Characterizing the content of documents is generally conducted in order to search, organize, and classify a large collection of documents effectively. Some documents often come with a variety of side information such as authors, keywords, and publishers, while such information is missing in others and needs to be predicted. Authorship attribution involves assigning authors to anonymous texts, which plays an important role in areas such as criminal investigation, social science, text analysis, cognitive systems, to name but a few. Since different authors have different interests in writing, learning their interests based on textual data brings many adwritten by an author of the document. Combining both models, the author-topic (AT) model represents documents and authors by topic distributions [9]. Thus, characterizing author interests and modeling documents can be achieved simultaneously with concise, meaningful representations.

Regarding authorship attribution, the original AT model focuses on the unsupervised learning environment where words are assigned into topics and author interests better than those being learned by the LDA model and the author model [9]. Nonetheless, recent studies showed that the topic-based

Who Wrote This? Textual Modeling with Authorship Attribution in Big Data

Naruemon Pratanwanich (**Ploy**) Dr. Pietro Lio'

14 Dec 2014

Computer Laboratory

2nd International Workshop on High

Dimensional Data Mining (HDM'14)

Overview

- Goals:
 - To predict authors of a given document
 - To discover new knowledge *i.e. author contribution,* author interests, and the underlying topics
- Our belief:
 - A document and its authors have the overlapping sets of the underlying topics.
- Latent variables:
 - Per-document author distribution
 - Per-author topic distribution
 - Per-topic word distribution

Overview

- Goals:
 - To predict authors of a given document
 - To discover new knowledge *i.e. author contribution,* author interests, and the underlying topics

• Our belief:

- A document and its authors have the overlapping sets of the underlying topics.
- Latent variables:
 - Per-document author distribution
 - Per-author topic distribution
 - Per-topic word distribution

Overview

- Goals:
 - To predict authors of a given document
 - To discover new knowledge *i.e.* author contribution, author interests, and the underlying topics

• Our belief:

 A document and its authors have the overlapping sets of the underlying topics.

Latent variables:

- Per-document author distribution
- Per-author topic distribution
- Per-topic word distribution

Outline

Introduction

- Probabilistic generative models (LDA and AT models)

Our model

- Supervised Author-Topic (SAT) model

Results

- Model fitness
- Information discovery
- Model performance for supervised learning

Conclusion

Applications

INTRODUCTION

Probabilistic Generative Models

- Latent Dirichlet Allocation (LDA)
- Author-Topic (AT) model

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

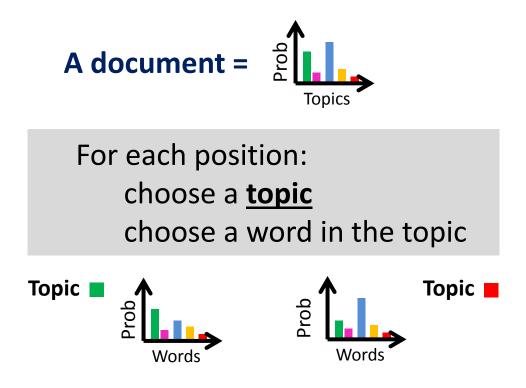
A document

For each position: choose a <u>topic</u> choose a word in the topic

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.



- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Author: Ploy and Lio'

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Author: Ploy and James Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Author: Ploy and Lio'

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Author: Ploy and James Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones. A document = {author_i}

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Author: Ploy and Lio'

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Author: Ploy and James Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones. A document = {author_i}

- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Author: Ploy and Lio'

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Author: Ploy and James Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones. A document = {author_i}

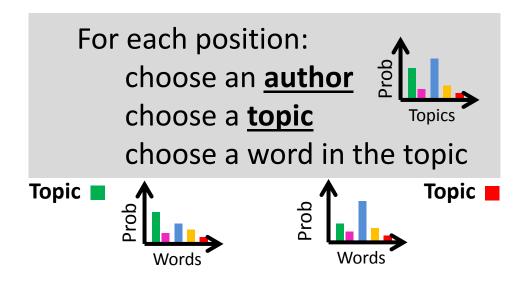
- Purpose in text mining: organise, search, etc.
- Generative processes of writing a document

Author: Ploy and Lio'

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Author: Ploy and James Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

A document = {author_i}



OUR MODEL

Supervised Author-Topic (SAT) Model

Inference method

• Equal author contributions

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

A document = {author_i}

• Equal author contributions

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

A document = {author_i}

Supervised Author-Topic (SAT) Model

Unequal author contributions

Given MRI images, support vector machine is a technique used to classify diseased cells and healthy cells.

