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Introduction

Classic studies over the last two decades

have made virus-induced activation of the

mammalian interferon-b (ifnb) gene a pro-

totype of eukaryotic gene regulation [1–6].

Indeed, the compact ,50 base-pair en-

hancer region upstream of the ifnb tran-

scription start site is amongst the best-

studied stretches of mammalian DNA, and

its function in regulation of ifnb expression

is considered a paradigm of stimulus-

activated mammalian gene regulation.

In a widely accepted model, RNA virus

infection of most cell types triggers the

activation of three classes of transcription

factor—interferon regulatory factors

(IRFs)-3/7, NF-kB, and ATF-2/c-Jun—

downstream of the RIG-I-like receptor

(RLR) family of viral RNA sensors [7–9].

These transcription factors bind well-

defined adjacent sites in the ifnb enhancer

to nucleate formation of an ‘‘enhanceo-

some’’. The nascent enhanceosome then

recruits chromatin-modifying enzymes

and general transcription factors to initiate

transcription of ifnb and launch the type I

IFN antiviral innate immune response

[1,2,10]. Implicit in the inherently coop-

erative nature of enhanceosome formation

is the supposition that IRFs-3/7, NF-kB,

and ATF-2/c-Jun are all perhaps equally

necessary for virus-driven ifnb expression.

Recent findings from our laboratories and

other groups, however, suggest an alter-

nate view of NF-kB function in antivirus

responses: that NF-kB is indeed required

for ifnb expression, but only before (and

very early after) infection. As the infection

unfolds, NF-kB is no longer necessary for

ifnb induction, and instead takes on a

more general role in the expression of non-

IFN innate immune and pro-inflammatory

genes; meanwhile, IRFs-3/7 inherit ifnb
expression to propel the type I IFN

antiviral system. In this article, we update

the enhanceosome paradigm by proposing

temporally distinct functions for NF-kB in

the RLR-triggered innate immune re-

sponse.

Unexpected Results from NF-kB
Gene-Targeted Mice

Given that IRFs-3/7, NF-kB, and ATF-

2/c-Jun assemble on the ifnb enhancer, it

was expected that all three factors would be

critical for virus-triggered induction of ifnb.

In line with this expectation, studies using

mice deficient in IRF-3 and/or IRF-7 have

convincingly shown essential roles for these

IRFs in production of IFN-b and other type

I IFNs [11–13]. We were therefore sur-

prised to discover that cells from mice

genetically deficient in key NF-kB subunits

(such as RelA, c-Rel, or p50) were mostly

normal in their ability to activate ifnb
expression after virus infection [14]. In-

deed, cells lacking virtually all detectable

RLR-triggered NF-kB activity continued to

support robust virus-induced ifnb expres-

sion [14,15]. Thus, while NF-kB is activat-

ed by virus infection and does associate with

the ifnb enhancer, it does not appear to be

required for subsequent transcription of ifnb.

These findings raise two key questions: (1)

what is the function of the NF-kB site in the

ifnb promoter, and (2) what is the function

of NF-kB in virus-triggered innate immune

responses, if not to activate ifnb?

Function of NF-kB before
Infection: Maintenance of Basal
ifnb Activity

Recent work has begun to provide

answers to both these questions. Using

an in silico approach to analyze cells

deficient in RelA (the primary transacti-

vating component of virus-induced NF-

kB), we have found that NF-kB controls

expression of several IFN-dependent in-

nate immune pathways by, unexpectedly,

maintaining constitutive expression of ifnb in

uninfected cells [16].

