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Abstract: A new, wavelet-based, non-intrusive method for 
speech transmission quality measurements is described in 
the abstract. It models human perception of quality of 
transmitted speech signal. The deployed Discrete Wavelet 
Transform, in comparison with Fourier Transform, enables 
to reduce the computational power. In comparison with 
standardized methods (based on ITU-T P.563 algorithms), 
the described method saves about 90% of operations needed, 
achieving about 90% of the results of P.563. Thus, it is 
suitable for operational continuous assessment, or even for 
applications embedded in the mobile terminal.  
  
Keywords: Speech transmission quality of service, wavelet 
transform 

1.   INTRODUCTION 

The assessment of speech quality is mainly of interest 
for the evaluation of speech transmission systems which 
offer 100% or very near-to-100% speech intelligibility, 
because these systems cannot be distinguished by speech 
intelligibility measures [1], [2].  

Speech transmission during any call in the 
telecommunication network is affected by many 
impairments like delay, echo, various kinds of noise, speech 
(de)coding distortions and artifacts, temporal and amplitude 
clipping etc. Each transmission impairment has a certain 
perceptual impact on the speech transmission quality. The 
overall quality can be evaluated and expressed in terms of a 
Mean Opinion Score (MOS) covering the range from 1 
(bad) to 5 (excellent).  

The following three groups of speech transmission 
quality measurement can be distinguished: Listening and 
conversational tests, intrusive objective measurements and 
non-intrusive objective measurements. 

 
1.1. Listening and Conversational Tests 
 
A trivial method of measuring quality would be to ask 

callers for their opinion after a call has been made.  Due to 
obvious practical problems related to this approach, 
listening and conversational tests have been standardized 
instead as the methods for subjective determination of 
transmission quality. These tests relate real world distortions 

created in a laboratory environment to the subjectively 
perceived quality. E.g. recommendation [3] describes 
approved methods which are considered to be suitable for 
determining how satisfactory given telephone connections 
may be expected to perform. They contain recommended 
subjective evaluation procedures for conversational and 
listening-only tests.    

 
 
1.2. Intrusive Objective Measurements 
 
Intrusive measurements of speech transmission quality 

usually require special test calls generated by the 
measurement system and require that the original 
(non-distorted) speech sample is available to the 
measurement algorithm. The algorithm itself then compares 
original and transmitted speech samples and identifies and 
integrates the perceptual differences between them. Known 
psycho-acoustical aspects of human hearing (human ear 
loudness and frequency resolution and sensitivity, temporal 
and frequency masking, etc.) are/should be modeled by the 
algorithm to estimate the subjectively perceived quality in 
terms of the MOS value as would have been obtained in a 
listening tests. A typical example of an intrusive algorithm 
is PESQ [4],[5]. The correlation coefficient between the 
PESQ MOS estimate and the related MOS from formal 
listening tests is in most cases above 0.9. PESQ was 
validated for various transmission and coding technologies 
including mobile networks and Voice over Internet Protocol 
(VoIP) transmissions. The typical length of the analyzed 
speech samples is 8-12 s. 

 
1.3. Non-Intrusive Objective Measurements 
 
Passive monitoring of on-going calls in the network is a 

basic principle of 3SQM – ITU-T P.563 [6]. The 3SQM 
(Single-Sided Speech Quality Measurement) combines three 
non-intrusive algorithms and achieves a correlation 
coefficient with listening tests of around 0.8. 

The computational requirements of 3SQM are high – 
typically, for 20s speech sample the calculation on common 
PC (PIV, 3 GHz, 512 MB RAM), lasts another 10-15s. 
 



2. PURPOSE 

None of the above methods is suitable for operational 
measurements in network- or area-wide measurements when 
many (millions) of call records are to be processed and 
assessed. Principally, the most suitable candidate is the class 
of non-intrusive measurements (1.3) but the computational 
power required there is still too high. Our goal is to design a 
new algorithm, suitable both for streaming and sample 
processing that would save computational power without 
significant compromising the result accuracy.  
  

3. METHODS 

 
Based on our positive experience [7] with DWT [8,9] 

applied for intrusive measurements of speech transmission 
quality and on previous experiments with histogram of 
signal packet spectra [10], we have decided to combine both 
approaches to final non-intrusive, packet DWT-based 
algorithm. 

The algorithm consists of the following steps: 
 
1. Raw level alignment 
2. Stream segmentation 
3. DWT calculation 
4. Scale power histograms generation 
5. Parameter extraction 
6. Perceptual synthesis of MOS estimate 
 
 
3.1. Raw Level Alignment 
 
The (PCM) data sample/stream is aligned to the level of 

-26dBoV. There are various solutions available; some of 
them require voice activity detection. To simplify the 
calculation, we do not detect voice activity, supposing 
speech activity factor above 50% and keeping the 
measurement window long enough (1000 ms).   

 
 
3.2. Stream packetization, DWT calculation  

 
  The level-aligned stream is segmented to 16 ms packets 
with 50% overlap. DWT coefficients using discrete 
approximation (FIR-based) of Meyer wavelet are calculated 
at 6 scales (see Tab. 1). Meyer wavelet ensures orthogonal 
analysis. 
 