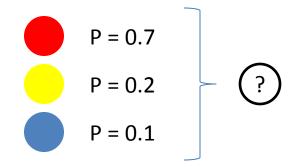
Given X-ray images, neural network is an algorithm used to identify abnormal bones and normal bones.

A document = {(author_i,p_i)}

For each position: choose an <u>author</u> ~ P choose a <u>topic</u> choose a word in the topic

Distributions

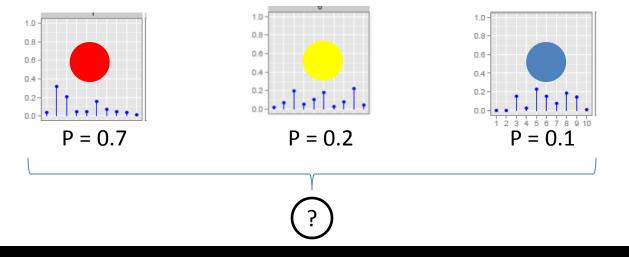
• Multinomial distribution is ..

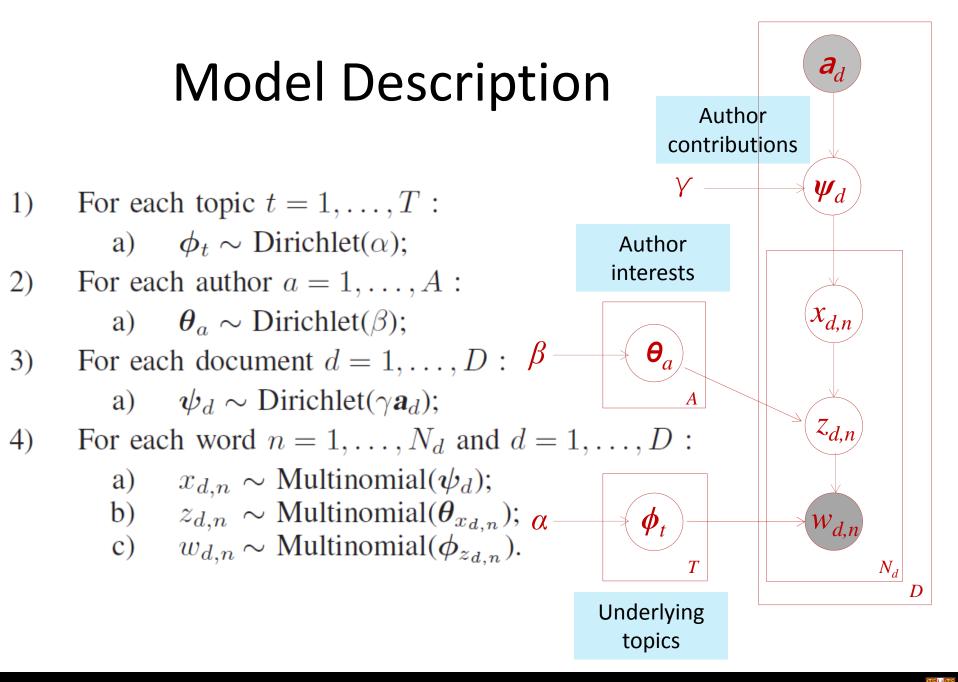


Distributions

• Multinomial distribution is ..

