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Abstract: Local Positioning Systems (LPS) have shown excellent performance for applications
that demand high accuracy. They rely on ad-hoc node deployments which fit the environment
characteristics in order to reduce the system uncertainties. The obtainment of competitive
results through these systems requires the solution of the Node Location Problem (finding the
optimal cartesian coordinates of the architecture sensors). This problem has been assigned
as NP-Hard, therefore a heuristic solution is recommended for addressing this complex
problem. Genetic Algorithms (GA) have shown an excellent trade-off between diversification and
intensification in the literature. However, in Non-Line-of-Sight (NLOS) environments in which there
is not continuity in the fitness function evaluation of a particular node distribution among contiguous
solutions, challenges arise for the GA during the exploration of new potential regions of the space of
solutions. Consequently, in this paper, we first propose a Hybrid GA with a combination of the GA
operators in the evolutionary process for the Node Location Problem. Later, we introduce a Memetic
Algorithm (MA) with a Local Search (LS) strategy for exploring the most different individuals of
the population in search of improving the previous results. Finally, we combine the Hybrid Genetic
Algorithm (HGA) and Memetic Algorithm (MA), designing an enhanced novel methodology for
solving the Node Location Problem, a Hybrid Memetic Algorithm (HMA). Results show that the
HMA proposed in this article outperforms all of the individual configurations presented and attains
an improvement of 14.2% in accuracy for the Node Location Problem solution in the scenario of
simulations with regards to the previous GA optimizations of the literature.

Keywords: clock errors; Cramér–Rao bound; genetic algorithm; hybrid genetic algorithm;
local positioning systems; memetic algorithm; node location problem; noise uncertainties

1. Introduction

The definition of the location of a target is an essential fact for performing complex tasks.
Traditionally, Global Navigation Satellite Systems (GNSS) have been used for providing a stable
signal for many different applications such as navigation, earth observation, emergency and rescue
operations or surveillance. However, their signals are notably affected in their paths from satellites to
targets and the accuracy achieved by these systems can be compromised by ionospheric instabilities [1],
synchronization effects among the system devices [2], multipath phenomena [3] or signal path noise
degradation [4].

However, the uncertainty in the position determination using GNSS may preclude their usage
for applications that demand high accuracy (e.g., autonomous navigation, indoor localization,
low-level UAV flights or precision agriculture). Therefore, new localization schemes based on the
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terrestrial deployment of sensors with target proximity are collecting notable research interest over the
last few years [5,6]. These deployments, known as Local Positioning Systems (LPS), require an ad-hoc
distribution of the sensors in space, adapting the sensor location to the characteristics of the
environment of operation, thus reducing the system uncertainties in the position determination.
The knowledge of the environment and the optimal deployment of the sensors enables mitigating or
avoiding the main system error sources, thus producing competitive and cost-effective systems for
applications that demand high accuracy [7].

LPS are categorized through the physical property measured for calculating the target location:
power [8], angle [9], phase [10], frequency [11], time [12] and hybridizations of them [13,14].

Among them, time-based positioning (TBP) shows the best trade-off considering accuracy,
reliability, robustness, stability and easy-to-implement hardware configurations. TBP is based on
the measurement of the positioning signal time travel from an emitter to a receiver. There exist
different architectures for computing the time measurements which produces different target
determination calculations.

Time of Arrival (TOA) architectures measure the total time-of-flight of the positioning signal
from an emitter to a receiver [15]. It requires the synchronism of the clock of all the system elements
since every reception of the signal produces a different equation of a sphere for the target location
determination. Generally, 3D positioning needs 4 receivers to unequivocally determine the target
spatial coordinates. Time Difference of Arrival (TDOA) architecture measures the relative time
lapse among the reception of the positioning signal in two different receivers [16]. Relative-time
measurements generate hyperboloid surfaces of possible target locations in 3D. The necessity of using
two different receivers for obtaining a hyperboloid equation means that 5 sensors are required to
unequivocally determine the target location. However, we have proven [17] that under optimized
sensor distributions this problem may be solved with 4 receivers.

TDOA architectures do not require the synchronism of the target with the system clocks.
Even completely asynchronous architectures are recently being proposed [18,19] and are attracting
high research interest since they collect all the time measurements in a single clock of a Coordinator
Sensor (CS). This allows us to avoid synchronism among the system receivers, consequently reducing
the architecture clock errors [20] but increasing the signal paths and noise errors [21], since they rely on
a receive-and-retransmit strategy of the positioning signals in the Target Sensor (TS), producing longer
path signals. In addition, a possible CS malfunction may produce temporal system unavailability [22]
due to the particular architecture dependence on the CS.

These facts make the usage of synchronous and asynchronous TDOA deployments dependent on
the environment characteristics. In this paper, we will analyze the asynchronous TDOA architecture
since it supposes a promising technology in LPS that requires the solution of the Node Location
Problem (NLP) to any application scenario and due to the extent usage of TDOA positioning in
terrestrial localization [23,24].

However, regardless of the architecture used in local TBP, the optimal performance of the
positioning system is achieved through the minimization of the system uncertainties in every possible
TS location. This optimization demands an enhanced node distribution (i.e., an ad-hoc sensor
location for the operating environment) in which noise uncertainties in Line-of-Sight (LOS) and
Non-Line-of-Sight (NLOS) conditions and clock errors are reduced, favoring the optimal performance
of the LPS.

The uncertainties are usually modeled in the Cramér–Rao Lower Bound (CRLB), since it provides
the minimum achievable error by any positioning system in a defined TS location [25] and its usage is
widespread in the field [26–28]. Kaune et al. [25] provided a matrix form of the Fisher Information
Matrix (FIM), which is a maximum likelihood estimator for which the inverse is the CRLB. This FIM
matrix includes the covariance matrix of the system in which the definition of the uncertainties
is introduced.
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The signal path noise degradation must deal with heteroscedastic noises [29], since the signal
paths notably differ among sensors in LPS. For the characterization of the clock errors, we have recently
introduced [20] a model in which the initial-time offset, clock drift and the instrument truncating error
are considered. The minimization of this combined CRLB model enables the optimal performance of
any LPS architecture for a defined TS location.

The finding of an optimized sensor location for high-demanded LPS applications, known as the
Node Location Problem, must assume the overall minimization of the CRLB for each possible TS
location, the Target Location Environment (TLE) [30]. This process is not derivable for all the TLE
jointly [27,31] and it has been categorized as NP-Hard [32,33].

Therefore, a heuristic solution is recommended for addressing the optimization. Many different
metaheuristic techniques such as simulated annealing [34], dolphin swarm algorithm [35],
bat algorithm [36], elephant herding optimization [37] or diversified local search [38] have been used
for approaching the node location problem, but especially Genetic Algorithms (GA) have been used
in the node location problem [39–41] due to the excellent trade-off of the GA between diversification
(i.e., the capacity to explore the space of solutions) and intensification (i.e., the finding of the optimal
solution in a reduced part of the space of solutions) [42].

In our previous research, we have applied GA to the NLP in LPS [7,20–22,30]. In these papers,
we have observed that the dimensions of the space of solutions which increases with the number of
sensors, the resolution of the pre-defined possible space locations for them and the complexity of the
fitness function evaluation, significantly affect the stable performance of the GA. This is due to the
difficulty of exploring the huge space of solutions generated in the NLP.