Tab 1: Scales of DWT and corresponding number of samples (Y is 
number of samples of the speech sample) for 8 kSa/s sampling 

frequency 
Scale  Frequency range [Hz] Number 

 of Samples 
B1 0...125 Y/32 
B2 125...250 Y/32 
B3 250...500 Y/16 
B4 500...1000 Y/8 
B5 1000…2000 Y/4 
B6 2000…4000 Y/2 

 
3.3. Scale power histograms generation  
 

Scale rms values are stored to the histogram array. Also 
differences in rms values from the previous packet are 
stored to different histogram.. In total, it gives 6 (scales) x 2 
(rms and rms delta) values for each packet. For up-to 10 s 
speech sample processing, the histogram is filled with data 
from the entire sample. In case of long sample processing or 
in case of streaming speech signal analysis, each 1-5 s the 
histogram values are moved to other arrays for further 
processing and the original two histograms are reset. 

 

 
Fig. 1 Scale power histogram for clean male speech, 8kSa/s, 

8s speech sample length, MOS=4.3 
 

Fig. 2 Scale power histogram for noisy male speech, 8kSa/s, 
8s speech sample length, SNR=8 dB, MOS=2.8 



 
Fig. 3 Scale power histogram for encrypted GSM male 
speech, 8kSa/s, 8s speech sample length, MOS=2.3 

 
 
3.4. Parameter extraction  
 

Using the previously described two histograms, the 
following signal parameters are extracted:  
 
For basic histogram of rms values of DWT scales: 

A. Position of maxima in each scale 
B. Number of hits in the 1st and 2nd histogram bin for 

each scale 
C. Mean value of bin over aech scale 
D. Variance of bin hits over each scale 

 
For the delta histogram: 

E. Variance of bin hits over each scale in delta 
histogram 

 
3.5. Perceptual synthesis of final MOS estimate  
 

Due to the average speech frequency occupation, the 
speech itself contributes mostly to hits in scales B3, B4, B5 
that means the frequency range 250…2000 Hz.   

The position of maxima in all 6 scales defines the noise 
profile that is, after perceptual weighting (see Tab. 2), used 
to calculate a basic quality score (that reflects mostly the 
psophometrically weighted SNR).  

 
Tab. 2: Scales of DWT and corresponding  

Bark scales and averaged gains 
 

DWT Scale Bark Scale Gain 
B1 0-4 1E-5 
B2 5-7 1E-3 
B3 8-15 0.3 
B4 16-27 0.9 
B5 28-41 1 
B6 42-55 0.8 

 

Other parameters (namely C, D, E and comparisons with 
their typical values for clean speech) are used to further 
precise the objective quality estimation that models human 
perception of transmission quality achieved. 

Parameter B serves as detector of presence of zero-signal 
portions in the PCM stream, thus indicating non-recovered 
jitter or temporal clipping caused by badly performing VAD 
(Voice Activity Detector). 

  
4. RESULTS 
 

The algorithm has been tested on 877 speech samples 
fulfilling the P.80 requirements. Those samples were 
obtained partly on real transmissions in GSM networks, 
partly by artificial distortions (noise, amplitude and 
temporal clipping, echo, harmonic and non-harmonic 
distortion). Also samples from end-to-end encrypted GSM 
transmissions and samples acquired in low bit rate network 
environment (MELPe at 1.2 and 2.4 kb/s) have been used. 
Most of them has been calibrated by means of listening tests 
(app. 80%), otherwise PESQ-LQ (P.862.1) evaluation have 
been used as a reference. 

The results are summarized in Tab. 3. 
 
Tab 3: Non-intrusive, wavelet based speech quality estimation – 

correlation coefficient for different  speech databases 
  

Data-
base  

Content Description  Number 
of 
Speech 
Samples 

Corellation 
Coefficient 

CT Clean, noisy, GSM, 
jitter, clipping 

665 0,81 

GSM-E Encrypted GSM 60 0,77 
ME12 MELPe 1200 bit/s 76 0,78 
ME24 MELPe 2400 bit/s 76 0,80 

 
 
5. DISCUSSION 
 
 The commercially available non-intrusive algorithm 
P.563 (3SQM) achieves correlation coefficient between 
0.80-0.85, thus being slightly better than the developed, 
wavelet-based one. However, the calculation of MOS 
estimate using our algorithm requires slightly less than 10% 
of processing power required by 3SQM. The new algorithm 
also enables speech stream processing, providing MOS 
estimate update each 1-5 s.  
 

6.   CONCLUSION 

The developed algorithm seems to be suitable for 
operational quality measurement where massive amount of 
call records must be evaluated. The algorithm models 
human perception of quality of transmitted speech signals. 
Due to low computational power required by the algorithm, 
also applications embedded directly in mobile terminals 
(where the computational power as well as battery life and 
available memory are limited) are possible. However, due to 
low number of speech samples in testing databases, further 



verification is necessary to prove algorithm robustness and 
general applicability.  
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