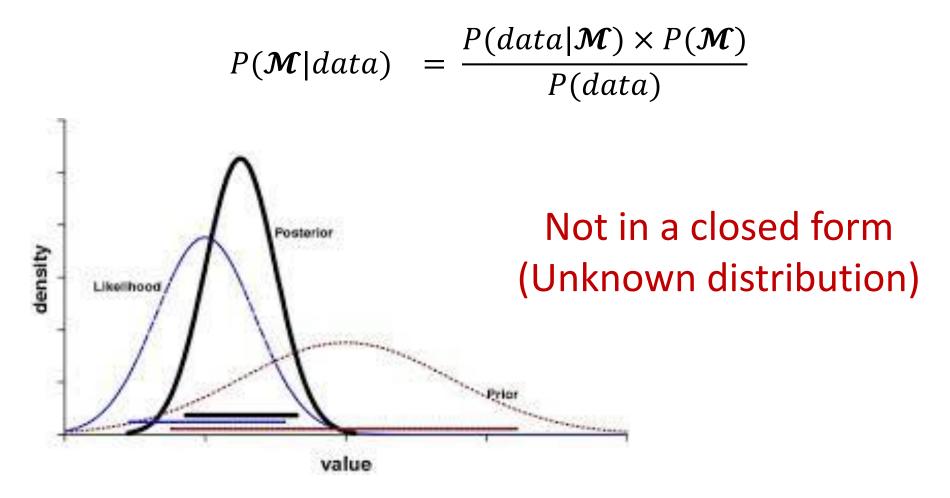
• Dirichlet is a distribution of distributions





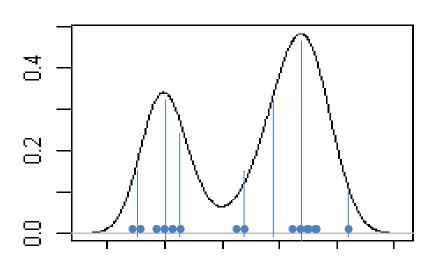
Bayesian Inference

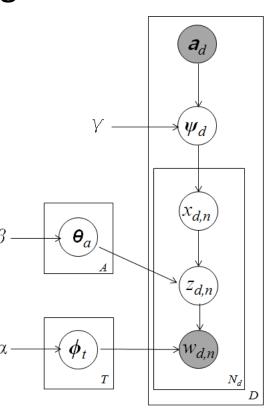
• Bayes' theorem (\mathcal{M} is the set of latent variables)



Approximate Inference

- Sampling method Gibbs sampling
 - Iteratively random one variable, given others fixed
 - Infinite time -> True distribution





Posterior Distribution

Intuitively, the probability of assigning a word *w* to a topic *t* written by an author *a* depends on three probabilities

- how likely the word w belongs to the topic t
- how likely the topic *t* is written by the author *a*
- how likely the author *a* contributes to the document *d*

Naruemon Pratanwanich (Ploy)