In addition, the analysis of contiguous solutions (i.e., node distributions that differ only in
a cartesian coordinate of a particular node) may suppose notable changes in the fitness function
evaluation. These conditions especially occur in NLOS scenarios in which the signal quality may be
significantly distorted if a node is located just behind an obstacle. This fact has promoted the usage of
pre-defined populations of the GA for obtaining practical results in the GA evolution [21].

Thus, the observance of these facts has shown the necessity of introducing some knowledge in
the optimization process of the node location problem in localization. In this paper, we first address
the problem by constructing a Hybrid Genetic Algorithm (HGA) affecting the diversification and
intensification phases through an ad-hoc usage of the GA operators for favoring the obtainment of
practical results.

We later introduce a Memetic Algorithm (MA) for the node location problem in the localization
field for the first time in the authors’ best knowledge with the characterization of time and noise
uncertainties of LOS and NLOS conditions. There exist some previous studies of the application of the
MA to the optimization of Wireless Sensor Networks (WSN) [43–46], but these studies are focused on
the coverage among the system nodes.

In this paper, we are not only considering the effective coverage among the sensors, but also
enhancing the performance of the LPS through the characterization of the system time and noise errors
for designing competitive LPS for applications that demand high accuracy.

In this sense, the MA allows us to introduce knowledge in the optimization process through the
concept of meme. A meme is the unit of cultural information of the Dawkins theory of transmittable
knowledge [47] which has the ability to replicate and evolve and the capacity to affect the human
fitness (i.e., reproduction and survival). This idea later inspired Moscato [48] to generate an impact
in the evolutionary computation. The MA combines a local search strategy with the GA evolution
for avoiding premature convergence. In addition, local search techniques are built to introduce
knowledge in the optimization process for finding promising individuals in a reduced space of
solutions, which may be difficult to be found in the GA evolution. However, a beneficial balancing
among Global Search (i.e., GA performance) and Local Search (LS) is critical for achieving acceptable
results in time and optimization [49].
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We apply these ideas through a MA to the NLP with a variable neighborhood-descent LS in which
the movement of the nodes for finding optimal sensor configurations is considered. The LS is applied
to the most different individuals of the quantiles in which we divide the GA individuals through
the fitness function evaluation. This allows us to explore new spaces of solutions not favored by the
evolutionary process [50].

The variable neighborhood-descent LS implements a new pseudo-fitness function for
characterizing promising node distributions in the reduced space of solutions of the LS in order
to diminish the time complexity of the search. This is possible since geometric and clock errors are
minority affected among contiguous solutions, and the notable increase of the fitness functions is
produced by reducing NLOS links among the system elements.

Finally, we combine the beneficial effects of an enhanced GA operators selection during
the evolutionary process in the HGA with the introduction of knowledge through the MA,
obtaining a Hybrid Memetic Algorithm for the Node Location Problem which outperforms all the
previous configurations. The process followed in the manuscript is detailed in the Graphical Abstract.

As a consequence, the main contributions of this paper are:

• A new ad-hoc hybrid combination of the GA operators in the evolutionary process for allowing
a deep-exploration phase followed by a heavy-intensification phase for improving the results of
the NLP.

• A MA methodology for the NLP in the localization field for the first time in the authors’
best knowledge.

• The construction of a pseudo-fitness function for improving the speed of the LS evaluation based
exclusively on the positioning signal paths for evaluating neighborhood solutions of the NLP
since geometric and clock errors remain practically constant among contiguous solutions.

• A variable neighborhood-descent LS not only for improving the best individuals of the GA
population, but also for exploring the neighborhood of the most different individuals in order
to analyze potential unfavored regions of the space of solutions due to the discontinuity of the
fitness function in NLOS complex environments.

The remainder of the paper is organized as follows: we define the category and complexity of
the NLP, the definition of the scenario of simulations and the CRLB model for the fitness evaluation
in Section 2, the GA solution, its implementation and its weaknesses in the achievement of practical
results in NLOS scenarios in Section 3, the HGA for introducing the ad-hoc usage of the GA operators
for diversification and intensification phases in Section 4, the MA for the node location problem is
introduced in Section 5, the results are shown in Section 6 while the conclusions of the paper are
presented in Section 7.

2. Localization Node Location Problem

Let 〈xi〉 = (xi, yi, zi) be the spatial coordinates of a sensor node used for the localization in LPS,
S the set of possible sensor locations in the environment (NLE region), Sj a subset containing a possible
combination of the defined N sensors used in the LPS located in different positions, Sl the rest of the
subsets of S excluding Sj, T the total possible target locations (tk) covered (TLE region), fSj(tk) the
value of the fitness function of the optimization for the subset Sj of sensors in a defined target location
(tk), the node location problem is defined as finding the:

(
〈xi〉 (i ∈ 1, . . . , N) = Sj

)
⊂ S :

∑T
k=1 fSj(tk)

T
≥ max

(
∑T

k=1 fSl (tk)

T

)
(1)

Therefore, the Node Location Problem in localization entails the definition of the three Cartesian
coordinates of the sensors used for localizing a TS in such a way that the fitness function of the quality
of the system performance is maximized. This implies the combination of sensors that enables the
reduction of the system uncertainties in the TS calculation for every analyzed point of the TLE in
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the optimization discretization. In this section, we address the category and complexity of the NLP,
the definition of the scenario of simulation in which the GA, HGA and MA are applied and the model
for the determination of the quality of a particular node distribution.

2.1. Category and Complexity of the NLP

The NLP has been categorized as NP-Hard [32,33,51,52], which shows the impossibility of
finding the optimal solution of the problem in polynomial time without considering simplifications
in the definition.

First attempts to address this problem were based on linear models applied on grid divisions
of the NLE [53], which turned out to be very complex and required problem simplifications. As a
consequence, non-linear models were proposed for finding valuable solutions without previous
considerations through greedy algorithms [54].

However, the dimensions of the space of solutions did not allow us to solve the NLP
with these methodologies achieving valid results, especially in discontinuous optimization spaces
(e.g., NLOS system links considerations). Therefore, a heuristic solution to the NLP is recommended.

The main reasons are the non-derivability of the quality indicators for the complete TLE [27,31],
the discontinuity of the space of solutions, the dimensions of the problem which depend on the
resolution of the NLE and TLE regions and the complexity of the fitness function evaluation.

Simulated annealing [34], dolphin swarm [35], bat algorithm [36], elephant herding
optimization [37], diversified local search [38], firefly algorithm [55], bacterial foraging algorithm [56]
but especially genetic algorithms [39–41,57,58] have been used for solving the NLP.

GA have shown an excellent trade-off among diversification and intensification for this problem.
Thus, they suppose the most extended methodology for the NLP in the literature, but we have found
some problems for the exclusive evolutionary computation of the NLP that we will discuss in Section 3
and that recommend the introduction of some knowledge in the optimization process through a HGA
and a MA.

