ABSTRACT CITATION ID: NOAD073.067 DIPG-20. DELINEATING MEDIATORS OF ONCOGENESIS IN FOXR2-EXPRESSING DIFFUSE MIDLINE GLIOMAS Jessica Tsai¹, Paloma Cejas¹, Marissa Coppola¹, Dayle Wang¹, Smruti Patel¹, David Wu², Phonepasong Arounleut³, Xin Wei³, Ningxuan Zhou¹, Sudeepa Syamala¹, Frank Dubois¹, Kristine Pelton¹, Jayne Vogelzang¹ Cecilia Sousa¹, Audrey Baguette⁴, Xiaolong Chen⁵, Alexandra Condurat¹, Sarah Dixon-Clarke¹, Kevin Zhou¹, Sophie Lu¹, Elizabeth Gonzalez¹ Madison Chacon¹, Jeromy Digiacomo¹, Rushil Kumbhani¹, Dana Novikov¹, Maria Tsoli⁶, David Ziegler⁶, Uta Dirksen⁷, Natalie Jager⁸, Gnana Prakash Balsubramanian8, Christof Kramm9, Michaela Nathrath10, Stefan Bielack¹¹, Suzanne Baker⁵, Jinghui Zhang⁵, James McFarland², Gad Getz², Francois Aguet², Nada Jabado⁴, Olaf Witt⁸, Stefan Pfister⁸, Keith Ligon¹, Volker Hovestadt¹, Claudia Kleinman⁴, Henry Long¹, David Jones⁸, Pratiti Bandopadhayay¹, Timothy Phoenix³; ¹Dana-Farber Cancer Institute, Boston, USA. 2Broad Institute of MIT and Harvard, Cambridge, USA. ³University of Cincinnati, Cincinnati, USA. ⁴McGill University, Montreal, Canada. 5St. Jude Children's Research Hospital, Memphis, USA. 6Lowy Cancer Research Centre, Sydney, Australia. ⁷University Hospital Éssen, Essen, Germany. ⁸German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁹University Medical Center Göttingen, Göttingen, Germany. ¹⁰Klinikum Kassel, Kassel, Germany. ¹¹University Hospital Stuttgart, Stuttgart, Germany

BACKGROUND: Diffuse midline gliomas (DMGs) are a universally fatal brain tumor of childhood. While histone mutations are a critical tumor initiating event, they are insufficient to drive gliomagenesis. Histone mutations co-occur with somatic alterations in other pathways including TP53, MAPK, and MYC signaling. However, the mechanisms through which these pathways are activated have not been fully elucidated. METHODS: We applied an integrative approach using transcriptomics, epigenetics, proteomics, in vitro cancer models, and in vivo mouse models to systematically evaluate how FOXR2 mediates gliomagenesis. RESULTS: We have recently found that a subset of DMGs aberrantly express FOXR2, a forkhead transcription factor. FOXR2 is both sufficient to enhance tumor formation, and necessary for FOXR2-expressing DMGs. While FOXR2 indeed enhances MYC protein stability, FOXR2 exerts oncogenesis through MYC-independent functions and specifically hijacks E26-transformation specific (ETS) transcriptional circuits and FOXR2 DNA-binding is highly enriched at ETS motifs. We have performed proteomic and phospho-proteomic analysis of FOXR2-expressing human neural stem cells to identify proteins and phospho-sites that are highly enriched in FOXR2-expressing cells. CONCLUSION: Taken together, this study elucidates how FOXR2 interacts with ETS transcription factors to mediate oncogenesis in FOXR2-expressing diffuse midline gliomas.

Abstracts