 a_d

RESULTS

Convergence Analysis & Model Fitness Information Discovery Supervised Learning

Convergence Analysis



	Г	Author: Cole R		Author: Agin P		Author: Ghahramani Z		Author: MacKay I		Author: Bishop C		1	
Author	F	Topics	Probability	Topics Pro	obability	Topics	P	robability	Topics	Probability	y Topics	Probability	7
Author	F	64	0.895	58	0.842	22		0.551	53	0.335	53	0.379	1
.		11	0.070	78	0.152	63		0.180	78	0.20	78	0.334	
Interests						52		0.098	22	0.183	22	0.189	
						78		0.071	10	0.093	86	0.067	
						87		0.036			63	0.027	
 • [Topic: 10 - Kernel lea		ernel learning	Topic: 11 - Clas		sification		Topic: 22-	faximum likelihood		Topic : 4	8 - Face recogni	ition
Topics	Words				Words P			Words	Probability		Words	Probabil	
•	rbf		0.048 cla			0.048		model	0.040		face	0.046	
	exp		0.028	classifier		0.045		data	0.025		images	0.024	
	bas		0.024	class		0.039		models		0.021	faces	0.022	
	exp		0.024 training 0.031			probability		0.019	recognition	0.020			
	gati		0.019	classifiers		0.026		likelihood	0.015		facial	0.017	
	network		0.018	classes		0.016		mixture		0.014	image	0.017	
	radial		0.017	feature		0.015		distribution		0.013	human	0.009	
	networks		0.017	pattern		0.014		parameters		0.013	based	0.009	
	mixture		0.016	decision		0.012		em		0.012	view 0.00		
	gaussian		0.013	nearest		0.011		density		0.011	system	0.008	
	Topic: 52 - Gradient algorithm		Topic: 53 - Bayesian/Monte Carlo			lo	Topic: 58 - Protein structure			Topic: 63 - Network			
-	Words		Probability	Words				Words	Probability		Words		
	func	tion	0.024	bayesian		0.028		protein		0.023	network	0.050	
	algorithm		0.019	gaussian				chain		0.021		0.031	
	learning		0.017	prior	0.022			region		0.016	input	0.030	
	gradient		0.013	posterior		0.019		structure		0.015	learning	0.025	
	vector		0.012	distribution	1	0.016		mouse		0.014	output	0.023	
	conver	gence	0.010	evidence 0.014		0.014		proteins	0.014		training	0.023	
	prob				0.012		human		0.013	hidden	0.023		
	line	ear	0.009	carlo		0.012		sequences		0.012	networks	0.022	
	ca	case 0.008		mackay		0.009		prediction		0.010	unit	0.019	
	algorithms		0.008	noise 0.009				sequence	0.010		layer	0.019	
			ech recognition	Topic: 78				Topic: 86 - PCA		Topic: 87 - Statistical mechanic			
		Vords Probability				robability	Words		Probability		Words	Probabil	ity
	spee		0.039	data		0.022		matrix		0.038	energy	0.036	
	recogi		0.029	set		0.019		pca		0.028	boltzmann	0.028	
	wo		0.023	number		0.013		linear		0.026	temperature	0.020	
	syst		0.018	figure		0.012		principal		0.025	annealing	0.017	
	train		0.015	results		0.012		analysis		0.017	units	0.013	
	hm		0.013	model		0.012		component		0.017	state	0.012	
	spea		0.012	neural		0.011		components		0.015	field	0.011	
	cont		0.011	learning		0.010		covariance		0.013	machine	0.011	
	netw		0.009	function		0.009		eigenvector		0.012	probability	0.008	
l	neu	ral	0.008	training		0.009		subspace		0.011	signature	0.008	

Naruemon Pratanwanich (Ploy)