However, regardless of the methodology used for the optimization, the complexity of the NLP
must be considered for making beneficial design decisions. We define computational complexity
of an algorithm as the amount of resources used for finding the optimal solution of a problem [59].
Considering the impossibility of solving the unconstrained problem (i.e., considering every possible
sensor location), the complexity of the NLP depends on the characteristics of the resolution of the
NLE [30]. The number of possible sensor distributions is defined as follows:

P(Sensor Distributions) =

[
N−1

∏
i=0

(nNLE − i)

]
(2)

where nNLE is the total number of discretized points of the Node Location Environment which can
hold an architecture sensor and N the total number of architecture sensors used in the LPS architecture.

Therefore, an increase in the number of architecture sensors used and a reduction in the resolution
of the NLE induces the growth of the space of solutions. The order of the problem, as defined in
Equation (2), is factorial.

In addition, localization NLP supposes the consideration of the analysis of the quality of a node
distribution in every point of the TLE, since the optimal performance of the LPS must produce
competitive results in the entire target coverage area. As a consequence, the total number of operations
for considering the exhaustive analysis of every possible combination of sensors is:

Number of operations =

[
N−1

∏
i=0

(nNLE − i)

]
nTLE f f (tk) (3)
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where nTLE is the total number of possible target locations analyzed for every possible sensor
distribution and f f (tk) is the function of the quality of a node distribution in a defined target
location (tk).

Therefore, the time required for finding an optimized node distribution increases with the number
of TLE analyzed points and it is dependent on the fitness function defined for the sensor distribution
quality. This function will contain in this paper the combined uncertainties of noise in LOS and NLOS
environments [21] and clock errors [20]. These effects are introduced in the covariance matrix of the
FIM of the Asynchronous Time Difference of Arrival (A-TDOA) architecture.

The FIM matrix, for which the inverse is the CRLB of the system, is a maximum likelihood
estimator in which the effect of optimal geometric deployments for the intersection of hyperboloid
surfaces in TDOA localization is also considered. In this paper, we are also considering a pseudo-fitness
function in the LS of the memetic algorithm since a reduction in the time complexity is achieved through
the exclusive consideration of the LOS/NLOS links of the positioning signal paths.

The definition of these hyperparameters (NLE and TLE regions) for solving efficiently the NLP is
discussed in the next subsection.

2.2. Definition of the Scenario of Simulations

The proposed optimization technique for complex NLOS environments provides a potential way
for a priori estimating the capabilities of positioning architectures deployed regardless of the conditions
and the scenarios of application of the location systems. Under this assumption, this new optimization
methodology should be tested in pre-defined 3D complex scenarios where NLOS discontinuities are
induced, searching all the weaknesses and finding those variables that limit the future implementation
of the procedure in other environments. In this aspect, a 3D scenario with harsh operating conditions
and a base surface with obstacles and elevate ground slopes is presented in Figure 1.

Figure 1 shows the NLE and TLE regions of the designed scenario for all the simulations performed
in the manuscript. This environment is unrealistic in terms of operating conditions and orography
of the reference surface for the optimization, becoming a rough benchmark, and challenging the
obtainment of adequate solutions for the deployment of sensors.

The TLE region extends in height from 0.5 to 3 m with respect to the base surface. TLE area is
discretized under a spatial resolution of 10, 5, 1.5 m in the Cartesian coordinates x, y, and z respectively.
With this configuration, the number of operations and thus the complexity of the problem is contained,
maintaining higher consistencies and representativeness of the scenario. This is accomplished when
the principal statistical variables of the accuracy evaluation of the positioning systems are slightly
modified when increasing the spatial resolution of the TLE and NLE regions.

For the NLE zone, the architecture sensors are allowed in elevations from the local-based surface
from 3 to 10 meters, in an attempt to maximize the conditions of adequate application of the CRLB
model (avoiding multipath and other disruptive phenomena induced near the reference surface).
The resolution in the NLE area is directly dependent on the codification of the sensor distributions
in the individuals of the GA technique [30]. In this instance, a representation with binary chains of
length 10,10,6 chromosomes for the respecting x, y, and z. Cartesian coordinates are selected, leading
to resolutions of approximately 2 meters. As in the TLE region, this ensures a trade-off between
representativeness of the results and the number of operations of the procedure.
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Figure 1. The scenario of simulations. Grey colors indicate the reference surface, blue colors represent
the Target Location Environment (TLE) region, and brown zones show the Node Location Environment
(NLE) region.

2.3. Evaluation of the Quality of a Node Distribution

Localization NLP assumes an optimal sensor distribution for reducing the uncertainties in the
determination of the TS location. The main system uncertainties in TBP are the noise degradation of
the positioning signal in LOS and NLOS environments [21], the clock errors in the time measurements
which are generated by synchronization of the system devices, drift and truncation errors in the
CS clocks [20] and the geometric deployment of the sensors in space which affects the positioning
algorithm performance [60].

The signal paths followed by the positioning signal vary notably in LPS. This fact recommends
the usage of distance-dependent path-loss models for characterizing the signal path noises and for
achieving practical results [29,31]. These models can be introduced in the covariance matrix of the
FIM for characterizing the architecture errors. In addition, we proposed [20] a clock error model
for considering the time uncertainties in the FIM covariance matrix which is used in this paper for
achieving practical optimization results.

The definition of the FIM for for a time localization architecture was first proposed by
Kaune et al. [25]:

FIMmn =
(

∂h(TS)
∂TSm

)T
R−1(TS)R−1(TS)R−1(TS)

(
∂h(TS)
∂TSn

)
+ 1

2 tr
{

R−1(TS)R−1(TS)R−1(TS)
(

∂R(TS)
∂TSm

)
R−1(TS)R−1(TS)R−1(TS)

(
∂R(TS)

∂TSn

)}
(4)

where R(TS) is the covariance matrix of the architecture at study in which the characterization of the
uncertainties (i.e., noise in LOS/NLOS condition and clock errors) is provided and h(TS) is the vector
containing the information of the time measurement computed in the A-TDOA architecture.

Particularizing h(TS) and R(TS) for the A-TDOA architecture [20,21] and assuming uncorrelated
time measurements in the A-TDOA architecture [7]:

hA−TDOAi = ‖TS−WSi‖+ ‖TS− CS‖ − ‖WSi − CS‖ i = 1, . . . , NWS (5)
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σ2
A−TDOAi

=
c2

B2
(

PT
Pn

)PL(d0)

(dWSi−TSLOS

d0

)
+

(
dWSi−TSNLOS

d0

) nNLOS
nLOS

+

(
dTS−CSLOS

d0

)
+

+

(
dTS−CSNLOS

d0

) nNLOS
nLOS

+

(
dWSi−CSLOS

d0

)
+

(
dWSi−CSNLOS

d0

) nNLOS
nLOS

nLOS

+

+
1
l

l

∑
k=1
{|(Ti + TTS − TCS)− f loorTR[(Ti + TTS − TCS)(1 + ηCS)]| c2}

(6)

dWSi−TSLOS = ‖WSi − TS‖LOS (7)

dWSi−TSNLOS = ‖WSi − TS‖NLOS (8)

dTS−CSLOS = ‖TS− CS‖LOS (9)

dTS−CSNLOS = ‖TS− CS‖NLOS (10)

dWSi−CSLOS = ‖WSi − CS‖LOS (11)

dWSi−CSNLOS = ‖WSi − CS‖NLOS (12)

where sub-index i represent the measurements and signal paths linked with architecture sensor i,
while NWS represents the number of Worker Sensors (WS); c is the speed of the radioelectric waves
in m/s, B the signal bandwith in Hz, PT the transmission power in W, Pn the mean noise level in
W calculated through the Johnson–Nyquist relation, PL(d0) the path-loss in the reference distance
d0 from which the Log-Normal model is considered; dWSi−TS, dTS−CS, dWSi−CS the LOS and NLOS
distances travelled from the WS to the TS, from the TS to the CS and from the WS to the CS respectively
calculated with the algorithm described in [21]; nLOS and nNLOS the path-loss exponents used in
the Log-Normal model, l is the number of iterations of the Monte–Carlo simulation performed for
estimating the temporal variances, Ti, TTS and TCS the time of flight of the positioning signal from the
TS to the system WSs, the duration of the flight from TS to the CS and the period of time from the
emission of the signal from the WS to the TS respectively; ηCS define the clock drift of the CS clock.