It has long been known that constitutive

low-level expression of ifnb is necessary for

maintenance of an IFN-b autocrine signal

that keeps the uninfected cell in a primed

state of antiviral readiness [17,18]. Since

the type I IFN antiviral system is depen-

dent on feed-forward signal amplification,

even small differences in basal gene

expression translate into major down-

stream deficiencies. We have found that

in the absence of RelA, basal expression of

ifnb is reduced, and autocrine IFN-b
signaling is compromised. Consequently,

there is a delay in the induction of ifnb
after infection, and, later, severe defects in

the activation of the type I IFN response

[14,16,19]. This tardiness in type I IFN

feed-forward signaling has negative conse-

quences for host antiviral immunity: RelA-

deficient embryo fibroblasts are very

susceptible to interferon-sensitive RNA

viruses such as vesicular stomatitis virus

(Rhabdoviridae), Newcastle disease virus,

and Sendai virus (both Paramyxoviridae),

despite producing copious amounts of

IFN-b later during the course of infection

[16,19]. In these cells, diminished IFN-b
expression prior to infection (and early
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after infection, see below) allows the virus

a head start, and even though IFN-b
production eventually catches up to (and

even exceeds) wild-type levels, the tempo-

ral advantage conferred to the actively

replicating RNA viruses during an acute

infection ultimately proves insurmount-

able [16,19]. These findings highlight the

importance of timely IFN-b production

(rather than the maximal amount pro-

duced) in innate immunity to an acute

RNA virus infection.

The precise mechanism that generates

constitutive NF-kB activity is currently not

known. We have found that NF-kB cycles

robustly through the nuclei of uninfected

primary cells in an IKK-b-dependent

manner, and IKK-b-deficient cells are

also defective in autocrine IFN-b-mediat-

ed basal interferon-stimulated gene ex-

pression [16]. Our preliminary findings

suggest that neither tumor necrosis factor-

a nor Toll-like receptors (TLRs) lie

upstream of IKK-b as a source of

constitutive NF-kB [16].

Function of NF-kB Early in
Infection: Role in ifnb Induction

In addition to controlling constitutive

ifnb expression, NF-kB is also the earliest-

arriving virus-activated enhanceosome com-

ponent, appearing on the ifnb enhancer

within 2 hours of virus infection (and

approximately 2 and 4 hours ahead of

ATF-2 and IRF-3, respectively) [20].

Recent elegant experiments from the

Thanos laboratory show that NF-kB,

despite being found in rate-limiting

amounts in the cell, manages to gain such

rapid access to the ifnb enhancer via a novel

process of inter-chromosomal transfer from

putative NF-kB ‘‘receptor centers’’ [21]. In

their model, specialized genomic loci con-

taining readily accessible NF-kB binding

sites serve as temporary receptors for

incoming nuclear NF-kB, following which

NF-kB is shuttled to either of two ifnb loci

to initiate monoallelic ifnb expression. Later

in an infection, feed-forward production of

IRF-7 drives bi-allelic ifnb expression to

accelerate the type I IFN response [21].

Consistent with this model, we have also

found that NF-kB has a key role in early

virus-induced ifnb expression [19]. This

early requirement for NF-kB may stem

from how the co-activator CBP/p300 is

recruited to the ifnb locus: an ,30 amino-

acid region within the NF-kB RelA

subunit (termed the ‘‘synergism domain’’)

has been demonstrated to be essential for

the initial capture and stabilization of

CBP/p300 at the enhanceosome [22].

Although IRFs and c-Jun can indepen-

Figure 1. Temporally distinct roles for NF-kB in antivirus innate immune responses. (A)
In uninfected cells, NF-kB cycles robustly through the nucleus to maintain constitutive expression
of basal ifnb and sustain sutocrine IFN-b signaling. (B) Early in an infection, NF-kB cooperates with
ATF-2/c-Jun and IRF-3 to recruit the transcription co-activator CBP/p300 to the ifnb enhancer. (C)
Later in an infection, IRF-3/7 powers expression of ifnb, and NF-kB is rendered redundant in the
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dently associate with CBP/p300, the