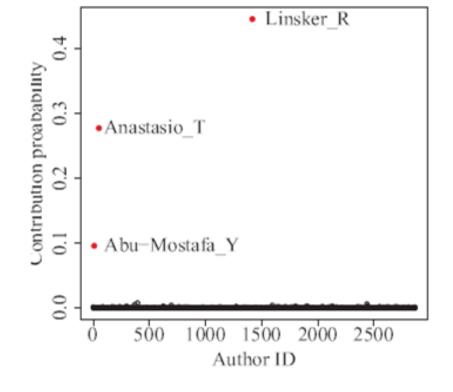
Email: np394@cam.ac.uk

		Auth	or: Cole R	Author: Ag	gin P	Author: Ghah		amani Z	Author: MacKay I		Author	r: Bishop C		
Author	- I	Topics	Probability	Topics Pro				oability	Topics	Probability			1	
Autio	 	64	0.895		0.842	22		.551	53	0.335	53	0.379	1	
	 	11	0.070	78 (0.152	63		.180	78	0.20	78	0.334	1	
Interests	i				1	52		.098	22	0.183	22	0.189	1	
•••••	i				1	78		.071	10	0.093	86	0.067	1	
l	 					87	0.	.036			63	0.027	1	
— • [Tor	Topic: 10 - Kernel learning		Topic:	11 - Clar	ssification		fonic: 22-M	Maximum likelihood		Topic : 48	- Face recogni	ition	
Topics			Probability			Probability	+	Words	Probability		Words	Probabil		
•		bf	0.048	classification		0.048	+	model	0.040		face	0.046	*	
	experts		0.028	classifier	•	0.045		data		0.025	images	0.024		
	basis		0.024			0.039		models	0.021		faces	0.022		
	expert		0.021	training		0.031		probability		0.019	recognition	0.020		
	gating		0.019	classifiers		0.026		likelihood		0.015	facial	0.017		
	network		0.018	classes		0.016		mixture	0.014		image		0.017	
	radial		0.017	feature		0.015	(distribution		0.013	human		0.009	
	networks		0.017	pattern		0.014		parameters			based	0.009		
	mixture		0.016	decision		0.012		em		0.012				
	gaussian		0.013	nearest		0.011		density		0.011	system	0.008		
l İ	Topic: 52 - Gradient algorithm		Topic: 53 - Bayesian/Monte Carlo			0	Topic: 58 - Protein structure			Topic: 63 - Network				
l T	Words		Probability	Words				Words	Probability		Words	Probabil		
ı İ	fun	ction	0.024	bayesian		0.028		protein		0.023	network	0.050		
	algorithm		0.019	gaussian 0.025				chain		0.021	units	0.031		
	learning		0.017	prior	0			region		0.016	input	0.030		
	gradient		0.013	posterior				structure		0.015	learning	0.025		
	vector		0.012	distribution	distribution 0.016			mouse		0.014	output	0.023		
	convergence		0.010	evidence	evidence 0.014			proteins		0.014	training	0.023		
	problem		0.009	monte	monte 0.012			human		0.013	hidden	0.023		
	linear		0.009	carlo		0.012		sequences		0.012	networks	0.022		
	case		0.008	mackay		0.009		prediction		0.010	unit	0.019		
	algorithms		0.008			0.009		sequence	0.010		layer 0.01			
	Topic: 64 - Spe		eech recognition	Topic: 78					dic: 86 - PCA		Topic: 87 - Statistical m			
	Words		Probability	Words		Probability	ty Words		Probability		Words	Probabil		
		eech	0.039	data		0.022		matrix		0.038	energy	0.036		
	-	gnition	0.029	set		0.019		pca		0.028	boltzmann	0.028		
		ord	0.023	number		0.013		linear		0.026	temperature	0.020		
1		stem	0.018	figure		0.012		principal		0.025	annealing	0.017		
1		ining	0.015	results		0.012		analysis		0.017	units	0.013		
		nm	0.013	model		0.012		component		0.017	state	0.012		
	-	eaker	0.012	neural		0.011		components	5	0.015	field	0.011		
1		ntext	0.011	learning		0.010		covariance		0.013	machine	0.011		
1		work	0.009	function		0.009	e	eigenvector	\$	0.012	probability	0.008		
i l	ne	ural	0.008	training		0.009		subspace		0.011	signature	0.008		

Naruemon Pratanwanich (Ploy)

Email: np394@cam.ac.uk

Author Contributions

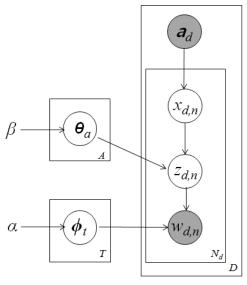


Test document

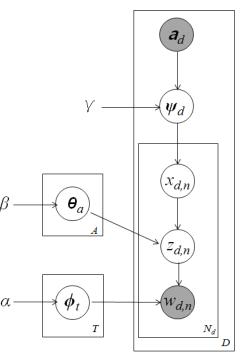
1 document from Abu-Mostafa Y (0.17%) 2 documents from Anastasio T (0.33%) 3 documents from Linsker R (0.50%)

Who Wrote This ?

To discover the meaningful structures underlying documents, probabilistic generative models which employ the abstract definition of topics as a fundamental concept to generate words have gained popularity for document analysis as unsupervised learning techniques. In topic-based generative models, a document is described by a particular topic proportion, where a topic is defined as a distribution over words. After latent Dirichlet allocation (LDA), a mixed-membership topic model, was introduced, many studies have proposed a great number of model variations. The primary goal of such extensions is to incorporate side information or meta-data together with words in the texts for better characterization of



(a) AT model

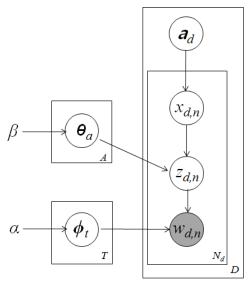


(b) SAT model

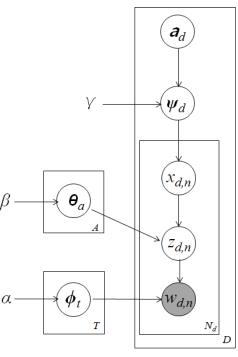
Email: np394@cam.ac.uk

Who Wrote This ?