This FIM characterization allows us to consider the main architecture uncertainties in the
optimization process of the NLP and finally obtain a measurement of the minimum achievable error
achieved by any positioning algorithm through the trace of the inverse of the FIM, expressed through
the Root Mean Squared Error (RMSE) as the most spreaded accuracy metric:

RMSE =

√
n

∑
m=1

FIM−1
mm (13)

3. Genetic Algorithm for the NLP in Localization

Genetic Algorithms have shown an excellent trade-off between diversification and intensification
for the NLP. These GA were proposed by Holland [61] and later refined by Goldberg [62]. They are
built on the theory of evolution and rely on the characteristics of the descendants of a population
which present a better adaptation than their parents by receiving the adapted genes from the previous
generation. The usage of the GA operators allows the recombination of the individuals, the selection
of the best candidates for finding an optimal offspring, the mutation of some genes for exploring new
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spaces of solutions avoiding local optima and the elitism for preserving the best adapted individuals
from generation to generation.

We provide in Figures 2 and 3 a general framework of the GA performance and based on the
binary codification proposed in the original work of Holland [61] (i.e., a candidate node distribution
for the NLP).

Figure 2. Flux Diagram of a Genetic Algorithm (GA).

Figure 3. Binary codification of the GA for the Node Location Problem (NLP).

As it is shown in Figure 3, the variables to optimize in the NLP are the Cartesian coordinates
of each architecture sensor node (i.e., the chromosomes of the codification) and the definition of
the resolution of the optimization allows us to transfer the binary coding of the potential solution
to decimal numbers through the escalation process defined in [30]. The definition of the quality of
every individual of the GA is based on a fitness function considering the CRLB described in Section
2.3 which enables the application of pressure selection for allowing the evolutionary process find
an optimal sensor configuration. The achievement of valid solutions in the GA performance requires
an exhaustive definition of the hyperparameters of the optimization [63]. In this section, we analyze
the potential problems of the NLP optimization through GA and propose two potential solutions
through HGA and MA.
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3.1. Implementation of the GA

Therefore, we have implemented a GA configuration that aims to find the best possible
distribution of sensors. For the scenario proposed, shown in Figure 1, in Table 1 a set of generic
technology parameters have been selected for performing simulations. The reason for this selection
relies on the main objective of this research, which is the generation of a new optimization technique
to the NLP, not the resolution of the NLP for a particular positioning technology.

Table 1. Asynchronous Time Difference of Arrival (A-TDOA) parameter configuration for the
simulations, whose selection is based on [64,65].

Parameter Magnitude

Frequency of emission 1090 MHz
Transmission power 400 W
Mean noise power −94 dBm

Receptor sensibility −90 dBm
Bandwidth 100 MHz

Clock frequency 1 GHz
Frequency–drift U {−15, 15}ppm

Time–frequency product 1
LOS path loss exponent 3.1

NLOS path loss exponent 4.5

Once the initial conditions of the optimization are established, the number of sensors to achieve
the desirable accuracy of the LPS is studied. This is a critical aspect in the NLP since an insufficient
number of sensors may lead to coverage issues and unacceptable RMSE values in some TLE analyzed
points. On the other hand, an unnecessary amount of nodes shall incur in a considerable increase on
the system implementation and maintenance cost.

Therefore, we have designed a genetic algorithm that obtains through the evaluation of a fitness
function the optimal node distribution and performance for multiple numbers of sensors. The genetic
algorithm, whose hyperparameters are shown in Table 2, is instructed by the following fitness function.

f f = 1−
(

RMSE
RMSEre f

)2

(14)

where RMSE is the mean value of the RMSE of a certain individual or node distribution for every
possible target location (i.e., each of the TLE analyzed points). On the other hand, RMSEre f is a defined
hyperparameter of the GA and serves as an accuracy reference [7,21]. This control parameter represents
the maximum RMSE value that can be reached for the TLE by an individual node distribution.
Reducing the RMSEre f shall introduce pressure selection in the optimization process, improving the
overall result. However, a disproportionate value may compromise the convergence of the GA to any
solution, therefore it is critical to obtain an adequate value for each particular scenario.

Furthermore, due to the construction of the fitness function in Equation (14), all fitness values
should be represented in the interval [0, 1]. Therefore, the value selected for the RMSEre f must ensure
that every fitness evaluation remains in the desired region.
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Table 2. GA hyperparameters selected [30]. The resulting number of possible combinations P, obtained
from Equation (2), shows the magnitude of the solution environment for the scenario proposed. Due to
the number of possible solutions, the application of heuristic methodologies is in order.

GA Hyperparameters Value

Population size 160

Convergence criteria 160 Generations or
80% population equal

Elitism 18 %
Mutation 3%

Selection Technique Tournament 2
Crossover Technique Single-point

RMSEre f 50 m
TLE points analyzed 1500
NLE points analyzed 24,000
Number of sensors N 5/8/11/14

Number of possible combinations P 7.95× 1021/1.09× 1035/1.51× 1048/2.09× 1061

Hence, in Table 3 we study the performance of the GA under different node distributions in search
of the most adequate configuration respecting performance and costs of the system. From these results,
it is concluded that the best compromise solution regarding the systems performance and costs is
an 11-node distribution. A lower number of sensors shall incur in a greater and unfeasible positioning
errors. On the other hand, a higher number of nodes does not accomplish a significant improvement
in the positioning accuracy, thus proving the investment on additional sensors futile.

Table 3. Comparison of multiple node distributions for the scenario proposed. Results displayed refer
to the maximum, mean and minimum values of the Root Mean Squared Error (RMSE) array result,
obtained from Equation (13), of a single distribution.

Node Distributions Max RMSE (m) Mean RMSE (m) Min RMSE (m)

5 Nodes 23.02 5.32 0.63
8 Nodes 17.37 3.91 0.43

11 Nodes 10.28 2.31 0.29
14 Nodes 9.85 1.99 0.02

3.2. Weaknesses of the GA Optimization in the NLP

GA evolution is a heuristic process in which randomness allows us to explore potential regions
of the space of solutions for finding an optimized solution, but the results achieved may vary
among different runs since the introduction of the same inputs do not produce the same results.
This is a consequence of the evolutionary process in which two phases can be defined: diversification
and intensification.

