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Abstract: Heterosigma akashiwo is classified as a harmful algal bloom (HAB) species that frequently
occurs in eutrophic coastal waters and results in the contamination and mortality of fish and shellfish.
The growth of H. akashiwo in four phosphate and nitrate concentration scenarios, representing
the observed nutrient concentration ranges in the East China Sea (ECS), was evaluated to further
understand the effect of nutrient concentrations on H. akashiwo blooms. The specific growth rate
in the exponential growth phase (µ′) and the maximum cell density were lower (17–21% and 41%,
respectively) under low phosphorus concentration scenarios, compared to the rates observed under
high phosphorus concentration scenarios. The cellular nitrogen-to-phosphorus ratios of H. akashiwo
were influenced by the initially supplied N:P ratio and the allocation strategy employed. Phosphorus
concentration had a greater influence on the total growth of H. akashiwo than nitrate did, within
the natural nutrient conditions of the ECS. These results could serve as a reference for coastal
water management and marine ecological management and may be useful for further studies on
the simulation and prediction of H. akashiwo blooms, particularly in the ECS.
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1. Introduction

Harmful algal blooms (HABs) are recurrent and damaging to the ecosystem and
fisheries in coastal waters [1]. Many HAB species produce toxins which can damage other
marine organisms and endanger human health [2]. HABs have been receiving increased
public attention due to their increasing frequency and intensity as a result of environmental
change due to anthropogenic activity, such as eutrophication. A few studies have attempted
to understand HAB’ mechanisms in order to monitor and reduce their occurrence [3].

Heterosigma akashiwo, a marine phytoplankton belonging to the family Raphido-
phyceae, widely distributs in coastal environments [4]. H. akashiwo blooms have caused
massive fish deaths, both cultivated and wild populations, due to their toxicity, resulting
in significant economic losses. For example, H. akashiwo blooms incur a loss of about
USD 4–5 million per year in the waters of British Columbia, with one particularly extreme
four-month period in 1997, resulting in a loss of USD 20 million [5]. H. akashiwo blooms
have been estimated to result in a loss of USD 2–6 million per episode in Washington
state [6].

H. akashiwo blooms may alter the microzooplankton community, including changing
the abundance and species composition of the ciliate community [7] and Mesodinium cf.
rubrum [8]. Changes in the microzooplankton community could perturb the food web,
material and energy flows through ecosystems, and biogeochemical cycling [9].

H. akashiwo blooms have been shown to be moderated by nutrients [10], temper-
ature [11], salinity [12], and light [13]. The eurythermal, euryhaline, and mixotrophic
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characteristics of H. akashiwo potentially enhance its ability to bloom [4,11]. It can access
nutrients by migrating to nutrient-rich depths [14] and can also store phosphate (PO4

3−)
and utilise dissolved organic phosphorus (DOP) under P-depleted conditions [15]. It can
also utilise nitrate (NO3

−), ammonium, and urea as nitrogen sources [4,16]. H. akashiwo
may have a competitive advantage over many other phytoplankton species, particularly
in low-nutrient and oligotrophic seawater. It has been shown to grow in low-nutrient
environments (0.2 µmol L−1 for PO4

3− and 0.3 µmol L−1 for NO3
−) [11], respond rapidly

to nutrient additions [10], and even become the dominant species [17]. However, its growth
rate does not increase when phosphorus is supplied to a nitrogen-deficient system [17].

Most studies on the growth characteristics of H. akashiwo blooms have used nutrient-
rich conditions. Therefore, the purpose of this study was to study bloom characteristics
under nutrient conditions representing those present during the spring to summer transi-
tion in the East China Sea [18].

2. Materials and Methods
2.1. Cultures

The Raphidophyceae member H. akashiwo (CCMA-266) used in this study was orig-
inally isolated from the Yangtze River Estuary in May 2010 and provided by Xiamen
University. The microalgae were cultured in the exponential growth phase in artificial sea-
water with silicon-free f/2 medium [17,18] for 11 months before the experiment. Cultures
were maintained in an incubator (GXZ-280D, Ningbo Jiangnan Instrument Factory, Ningbo,
China) at a light intensity of 200 µmol m−2 s−1, a photoperiod of 12 h:12 h light:dark, and
a constant temperature of 20 ◦C.

2.2. Experimental Setup

All glass and plastic bottles used in the experiments were soaked in 10% (V/V)
HCl acid solution for 24 h and rinsed six times using pure water and ultra-pure water
(18.2 MΩ·cm). The culture medium was artificial seawater with trace metals and vitamins
with silicon-free f/2 medium (Tables S1 and S2).