To discover the meaningful structures underlying documents, probabilistic generative models which employ the abstract definition of topics as a fundamental concept to generate words have gained popularity for document analysis as unsupervised learning techniques. In topic-based generative models, a document is described by a particular topic proportion, where a topic is defined as a distribution over words. After latent Dirichlet allocation (LDA), a mixed-membership topic model, was introduced, many studies have proposed a great number of model variations. The primary goal of such extensions is to incorporate side information or meta-data together with words in the texts for better characterization of



(a) AT model



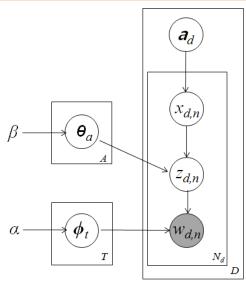
(b) SAT model

Email: np394@cam.ac.uk

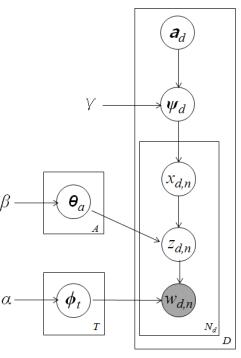
Who Wrote This ?

To discover the meaningful structures underlying documents, probabilistic generative models which employ the abstract definition of topics as a fundamental concept to generate words have gained popularity for document analysis as unsupervised learning techniques. In topic-based generative models, a document is described by a particular topic proportion, where a topic is defined as a distribution over words. After latent Dirichlet allocation (LDA), a mixed-membership topic model, was introduced, many studies have proposed a great number of model variations. The primary goal of such extensions is to incorporate side information or meta-data together with words in the texts for better characterization of

$$\tilde{\psi}_d = P(a \in \mathbf{a}_d | \tilde{w}_d, \mathcal{M}) = \frac{\sum_{n=1}^{N_d} \delta(\tilde{x}_{d,n} = a)}{N_d}$$