In the first stage, the GA looks for promising regions in which an optimal solution can be found
(i.e., diversification). Later, an exhaustive search in the promising regions (i.e., intensification) is
promoted for finding the best adapted individual of these regions.

The mutation of some individuals is required for exploring new regions and avoiding local optima.
However, the new individuals produced in the mutation operation must be good enough to hold the
pressure selection. Otherwise, these individuals will disappear even if they belong to really promising
regions. Even, the finding of new promising regions can be affected in especially discontinuous fitness
function regions since the evolutionary process may suffer problems to reach the local optima if a deep
increase in the fitness function can be produced among contiguous solutions (e.g., NLOS environments
by the avoidance of obstacles in the positioning signal links). Therefore, we can affirm that the mutation
process depends also on randomness and the exploration of new potential regions in discontinuous
optimizations may be limited by the evolutionary pressure selection.
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Thus, GA optimization in especially huge spaces of solutions such as in NLP optimizations in
which NLOS links are considered may suppose a challenge in which the results can notably vary among
different runs and the exploration of the space of solutions supposes an actual threat. As a consequence,
we propose the introduction of knowledge in the optimization for solving these potential weaknesses
in the GA optimization in the NLP.

Firstly, we introduce a HGA for taking advantage of the usage of the GA operators in
Section 4. We generate diversity in the generation of the new individuals in the diversification and
intensification phases for achieving better optimization results. We later propose a MA with a variable
neighborhood-descent LS in which we introduce a methodology for detecting the most different
individuals (i.e., new potential spaces of solutions) and we analyze its local region of potential
solutions for allowing the finding of promising solution in discontinuous spaces in Section 5.

4. Implementation of Hybrid Genetic Algorithm in the NLP

The performance of every GA optimization is heavily dependent on the balance between the
diversification and intensification capabilities of the GA. These values are established by the genetic
operators utilized in the GA configuration, such as the selection and crossover operators, along the
hyperparameters selected. An adequate equilibrium between these two competences is essential in
favor of obtaining the optimal solution to the NLP.

An excessive focus on the intensification aspect, despite facilitating the convergence to the solution,
may diminish the results obtained since relatively none exploration of the solution environment has
been made. On the other hand, a disproportionate commitment on the diversification capability shall
boost the entropy of the optimization to a point where the convergence to a solution is compromised
or even unfeasible.

Therefore, the balance between these two capabilities is crucial for the optimization performance,
hence the configuration of genetic operators must be selected accordingly.

HGA have received a growing interest throughout the GA literature, being utilized for solving
real-world problems [36]. HGA open up new possibilities as they support multiple configurations of
genetic operators and hyperparameters.

Thus, HGA are idoneous for applications where the solution environment is notably unfavorable.
Scenarios that contain a consequential number of local maximums, such as the one studied in this
paper, require both diversification, towards locating the global maximum region, and intensification,
in order to obtain the optimal value of that region.

Therefore, for these particular scenarios, the approach of utilizing a HGA composed of multiple
phases of diversification and intensification of the solution may exceed any achievable solution
obtainable by any individual combinations of genetic operators.

Accordingly, in Table 4 we analyze the performance of multiple combinations of genetic operators
in search of the most appropriate configuration for this particular scenario.

Table 4. Analysis of multiple combinations of genetic operators for the scenario proposed. Bold values
shown are the minimum and mean values of the mean RMSE (m) of multiple simulation.

Tournament 2 Tournament 3 Roulette
Min Mean Min Mean Min Mean

Single point 2.31 2.669 2.547 2.67 2.66 2.9
Two-point 2.735 2.774 2.895 2.966 2.527 2.76

Three-point 2.224 2.431 2.826 2.998 2.354 2.575
Uniform 2.696 3.175 4.649 5.824 2.821 2.874
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Results in Table 4 show that the most appropriate techniques are the combination of tournament
2 (T2) selection criteria and multi-point crossover with 3 crossover points (MP3), along the roulette (R)
selection methodology with also the MP3, exceeding these two combinations any other configuration.

T2 and especially Roulette are particularly elitist techniques [66], hence we can conclude that
for the scenario proposed, a heavy approach on intensification is far more advantageous than
a diversification-focused methodology.

However, the T2–MP3 combination achieves a greater exploration of the solution environment.
Thus, it is possible to elaborate a HGA that utilizes both methodologies in search of a greater solution.

Consequently, in this paper we propose the configuration of a HGA that relies in two different
phases, a deep-exploration phase followed by a heavy-intensification phase. The first phase
incorporates a tournament 2 selection criteria along a three-point crossover and aims to explore the
depth of the solution environment in search of the global maximum. Afterward, a second combination
of roulette selection methodology and also three-point crossover seeks to obtain an improved solution
with regards to GA optimizations, as shown in Figure 4.

Figure 4. Hybrid Genetic Algorithm (HGA) optimization for the node location problem.

Results in Table 5 prove that indeed a HGA approach that combines two different phases may
exceed the results obtained by any individual combination of genetic operators.

Table 5. RMSE comparison between the different methodologies analyzed. From the results obtained
by the executed simulations, Bold Min RMSE refers to the mean RMSE value of the simulation that is
the lesser of all simulations executed, whereas Mean RMSE refers to the mean value of mean RMSE of
every simulation.

Min RMSE (m) Mean RMSE (m)

GA-T2/MP3 2.224 2.431
GA-R/MP3 2.354 2.575

HGA 2.163 2.294

Although it is true that HGA can exceed GA configurations, especially in adverse scenarios,
the implementation of a HGA require the adjustment of a considerable amount of hyperparameters in
addition to a profound analysis on the methodologies and genetic operators selected, which can only
be done experimentally.

Therefore, it is critical to analyze each particular situation, as to determine if the implementation
of an ad-hoc HGA configuration is in order.
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In conclusion, HGA are a promising alternative to GA, and may surpass the results traditionally
obtained by these algorithms, especially for adverse scenarios. However, the performance of the HGA
is susceptible to the adequate selection of the genetic operators and the values of the hyperparameters
inherent to this algorithm, depending this selection on each particular situation (i.e., the scenery
of simulations).

However, it is possible to elaborate a different strain of heuristic algorithm that provides both
intensification and diversification capabilities along a solid versatility between different scenarios.
In the next section, we will study and analyze the implementation of a MA to the NLP.

5. Implementation of Memetic Algorithms and Local Search to the NLP

Within the compendium of metaheuristic methodologies, Memetic Algorithms are characterized by
their inclusion of the problem’s knowledge into the solution optimization. Consequently, the incorporation
of particular information of the problem may achieve greater results than the previous
methodologies introduced.

Moreover, once the optimization process for the NLP is studied and particularized, the resulting
MA achieves a higher versatility than GA or HGA. Even though it is possible to modify the initial
conditions or the current scenario of study, all these applications share the foundations of the NLP
whose knowledge is integrated into the MA optimization. The foundations of the MA are discussed in
the next subsection and the implementation to the NLP subsequently.