According to observed nutrient concentration ranges in East China Sea (ECS), a matrix
of four artificial seawater–macronutrient scenarios was set up with two initial levels of
nitrate nitrogen (N) and phosphorus (P) (Table 1). High-concentrate N (HN) was set at
30 µmol L−1, low-concentrate N (LN) was set at 15 µmol L−1, high-concentrate P (HP)
was set at 1 µmol L−1, and low-concentrate P (LP) was set at 0.5 µmol L−1. The resultant
seawater media were irradiated with UV light for 30 min, and 3 L of media was filtered
through a 0.22 µm sterile membrane (Jinteng, China) into pre-sterilised 4 L borosilicate
glass bottles. Triplicates of each nutrient group medium were prepared. The pre-culture
of H. akashiwo (approximately 20 mL) was added to each experimental bottle at an initial
cell density of 1000 cells mL−1. The experiments were performed in the incubator with
bubbled room air (100 ± 10 mL min−1). The incubator was maintained at 20 ◦C and a light
intensity of 200 µmol m−2 s−1 with a 12:12 light:dark period.

Table 1. Scenarios and nutrient concentration of experiments.

Scenarios Concentration of Nitrate
Nitrogen (N)

Concentration of Phosphate
(P)

HNHP 30 µmol L−1 (HN) 1 µmol L−1 (HP)
HNLP 30 µmol L−1 (HN) 0.5 µmol L−1 (LP)
LNHP 15 µmol L−1 (LN) 1 µmol L−1 (HP)
LNLP 15 µmol L−1 (LN) 0.5 µmol L−1 (LP)

2.3. Sampling and Measurement

Cell counts were performed every 24 h on subsamples (10 mL) from each experimental
bottle using a FlowCAM 8400 (Fluid Imaging Technologies, Scarborough, ME, USA).
Twenty millilitre samples were taken every three days using syringes, filtered through
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0.22 µm syringe-driven filters (Nylon, 25 mm), and stored at −20 ◦C prior to nutrient
measurement. Nutrients (NO3

−, PO4
3−, and NH4

+) were measured by a continuous flow
analyser (SAN++, Skalar, Breda, the Netherlands). The detection limits of the instrument
were 0.14 µmol L−1 for NO3

− and NH4
+ and 0.05 µmol L−1 for PO4

3− according to the user
manual. For our measurement, the accuracy of NO3

−, PO4
3− and NH4

+ was 0.03, 0.03,
and 0.01, respectively, and the precision of NO3

−, PO4
3−, and NH4

+ was 0.08, 0.06, and
0.33, respectively. Twenty millilitre samples were filtered through GF/F (WhatmanTM,
Buckinghamshire, UK) on the sixth day and stored at−20 ◦C in the dark before chlorophyll-
a (Chl-a) measurement. The membrane samples of Chl-a were placed in a 15 mL centrifuge
tube and extracted using 5 mL of 90% acetone at 4 ◦C for 24 h and then centrifuged
at 5000 rpm at 4 ◦C for 10 min to obtain the supernatant. The concentration of Chl-a
was measured using a Trilogy Laboratory Fluorometer (Trilogy 7200-000, Turner Designs,
CA, USA; accuracy: 0.01; the detection limit was 0.02 µg L−1).

2.4. Data and Statistical Analysis

Daily specific growth rates (µ) were calculated using the following formula:

µ =
lnCelltb − lnCellta

tb− ta
(1)

where Celltb and Cellta are the cell densities at time tb and ta (tb > ta), respectively.
The specific growth rate in the exponential growth phase was denoted by µ′.

The cellular nutrient quota (QN/P) on day tn (tn = 3, 6, 9) was calculated as follows:

QN/P =
Nutt0 −Nuttn

Celltn −Cellt0
(2)

where Nutt0, Nuttn, Cellt0 and Celltn are the nutrient (N or P) concentrations in the culture
seawater solution and cell densities on day t0 (t0 = 0) and tn (tn = 3, 6, 9), respectively.

The ratio of QN to QP is defined as cellular N:P, since QN and QP was calculated
respectively according to Formula (2).

Nutrient uptake rates were calculated as follows:

uptake rates =
Nutt1 −Nutt2

Cellt2 −Cellt1
× 1

t2− t1
(3)

where Nutt1, Nutt2, Cellt1 and Cellt2 are the nutrient concentrations and cell densities on
day t1 and t2 (t2 > t1), respectively.

All data in this study are reported as the mean± standard error (number of samples = 3).
Data in different nutrient scenarios were assessed by ANOVA and Post Hoc Tests with
the LSD method (R version 4.0.3).

