is also commutative.

By [9, §3.4.5], the primitivity of G on Ω_0 implies that G is a Frobenius group with Frobenius kernel M. But this yields that M is solvable, see [9, §3.4.7], which is impossible.

Now, take a point $A \in \Omega_0$. Since the stabilizer M_A in M is not trivial, two cases are distinguished depending on the parity of $|M_A|$.

Case (I). M_A has even order. We shall show that M_A contains at least two involutory homologies. Assume on the contrary that $h = (C, \ell)$ is the unique involutory homology in M_A. Clearly, the axis ℓ is a secant to the oval Ω through the point A.

Suppose that ℓ is a secant to Ω_0 as well. Then the secants to Ω_0 which are images of ℓ under M (and also under G), cut out on Ω_0 pairwise disjoint pairs of points. Since G is transitive on Ω_0, these pairs define a G-invariant partition of Ω_0, contradicting the primitivity of G on Ω_0.

Suppose that ℓ is not a secant to Ω_0. Then A is the unique common point of ℓ and Ω_0. Choose an involution $g \in C_M(h)$ distinct from h. Then $gh = hg$, and hence g also fixes A, a contradiction.

Therefore, let $s_1 = (C_1, \ell_1)$ and $s_2 = (C_2, \ell_2)$ be two distinct involutory homologies in M_A. Since ℓ_1 and ℓ_2 are lines in π_0, their common point A is also in π_0, that is, $\Omega_0 \subseteq \pi_0$.

Case (II). \(M_A \) has odd order. From the classification of subgroups of \(\text{PSL}(2,q) \), \(M_A \) is isomorphic to one of the following groups (see [21]):

(a) cyclic groups of order \(n \), with \(n \mid \frac{q+1}{2} \);
(b) semidirect products of elementary abelian \(p \)-groups of order \(p^f \) with cyclic groups of order \(n \), with \(f \leq m, n \mid p^f - 1 \) and \(n \mid \frac{q-1}{2} \);
(c) elementary abelian \(p \)-groups of order \(p^f \), \(f \leq m \).

Assume that \(M_A \) contains a cyclic subgroup \(C \) of order \(n \), with \(n \mid \frac{q+1}{2} \) and let \(h \) denote a generator of \(C \). By the classification of subgroups of \(\text{PSL}(2,q) \) \(M_A \) is contained in a dihedral subgroup of \(M \). Hence, \(h \) is the product of two involutory homologies in \(M \), say \(h_1 = (C_1, \ell_1) \) and \(h_2 = (C_2, \ell_2) \). Then \(L = \ell_1 \cap \ell_2 \) is a fixed point of \(h \) and any other fixed point of \(h \) lies on the line \(\ell \) through \(C_1 \) and \(C_2 \). Note that \(A \neq L \) because \(A \) cannot be fixed by any involution, \(M_A \) being of odd order. Hence \(A \in L \). Furthermore \(\ell \) must contain another point from \(\Omega_0 \) otherwise, \(h_1 \) (and \(h_2 \)) would fix \(A \), again a contradiction with \(2 \nmid |M_A| \). Therefore \(\ell \) is secant to \(\Omega_0 \).

It follows that the sets \(\text{Fix}(C^s) \cap \Omega_0 \), with \(C^s \) ranging over all conjugates of \(C \) in \(G \), form a \(G \)-invariant partition of \(\Omega_0 \) contradicting the primitivity of \(G \) on \(\Omega_0 \). This rules out both cases (a) and (b).

We are left with the case where \(M_A \) is an elementary abelian \(p \)-group of order \(p^f \). Note that \(M_A \) has at least two fixed points on \(\Omega_0 \) otherwise, the normalizer \(N_M(M_A) \) would also fix the point \(A \) and thus \(N_M(M_A) = M_A \). Therefore \(M_A \) would be a Sylow \(p \)-subgroup and as a direct consequence, \(|\Omega_0| = (q^2 - 1)/2 \) whereas \(|\Omega_0 \setminus \{A\}| = tq \), a contradiction as \(q \geq 5 \).

It follows that the minimum number \(d \) of points in \(\Omega_0 \) which are fixed by a subgroup of \(M_A \) is at least two. Let \(S \) be the set of all subgroups of \(M_A \) each having exactly \(d \) fixed points on \(\Omega_0 \). Take a subgroup \(P \) from \(S \) whose order is as large as possible.

We show that no point in \(\text{Fix}(P) \cap \Omega_0 \) is fixed by a conjugate \(P^g \) of \(P \) in \(G \). Assume on the contrary that \(L \in \text{Fix}(P^g) \cap \text{Fix}(P) \), with \(L \in \Omega_0 \). Then the stabilizer \(M_L \) of \(L \) contains the subgroup \(P' \) generated by \(P \) and \(P^g \). Note that \(P \) is a proper subgroup of \(P' \). Since \(G \) is transitive on \(\Omega_0 \) there is an \(h \in G \) that maps \(L \) to \(A \), then \(P^h \) is a subgroup of \(M_A \). But this contradicts the definition of \(P \) as \(|P^h| > |P| \).

Therefore the sets \(\text{Fix}(P^g) \cap \Omega_0 \) with \(P^g \) ranging over all conjugates of \(P \) in \(G \) form a \(G \)-invariant partition of \(\Omega_0 \), contradicting again the primitivity of \(G \) on \(\Omega_0 \). Thus case (c) does not occur.