(a) AT model



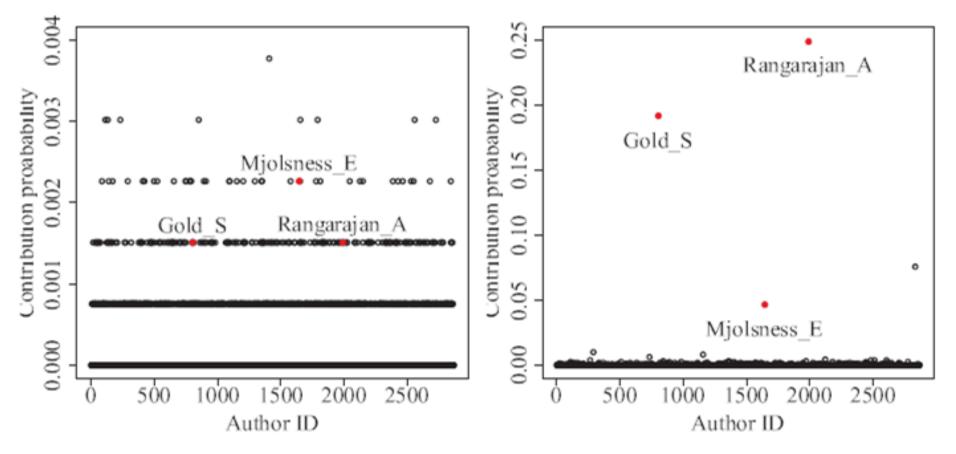
(b) SAT model

Email: np394@cam.ac.uk

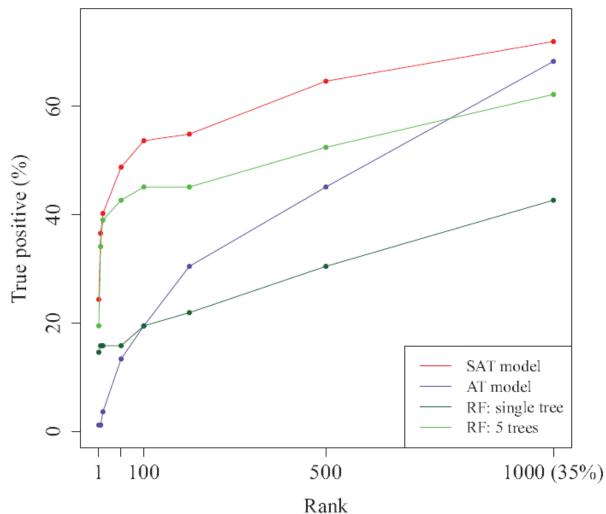
Example of Predictive Distribution

AT model

SAT model



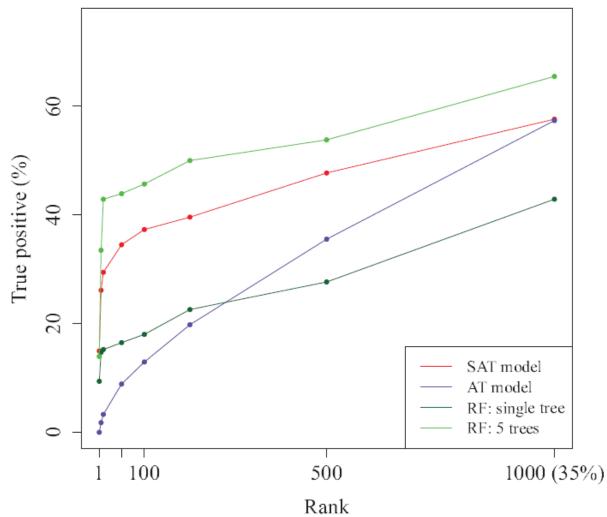
TFs vs Ranks for Prediction on **Single-Author** Documents



Naruemon Pratanwanich (Ploy)

Email: np394@cam.ac.uk

TFs vs Ranks for Prediction on **Multiple-Author** Documents



Naruemon Pratanwanich (Ploy)

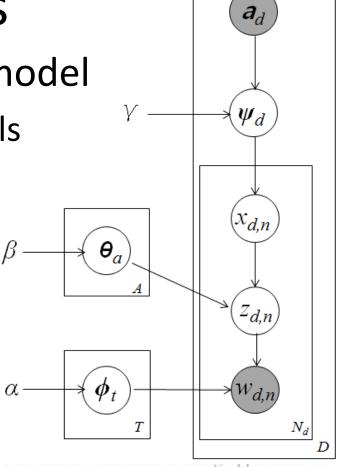
Email: np394@cam.ac.uk

- Supervised Author-Topic (SAT) model
 - Probabilistic *latent* variable models
 - Information discovery
 - Topic-word distributions
 - Author (topic-based) interests
 - Author contributions
 - Authorship attribution

Abstract—By representing large corpora with concise and meaningful elements, topic-based generative models aim to reduce the dimension and understand the content of documents. Those techniques originally analyze on words in the documents, but their extensions currently accommodate meta-data such as authorship information, which has been proved useful for textual modeling. The importance of learning authorship is to extract author interests and assign authors to anonymous texts. Author-Topic (AT) model, an unsupervised learning technique, successfully exploits authorship information to model both documents and author interests using topic representations. However, the

and prediction

authorship prediction have largely relied on discriminative modeling techniques that depend crucially on a variety of features such as word functions, word length distributions, and word contents [1]. The main drawback is that they generate a "black box" that makes it hard to understand why they give high performance on prediction.



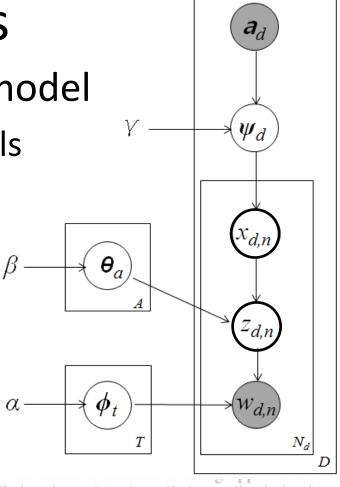
- Supervised Author-Topic (SAT) model
 - Probabilistic *latent* variable models
 - Information discovery
 - Topic-word distributions
 - Author (topic-based) interests
 - Author contributions