5.1. Fundamentals of Memetic Algorithms

In this paper we have introduced the complexity of the NLP, consequently, a GA optimization
was proposed in virtue of its diversification capabilities, which result vital in the optimization process,
especially for adverse scenarios (e.g., the one studied in this paper).

Nonetheless, it is possible to implement a different heuristic methodology that allows a higher
versatility along achieving possibly greater results, such is the case of Memetic Algorithms (MA),
which we will analyze forthwith.

MA combine the optimization process of a GA along a LS technique. Through the LS methodology,
we introduce the knowledge of the problem, in search of the most promising individuals within
a reduced solution environment, which may pass unsighted in the GA evolution.

Although there exists some former studies of MA optimization for Wireless Sensor
Networks [43–46], these studies take only into account the coverage among the sensors. In this
paper, we will implement a MA for the NLP for the first time in the author’s best knowledge with time
and noise uncertainties characterization in the localization field.

5.2. Memetic Algorithm Structure

The Memetic Algorithm combines both Global Search (i.e., GA optimization) and Local
Search in pursuit of exceeding the results obtained by any of these methodologies individually.
Therefore, we propose the following codification of a MA for the NLP.

Figure 5 shows the structure of the MA implemented for the NLP. The MA is composed of a
GA optimization and the corresponding genetic operators along the LS methodology. For the NLP,
we propose a variable neighborhood-descent LS technique where the position of the nodes above the
terrain is considered, thus introducing some knowledge of the problem into the optimization process.

Once the population is mutated, the algorithm determines whether to proceed with the LS
methodology for each generation. This depends on the LS frequency [49] which must be balanced in
the combination of Global and Local Search for achieving the optimal optimization results in MA. It is
vital to execute the LS after the mutation have finished, on the contrary, the progress made in the LS
may be lost by the mutation of the population. Both the possibility of executing a LS and the number
of individuals examined are hyperparameters that must be studied.
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If the MA proceed with the LS technique, the first step through this algorithm is the selection of
the most diverse individuals. The LS methodology pretends to explore and intensify undiscovered
regions by the GA where a local or global maximum may be located, therefore it is vital to select
a certain number of individuals that are distant within each other in order to explore the maximum
space of solutions possible.

Figure 5. Memetic Algorithm (MA) Pseudo-code.

Hence, we have developed a branch and bound algorithm that analyzes the population in search
of the individual whose dissimilarity within each other are the greatest, thus optimizing the results
obtained, which we will discuss in Section 5.3. Once the dissimilarity of each individual is evaluated,
the most diverse are transferred into the variable neighborhood-descent LS technique.

The variable neighborhood-descent LS evaluates reduced movements of the node positions
for each individual (i.e., contiguous solutions in the neighborhood of the individual) in a new
pseudo-fitness function in order to reduce the time complexity of the analysis. This procedure
does not compromise the optimization since reduced movements of the sensors shall not incur in
considerable deviation of geometric or clock errors. On the contrary, the pseudo-fitness function
proposed is adequate for detecting NLOS trajectories that diminish the fitness value of the localization
architecture. Therefore, this LS methodology excels in particularly adverse scenarios, where NLOS
trajectories are considerable (e.g the one studied in this paper). In these scenarios, minimal changes in
the node locations may result in considerable deviations of the fitness function since the avoidance of
an obstacle may suppose a significantly increase in the localization accuracy.

Consequently, if in a certain direction an increase in the fitness function is detected, the new
improved individual shall substitute its predecessor. Hence, the LS technique proposed can only
improve the fitness function of the individuals analyzed, thus improving the overall performance of
the optimization.

The LS technique in the MA introduces a spike of diversity and intensification into the
optimization process. This effect shall prove useful when the GA convergence is compromised as a fact
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of the existence of local maximums, resulting in an overall greater performance of the optimization,
achieving consequently better solutions.

However, within the LS technique there exists an abundant quantity of algorithms on which the
development and configuration of the performance of the MA relies. Therefore, we shall analyze it
thoughtfully forthwith.

5.3. Local Search in the MA Optimization

The LS method grants to obtain accurate information about a bounded region defined by
a distance function on the space of solutions. LS explores near neighbors for finding the best-adapted
individuals within the area. Every set of adjacent individuals or distance 1 defines the neighborhood.
Once the aim number of neighbors has been inspected, the next point in the LS is the selection of the
best fitness neighbor. The algorithm ends when the stopping condition is reached (e.g., there is no
evolution in the fitness between generations or the neighbor reached satisfies a criterion) or when over
the maximum number of local iterations permitted is attained.

During the execution of the LS, the optimization of the number of individuals, breadth of search,
and the count of depth iterations are vital factors for achieving practical results. Different LS techniques
are considered in the literature, such as Tabu Search [67], Variable Neighborhood-Descent (VND) [68],
selective LS [69], LS chain [70], or Iterated LS [71]. The adaptation to the characteristics of the problem
determines their selection.

In this paper, VND is chosen since it allows the quantification of the improvement of the fitness in
the spatial directions of the sensors in their neighborhood (i.e., the proximal allowable locations of
the architecture sensors) for defining a path in the LS optimization. The application of LS in MA is
critical for introducing knowledge in the evolutionary optimization process. Previous researches have
used LS for introducing heterogeneity in the final solution for improving the elite individuals of the
population [68] or for accelerating the overall speed of the optimization.

In this paper, we use LS in the MA not only for improving the elite individuals, but also for
introducing diversity in the evolutionary process for examining potential unfavored spaces of solutions.
Potential unfavored areas of solutions appeared in the NLP in NLOS conditions. Significant differences
in the fitness values are produced among contiguous solutions since obstacles significantly modify the
architecture noises of adjacent node distributions.

The LS enables the examination of the most different individuals of the population to find
potential optimum node distributions that are difficult to access through the GA operators and the
evolutionary process.

5.3.1. Pseudo-Fitness Function

A critical issue in the MA is the selection of a LS fitness function, which should be kept in harmony
with the GA search function [72]. The GA presented in Section 3 proposes the minimization of the
CRLB error characterization of the TDOA architecture. However, we propose a pseudo-fitness function
in the LS which analyzes the LOS/NLOS links of the positioning signal paths.

The pseudo-function allows the finding of the optimum node distribution of reduced search
spaces defined by neighborhood relations. Pseudo-function is composed by a path loss exponent value
of the LOS and NLOS links and the total distances of the LOS and NLOS links under coverage which
are used for the target location determination. The reduction of the paths allows the minimization of
the noise uncertainties which supposes the main error source among neighboring potential solutions.

f fLS =
1

∑T
k=1 ∑N

i=1

[
dnLOS

iLOS
+ dnNLOS

iNLOS

] (15)
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This optimization methodology has led to the maximization of the inverse of the sum values
associated with the LOS and NLOS links in each possible TLE analyzed point T for each architecture
sensor under coverage N.

This pseudo-function has proven its competence to ensure the finding of the neighborhood
local optima. A new neighborhood for the next LS iteration is defined through the selection of the
most adapted individual of the neighbors analyzed based on the pseudo-fitness function values.
The definition of a different fitness evaluation for the LS instead of the fitness used in the GA
optimization promotes the analysis of the CRLB of the local optima individual of the neighborhood
just before introducing the LS optimal to the general optimization process.