ability to synergize with other enhanceo-

some components to anchor CBP/p300

and bridge the enhanceosome to the RNA

polymerase II transcriptional machinery

appears to be unique to the NF-kB RelA

subunit [22–24]. Once CBP/p300 is at the

ifnb enhancer (3–4 hours post infection

[20]), IRFs are already robustly activated

and capable of binding CBP/p300 to drive

ifnb transcription without further require-

ment for NF-kB. Indeed, IRF-3 can form

a stable complex with CBP/p300 in the

absence of other enhanceosome compo-

nents [25,26], and data suggest that IRF-

39s transcriptional activity can almost

entirely be accounted for by its ability to

capture CBP/p300 [27]. Collectively,

these findings allow us to propose a model

in which, early in infection, low levels of

individual enhanceosome components co-

operate to tether CBP/p300 to the ifnb
locus in a manner crucially dependent on

NF-kB RelA. Later in infection (when

activated IRF-3 dimers are found in larger

amounts) IRF-3 can perform this function

by itself, and the requirement for NF-kB is

obviated. It is very likely that a similar

IRF-3-dependent mechanism also ac-

counts for ifnb expression in the complete

absence of NF-kB RelA [14,19].

Function of NF-kB Later in
Infection: Regulating Pro-
Inflammatory and Anti-
Necroptotic Gene Expression

Once IRFs have been activated, NF-kB

appears to be unnecessary for ifnb expres-

sion, and instead switches to regulating a

distinct set of genes that comprise roughly

25% of all RLR targets [16]. The NF-kB-

dependent subset of the RLR transcrip-

tome is especially enriched for genes

encoding (1) chemokines, chemokine sig-

naling, and adhesion molecules, (2) matrix

metalloproteinases and allied proteases

involved in remodeling the extracellular

matrix, and (3) proteins involved in

antigen processing and presentation, in-

cluding a large number of classical and

non-classical major histocompatibility

class I molecules. In addition, RelA is also

weakly activated by IFN-b itself [16,28],

and is required for induction of a small

subset (,5%) of interferon-stimulated

genes (most notably those encoding che-

mokines CxCl11 and Ccl3) [16]. Finally,

RelA-deficient cells treated with the virus

mimetic poly(I:C) are very susceptible to a

novel form of cell death termed necropto-

sis [29,30], indicating that RelA might also

transcriptionally control a cell survival

program to prolong pro-inflammatory

gene expression from the infected cell

[16,31]. Collectively, these findings show

that the NF-kB arm of the type I IFN

antiviral response is focused primarily on

generating pro-inflammatory and pro-sur-

vival signals, rather than on activating cell-

intrinsic antiviral effectors (or on feed-

forward amplification of IFN signaling

itself).

Conclusions

We propose here an updated view of

NF-kB’s overall function in the innate

antivirus response, in which NF-kB has a

crucial constitutive (and early) role in ifnb
expression followed by an equally impor-

tant and potentially more general later

role in regulating expression of genes

involved in recruitment and activation of

the adaptive immune response. Interest-

ingly, other groups have demonstrated

that c-Jun also participates in maintenance

of autocrine IFN-b, while IRF-3 and IRF-

7 may not [32,33]. Taken together, these

findings support the idea that NF-kB and

c-Jun sustain basal/early ifnb expression,

while IRF-3 and IRF-7 instead dominate

IFN-b production following virus infection

(Figure 1). Important areas for future

investigation include: (1) the source of

constitutive NF-kB activity; (2) the role of

other IRFs (for example, IRF-1) in consti-

tutive ifnb expression; and (3) evaluation of

cell type-specific roles for different NF-kB

subunits in anti-virus responses in vivo. For

example, the key type I IFN producing

plasmacytoid dendritic cells utilize TLRs,

rather than RLRs, to activate ifnb [34]. Is

the requirement for—and subunit compo-

sition of—NF-kB in these cells the same as

it is in cells that deploy a RLR-driven IFN

response? Despite over two decades of

investigation, the regulation of ifnb expres-

sion continues to throw up surprises, and

more unanticipated findings are likely

forthcoming.
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