- Authorship attribution

Abstract—By representing large corpora with concise and meaningful elements, topic-based generative models aim to reduce the dimension and understand the content of documents. Those techniques originally analyze on words in the documents, but their extensions currently accommodate meta-data such as authorship information, which has been proved useful for textual modeling. The importance of learning authorship is to extract author interests and assign authors to anonymous texts. Author-Topic (AT) model, an unsupervised learning technique, successfully exploits authorship information to model both documents and author interests using topic representations. However, the

and prediction

authorship prediction have largely relied on discriminative modeling techniques that depend crucially on a variety of features such as word functions, word length distributions, and word contents [1]. The main drawback is that they generate a "black box" that makes it hard to understand why they give high performance on prediction.



- Supervised Author-Topic (SAT) model
 - Probabilistic *latent* variable models
 - Information discovery
 - Topic-word distributions
 - Author (topic-based) interests
 - Author contributions
 - Authorship attribution

Abstract—By representing large corpora with concise and meaningful elements, topical generative models aim to reduce the dimension and the content of documents, Those technology of WNITING and the content of documents, but the technology of WNITING accommodate meta-data such as DVNamic of WNITING accommodate meta-data such as DVNamic of learning authorship is to extract author interests and assign authors to anonymous texts. Author-Topic (AT) model, an unsupervised learning technique, successfully exploits authorship information to model both documents and author interests using topic representations. However, the

and prediction

α

authorship prediction have largely relied on discriminative modeling techniques that depend crucially on a variety of features such as word functions, word length distributions, and word contents [1]. The main drawback is that they generate a "black box" that makes it hard to understand why they give high performance on prediction.

Т

V

 θ_a

 a_d

 Ψ_d

Z_{d,n}

Nd

- Supervised Author-Topic (SAT) model
 - Probabilistic *latent* variable models
 - Information discovery
 - Topic-word distributions
 - Author (topic-based) interests
 - Author contributions

- Authorship attribution

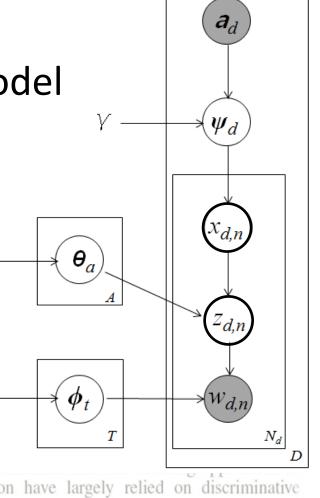
Naruemon Pratanwanich (Ploy)

and prediction

α

authorship prediction have largely relied on discriminative modeling techniques that depend crucially on a variety of features such as word functions, word length distributions, and word contents [1]. The main drawback is that they generate a "black box" that makes it hard to understand why they give high performance on prediction.

Email: np394@cam.ac.uk



- Supervised Author-Topic (SAT) model
 - Probabilistic *latent* variable models
 - Information discovery
 - Topic-word distributions
 - Author (topic-based) interests
 - Author contributions
 - Authorship attribution

and prediction

α

authorship prediction have largely relied on discriminative modeling techniques that depend crucially on a variety of features such as word functions, word length distributions, and word contents [1]. The main drawback is that they generate a "black box" that makes it hard to understand why they give high performance on prediction.

Т

 \mathcal{V}

 θ_a

Naruemon Pratanwanich (Ploy)

 a_d

 Ψ_d

Z_{d,n}

Nd

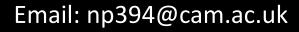
- Supervised Author-Topic (SAT) model
 - Probabilistic *latent* variable models
 - Information discovery
 - Topic-word distributions
 - Author (topic-based) interests
 - Author contributions
 - Authorship attribution

T Adata in the hig and prediction authorship prediction have largely relied on discriminative modeling techniques that depend crucially on a variety of features such as word functions, word length distributions, and word contents [1]. The main dear beckis that they are state a "black box" that makes it har produced and way they are high performance on prediction.

α

 θ_a

Naruemon Pratanwanich (Ploy)



 a_d

 Ψ_d

Z_{d,n}