5.3.2. Variable Neighborhood-Descent Local Search

The neighborhood search aims to maximize the pseudo-fitness function to obtain the local
optima of the LS individual selected. Since the geometric and clock errors remain practically
constant among contiguous solutions, the neighborhood LS looks for reducing the NLOS paths
of the positioning signals.

In this paper, we apply a variable neighborhood-descent algorithm (VND) [73] which finds
the best individual of a defined neighborhood and later defines a new neighborhood based on the
current LS individual optimum. VND is constantly improving or keeping the best LS individual in
a new neighborhood for a maximum defined number of iterations, which is known in MA as Local
Search Depth (LSD).

VND algorithm can also end by finding an individual sufficiently improved (e.g., avoiding all the
NLOS connections in the positioning signals). The LS exploration is performed for each sensor of the
architecture. The neighborhood is defined for every sensor which is moved around its neighborhood
for improving its positioning connections. We explore 26 potential movements of each sensor for
improving the pseudo-fitness function value (i.e., 26 directions are considered for every sensor in each
iteration of the LS). This LS is particularly crucial for the CS since this sensor is used for computing the
time measurements in the A-TDOA and consequently the positioning links of the CS affect the quality
of a node distribution in a bigger extent.

5.3.3. Definition of the LS Individuals

The application of the MA LS in this article looks for providing genetic variability in the
population and for discovering unexplored regions. In the intensification phase of the GA optimization,
the existence of many individuals in a defined domain of the space of solutions promotes the access
to every possible NLE solution through the crossover operator in this area. Nevertheless, GA make
the most different individuals in this final optimization stages very probable to disappear without the
exploration of their surrounding region thoroughly.

In addition, the performance of the GA mutation in any optimization phase, which can produce
diverse individuals, is not enough for providing variability in NLOS environments since the exploration
of new potential regions is limited to the finding of a good enough individual in the new space of
solutions to survive the pressure selection of the next generation. Therefore, we use the MA LS to
explore the most different individuals of the population in order to find new promising solutions to
the NLP.

The definition of the most different individuals of the population is achieved through the
measurement of the dissimilarity among solutions. The dissimilarity is calculated by applying the
Hamming distance in the binary codification of two different solutions (i.e., two different sensor
distributions) [74]. However, the dissimilarity metric cannot be directly applied since identical
sensors can be located in different positions of the binary codification of two different individuals.
Hence, each sensor of any individual must be first compared with all the sensor locations of the rest of
the individuals, as it can be seen in Figure 6.
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Figure 6. Calculation of the dissimilarities of Node 2 of Individual 1 (I1 N2 ) with each node of the
Individual 2 (I2). The dissimilarity between I1 N2 and I2 Nj is zero since they are identical and is
determined through the Hamming distance with the rest of the nodes of I2.

Therefore, the measurement of the dissimilitude among the different sensor distributions requires
the finding of the pairs of sensors among two different potential solutions (I1 and I2) which are more
similar among them. However, greedy approaches cannot be applied for achieving this value since not
the selection of the most similar nodes of two different individuals provides the minimum sum of the
Hamming distance among the individuals. Consequently, we define the dissimilarity matrix among
individuals d containing the values of the Hamming distance of each node of the I1 with each node of
the I2:

d =



d(I1 N1 , I2 N1) d(I1 N1 , I2 N2) . . . d(I1 N1 , I2 Nj−1) d(I1 N1 , I2 Nj)

d(I1 N2 , I2 N1) d(I1 N2 , I2 N2) . . . d(I1 N2 , I2 Nj−1) d(I1 N2 , I2 Nj)
...

...
. . .

...
...

d(I1 Nj−1 , I2 N1) d(I1 Nj−1 , I2 N2) . . . d(I1 Nj−1 , I2 Nj−1) d(I1 Nj−1 , I2 Nj)

d(I1 Nj , I2 N1) d(I1 Nj , I2 N2) . . . d(I1 Nj , I2 Nj−1) d(I1 Nj , I2 Nj)


(16)

We explore the d matrix through a branch and bound algorithm [75] for finding the combination
of sensors of the two individuals which minimizes the Hamming distance of the pair of individuals.
The procedure follows the definition of the most promising node (i.e., the more reduced value of the d
matrix) and later exploring the possible combinations of the matrix without repeating row and column
for finding the pairs of sensors which minimizes the sum of the dissimilarities. Once these pairs of
similar sensors have been defined, the dissimilitude among solutions is defined as:

Dij = min

(
N

∑
pair

dhammingpair

)
(17)

where Dij is the dissimilitude among the solutions i and j, dhammingpair
is the hamming distance

measured in one of the pairs of contiguous sensors among solutions previously defined and N the
total number of sensors used for the localization.

Once the dissimilitude among solutions is defined, it can be expressed in matrix form D for
a general definition of the distances among every of the population individuals:

D =


0 D1,2 . . . D1,(n−1) D1,n

D2,1 0 . . . D2,(n−1) D2,n
...

...
. . .

...
...

D(n−1),1 D(n−1),2 . . . 0 D(n−1),n
Dn,1 Dn,2 . . . Dn,(n−1) 0

 (18)
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The finding of the most different individual of the set to whom we apply the LS in search for new
unexplored spaces of solutions is obtained through the maximization of the D matrix row or column
sum values since the dissimilarity matrix is symmetric. This sum represents the total difference of
an individual with the rest of the individuals of the population. According to this total dissimilitude
factor, the population is ordered and a percentage of the first new individuals (i.e., the most different)
is chosen for executing the VND algorithm.

In addition, we select the elite individual of the population for practicing the LS on it,
thus obtaining an improvement in the accuracy results of the optimization within the LS.

6. Results

In this section, we present the results obtained by the MA optimization introduced in the previous
section, along with some comparisons with previously proposed methodologies. All algorithms and
simulations were coded and executed in the Matlab software environment, being every test performed
with an Intel(R) i7 2.4 GHz CPU and 16 GB of RAM.

Table 6 shows the results of the MA optimization. Due to the overall performance improvement
of the optimization achieved by the LS, the final node distribution obtained reach a significant increase
in positioning accuracy from previous simulations from Table 3. Therefore, in pursuit of the optimal
compromise between position accuracy and amount of sensors (i.e installation and maintenance costs)
we can lower the number of sensors to 8 nodes without compromising the system accuracy.

Table 6. MA optimization results. Values displayed are the mean and minimal values of the mean
RMSE of the simulations executed.

Node Distributions Min RMSE (m) Mean RMSE (m)

5 Nodes 4.287 4.923
8 Nodes 3.142 3.208

11 Nodes 2.184 2.284

Figure 7 shows the MA search of the optimal solution, combining the GA optimization with a LS
methodology that enhances the overall performance of the optimization with every iteration of the
VND. However, it is possible to improve even further the MA optimization, relying this technique
on a GA, thus a single combination of genetic operators and hyperparameters. Furthermore, it is
possible to implement multiple configurations of genetic operators and hyperparameters into
the GA optimization, thus obtaining a HGA, that along the LS of the MA results in an overall
improvement of the optimization performance carried out by the proposed Hybrid Memetic
Algorithm (HMA). Therefore, Table 7 shows the positioning error for each methodology proposed.
Hence, we can appreciate an escalated increase in the optimization results with each step forward in
the methodology selected.