Hence, it has been shown that \(\Omega_0 \) is contained in \(\pi_0 \). To complete the proof of the first assertion in Proposition 6 it remains to show that \(\Omega_0 \) is the full intersection of \(\Omega \) and \(\pi_0 \). Actually, it suffices to show that \(\Omega_0 \) is an oval in \(\pi_0 \). For this purpose assume that \(\Omega_0 \) is a \((k+1)\)-arc of the projective plane \(\pi_0 \) of order \(m \), with \(k < m \). If \(A \in \Omega_0 \) then, there are \(m - k \) lines through \(A \) which meet \(\Omega_0 \) in no other point but \(A \). These \(m - k \) lines are secant to the oval \(\Omega \). Since \(A \) varies on \(\Omega_0 \), we get \((k+1)(m-k)\) distinct lines of \(\pi_0 \) which meet \(\Omega_1 \) in distinct points. As \(G \) is transitive on \(\Omega_1 \), there exists exactly one line of \(\pi_0 \) through each point of \(\Omega_1 \), whence

\[(k+1)(m-k) = n-k. \tag{2}\]

On the other hand, \(n \geq m^2 + m \) together with (2) gives \((m-k)^2 + km \leq 0 \), a contradiction. Therefore, \(|\Omega_0| = m+1 \), namely \(\Omega_0 \) is an oval in \(\pi_0 \). \(\square \)

Since \(G \) acts primitively on \(\Omega_0 \), Theorem 2 applies and this completes the proof of Theorem 1 for \(K_0 = \{\text{id}\} \).
Remark. For $K_0 = \{\text{id}\}$, consider the case $m = 9$. The order n of π satisfies
\[n \geq m^2 + m = 90. \] (3)
Suppose $G \cong A_5$. Since G is transitive on Ω_1, the relation $(n - 9) \mid 60$ follows, which, together with (3), gives a contradiction. Therefore, for $m = 9$ the group G must be isomorphic to S_5 and hence $(n - 9) \mid 120$. Then (3) gives $n = 129$.

Now, assume that K_0 is not trivial.

Lemma 3. Each element of K_0 commutes with each involutory homology of G.

Proof. Let α be a (A, ℓ)-homology of G and $g \in K_0$. By [14, Lemma 4.11], $g^{-1}ag$ is a (A^8, ℓ^8)-homology. Since the center A and the axis ℓ of α are contained in π_0, it follows $A^8 = A$ and $\ell^8 = \ell$. Proposition 1 implies $g^{-1}ag = \alpha$. \(\square\)

We distinguish two cases according to whether $O(G)$ is trivial or not.

Case (i). $O(G) = \{\text{id}\}$. By (1), $S = K_0$ holds. Since S is cyclic, it contains a unique involution j. Taking $K_0 \trianglelefteq G$ into account, this implies that $j \in Z(G)$. As G is primitive on Ω_0, it follows that either j generates a transitive group on Ω_0, or j fixes Ω_0 pointwise. The former case cannot actually occur as $|\Omega_0| \geq 2$.

As j fixes π_0 pointwise, j is a Baer involution of π and $\pi^* = \text{Fix}(j)$ is its Baer subplane. Note that Ω_0 is contained in π^*. Actually, $\Omega_0 = \pi^* \cap \Omega$ because j fixes no point on Ω_1 by Lemma 1.

Now, Theorem 2 applies to π^* and Ω_0. Therefore, π^* is a desarguesian plane of order q, and Ω_0 is a conic of π^*. Furthermore, if J is the subgroup of K_0 fixing π^* pointwise and $G^* = G/J$ is regarded as a collineation group of π^*, then one of the following two cases can occur: either G^* contains a normal subgroup N^* isomorphic to $PSL(2, q)$, or π^* has order 9 and $G^* \cong A_5$, or $G^* \cong S_5$.

In the former case, the number k^* of involutions of N^* is either $\frac{1}{2}(q^2 + q)$, or $\frac{1}{2}(q^2 - q)$, according as $q \equiv 1 \pmod{4}$, or $q \equiv 3 \pmod{4}$. Also, such involutions are homologies. Since π_0 is left invariant by G^*, the center of each homology in N^* lies on π_0. As two distinct homologies preserving the same oval have distinct centers, we have $k^* \leq m^2 + m + 1$. On the other hand, $m^2 \leq q$ when π_0 is a proper subplane of π^*, a contradiction. Hence, $\pi^* = \pi_0$.

If $q = 9$, and G^* contains a subgroup $M^* \cong A_5$, then M^* has 15 involutions, each of them is a homology. Again, this implies that $\pi^* = \pi_0$, as no proper subplane of $PG(2, 9)$ contains more than 13 points, and Theorem 1 follows for $O(G) = \{\text{id}\}$.

Case (ii). $O(G) \neq \{\text{id}\}$.

Lemma 4. $O(G)$ fixes Ω_0 pointwise and it has no fixed point on Ω_1.

Proof. Assume on the contrary that the action of $O(G)$ on Ω_0 is not trivial. By Lemma 1, $O(G)$ is transitive on Ω_0 and we get that $|\Omega_1|$ and $|\Omega_0|$ are both odd. Then an involutory homology α fixes one point $A \in \Omega_1$ and one point $B \in \Omega_0$. From Lemma 3, each element of $O(G)$ commutes with α, hence the group $O(G)$ must fix the points A and B. It follows that $O(G)$ fixes Ω pointwise, contrary to our assumption. \(\square\)
By Lemma 4, the group $O(G)$ acts trivially on Ω_0, hence Proposition 4 implies that Ω_0 is a conic in the desarguesian subplane $\pi = \text{Fix}(O(G))$ of odd order q. Similar arguments as those used in case (i) lead to $\pi = \pi_0$.

Finally, since the group G/K_0 also acts primitively on Ω_0 in π_0, the minimal normal subgroup M_0 of G/K_0 must be transitive on Ω_0, thus Theorem 1 follows from Theorem 3.

References