Table 7. Comparison of positioning accuracy for each methodology studied in this paper for 8 nodes.
Bold results displayed refer to the mean and minimal mean RMSE of every simulation executed.

Methodology Min RMSE (m) Mean RMSE(m)

GA 3.54 3.91
HGA 3.243 3.423
MA 3.142 3.208

HMA 3.037 3.101
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Figure 7. Memetic Algorithm convergence to the optimal solution for an 8-node distribution.
Results show that the Variable Neighborhood-Descent (VND) utilized in the LS algorithm introduces
significant improvements on the fitness values of the selected individuals, thus improving the
convergence. These improvements escalate rapidly due to the effect of elitism on the enhanced
individuals, thus preserving and spreading even further their properties.

Furthermore, Figure 8 shows the compendium of techniques introduced in this paper and their
respective convergence for an 8 nodes distribution optimization. This Figure proves the importance
of an adequate selection of genetic operators and optimization methodologies. The optimization
of the fitness value requires both diversification, in order to obtain an overall greater solution,
and intensification, thus enhancing the convergence.

The hybrid algorithms proposed show a steadier convergence, as well as an overall greater result,
demonstrating a greater balance between intensification and diversification. Besides, the MA achieves
overall greater results than previous methodologies, proving the superior optimization performance
of the MA and HMA.

Figure 8. Convergence of the compendium of techniques proposed in this paper for 8 nodes.

Ultimately, Figure 9 show the optimal node distribution obtained by the HMA in Table 7, along the
RMSE values for the TLE.
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Figure 9. Optimal node distribution of 8 sensors obtained by the Hybrid Memetic Algorithm (HMA)
and the RMSE accuracy of the TLE for the scenario proposed. The obtained distribution achieves an
overall adequate positioning against the terrain adversities, even so for a reduced number of sensors.

From the obtained results, we can conclude that the resulting increase in diversification introduced
by the MA derives in an increase in the number of generations the final convergence to a solution.
However, as shown in Figure 8 this additional diversity implemented into the optimization achieves
higher results than other methodologies as it allows a greater exploration of the solution environment.

Nevertheless, the implementation of a MA requires the introduction of knowledge into the
problem, thus investing additional time into designing a specific LS methodology for each different
problem. The MA excels when faced against extremely adverse scenarios, or against different initial
conditions that may turn ineffective the hyperparameters previously adjusted.

Therefore, it is critical to analyze each particular case, taking into consideration the complexity
of the scenario along the possible variability of their initial configuration, in search of the optimal
methodology for each particular case. Nevertheless, as the results show, MAs are ideal versatile
techniques for adverse variable scenarios, such as the one proposed in this paper.

7. Conclusions

Local Positioning Systems (LPS) are attracting large research interest over the last few years for
performing applications that demand high accuracy, such as guided autonomous navigation in indoor
and outdoor environments. Availability, robustness, hardware configuration, architecture coverage
and uncertainties reduction are some of the most important issues addressed for achieving optimal
sensor node deployments and fulfilling the LPS design requirements.

These tasks require optimized ad-hoc node distributions for adapting to the characteristics of the
environment in which the LPS are deployed. Among LPS, those based on temporal measurements
stand out since they provide a relevant trade-off among costs, hardware complexity, robustness and
accuracy. The achievement of valid node deployments in Time-Based Positioning Systems (TBS)
demands an error characterization in which the noise of the communications channel in LOS and
NLOS architecture links and the clock errors in the temporal measurements must be considered.

The TBS have shown an excellent performance for LPS applications and among these architectures
novel asynchronous architectures stand out due to the unnecessary synchronism of the system devices
consequently reducing the clock errors. Thus, in this paper, we define a Cramér–Rao Bound (CRB)
model for the Asynchronous Time Difference of Arrival (A-TDOA) architecture since CRB provides
the minimum achievable positioning error of this architecture by using any positioning algorithm.
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This CRB model is applied for measuring the quality of an A-TDOA node deployment for solving
the Node Location Problem (NLP) of this architecture. The NLP requires the finding of the optimized
cartesian coordinates of the architecture sensors of any sensor network distribution. It has been
assigned as NP-Hard since a polynomial or exact solution cannot be found. Therefore, a heuristic
solution to the NLP has been extended in the literature. Amongst the metaheuristic techniques,
Genetic Algorithms (GA) have shown an excellent trade-off between the diversification and
intensification stages of the optimization.

However, in our previous research we have found that the GA optimization is unstable in NLOS
environments in which the discontinuities in the fitness values of contiguous solutions makes the
exploration of new potential spaces of solutions be difficult to address.

As a consequence, in this paper we propose the introduction of knowledge in the optimization
process. First, we propose a hybrid GA (HGA) based on the modification of the GA operators during
the optimization process defining two optimization phases: an enhanced deep-exploration phase
followed by a heavy-intensification phase.

Later, we introduce for the first time in the authors’ best knowledge a memetic algorithm (MA)
consisting of a mixture of the GA optimization with a variable neighborhood-descent (VND) Local
Search (LS) strategy for the NLP in the localization field. The MA applies the LS to the most different
individuals of the population defined by Hamming distance in order to explore new different spaces of
solutions not favored by the evolutionary optimization process. In addition, we define a pseudo-fitness
function based on the reduction of the architecture LOS and NLOS links since geometric and clock
errors have a reduced impact in the neighborhood in which the LS is applied.

We finally design a Hybrid Memetic Algorithm (HMA) which combines the beneficial effect of
the HGA and the MA for the achievement of improved node deployments.

The results show that the introduction of an enhanced combination of GA operators in
the HGA enables the finding of better candidate solutions to the NLP in NLOS environments.
Additionally, the introduction of knowledge in the optimization evolutionary (MA) process increases
the overall performance in the solution of the NLP in a greater extent than the GA operators in the
HGA. Finally, the HMA outperforms the previous configurations through the beneficial effect of the
GA operators and the LS strategy of the MA. The HMA methodology proposed reaches an increase in
accuracy in the optimization process in the scenario of simulations of this article of 14.2% with regards
to previous GA optimizations of the literature.
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The following abbreviations are used in this paper:

AGVs Automatic Ground Vehicles
CRLB Cramer–Rao Lower Bound
CS Coordinator Sensor
FIM Fisher Information Matrix
GA Genetic Algorithm
GNSS Global Navigation Satellite Systems
HGA Hybrid Genetic Algorithm
HMA Hybrid Memetic Algorithm
LOS Line-of-Sight
LPS Local Positioning Systems
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LSD Local Search Depth
MA Memetic Algorithm
MP2 Multipoint Crossover 2
MP3 Multipoint Crossover 3
NLE Node Location Environment
NLOS Non-Line-of-Sight
NLP Node Location Problem
R Roulette Selection
T2 Tournament 2
T3 Tournament 3
TBP Time-Based Positioning
TDOA Time Difference of Arrival
TLE Target Location Environment
TOA Time Of Arrival
TS Target Sensor
UAVs Unmanned Aerial Vehicles
VND Variable Neighborhood-Descent
WS Worker Sensor
WSN Wireless Sensor Network
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