3. Results
3.1. Growth Response

H. akashiwo was able to grow under all four nutrient scenarios, but it displayed
different responses according to the initial N and P concentrations. Cell densities were
similar until day 4 (Figure 1A), after which significantly higher cell densities were found
under HP conditions than those under LP conditions (Figure 1A, Table S3, HP:LP, F = 61.18,
p < 0.001). Except for day 7 and day 9, the cell densities under HN conditions were higher
than those under LN conditions with the same initial P treatment, particularly on day 5
(Figure 1A, Table S3, HN:LN, F = 16.638, p = 0.003). Cell density reached a maximum on day
5 in the HNLP scenario (10.02 ± 0.44 × 103 cells mL−1), followed by the HNHP scenario
(17.03 ± 1.26 × 103 cells mL−1) on day 6, and LNHP (16.65 ± 1.36 × 103 cells mL−1) and
LNLP (9.7 ± 0.68 × 103 cells mL−1) scenarios on day 7 (Figure 1A). The maximum cell
density in the LP scenarios was 41% lower than that in the HP scenarios.
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Daily specific growth rates increased in the first three days, falling close to zero on
day 7, and became negative by day 8 (Figure 1B). However, the daily specific growth rates
under the HP conditions were slightly higher than those under the LP conditions from
days 4–6, while the rates were significantly higher in the HNHP scenario than in the HNLP
scenario on day 5 and day 6 (p < 0.05).

The specific growth rates of the four scenarios in the exponential growth phase (µ′)
were 0.46± 0.01 (HNHP), 0.38± 0.01 (HNLP), 0.43± 0.03 (LNHP), and 0.34± 0.01 (LNLP).
The µ′ under HP conditions were significantly higher than those under LP conditions, while
µ′ did not significantly vary between initial N treatments (Figure 1C, HP:LP, F = 16.295,
p = 0.004; HN:LN, F = 0.459, p = 0.517). The µ′ under LP conditions were 17–21% lower
than those under HP conditions.

Cellular Chl-a concentrations (pg cell−1) on day 6 were 3.15 ± 0.51 (HNHP), 2.72 ± 0.28
(HNLP), 2.55 ± 0.07 (LNHP), and 3.34 ± 0.21 (LNLP) (Figure 1D). The Chl-a per cell in
the HN scenarios was significantly higher than that in the LN scenarios under HP, while
the Chl-a in the LN scenarios was significantly higher than that in the HN scenarios under
LP (N:P, F = 5.239, p = 0.047; HP:LP, F = 2.582, p = 0.146; HN:LN, F = 2.560, p = 0.148).
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3.2. Nutrient Variation

Initial N and P concentrations were consistent with the planned experimental concen-
trations (Figure 2A,B). Ammonium was detected from the beginning of the experiment,
presumably obtained from the pre-culture (Figure 2C).
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Nitrate decreased in the first six days in the four scenarios and then increased during
days 6–9 under HP conditions (Figure 2A) while continuingly decreased under LP condi-
tions. The final concentrations of nitrate (µmol L−1) in the four scenarios were 11.77 ± 2.15
(HNHP), 11.40 ± 0.85 (HNLP), 9.20 ± 0.51 (LNHP), and 9.10 ± 0.46 (LNLP). Phosphate
was consumed rapidly in the first three days under all scenarios, reaching the level of
detection (0.05 µmol L−1) by day 3 under LP and day 6 under HP conditions (Figure 2B).

On the other hand, ammonium decreased from day 3 (5.28–6.09 µmol L−1) to day 6
(2.45–3.69 µmol L−1) after an initial gradual increase, and then increased to 4.61–5.02 µmol L−1

(Figure 2C). The sum of nitrate and ammonium (DIN) is shown in Figure 2D. A surplus of
DIN was found in all the scenarios at the end of the experiment (Figure 2D).

The four scenarios showed varying nutrient uptake rates (pmol cell−1 d−1), defined
as net negative nutrient concentration changes (Equation (3)), in the three measurement
stages (days 0–3, 3–6, and 6–9). Maximum DIN uptake rates were observed in the first stage
(0.600 ± 0.127 (HNHP), 0.937 ± 0.180 (HNLP), 0.334 ± 0.211 (LNHP), and 0.416 ± 0.147
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(LNLP)) (Figure 3A). DIN uptake rates decreased in stages 2 and 3 (Figure 3A). Maximum
phosphate uptake rates were also observed in the first stage (0.108 ± 0.035 (HNHP),
0.037 ± 0.002 (HNLP), 0.087 ± 0.005 (LNHP), and 0.038 ± 0.003 (LNLP)) (Figure 3B).
Phosphate uptake rates under HP conditions were higher than those under LP conditions
(Figure 3B, HP:LP, F = 9.856, p = 0.004). In addition, phosphate uptake rates decreased to
close to zero from day 3 in all the scenarios (Figure 3B).
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Since a closed culture system was used in this study, the cellular quotas (QN, QP,
Equation (2)) were estimated based on the amount of incremental cell and nutrient concen-
tration change (Figure 3C–E), defined as the net amount of assimilated nutrient. The nitrogen
quotas (QN, pmol cell−1) in the four scenarios were 1.311–1.799 (HNHP), 2.088–3.668
(HNLP), 0.482–1.00 (LNHP), and 0.902–1.471 (LNLP) (Figure 3C). The QN in the HNLP
scenario was the highest during all the stages, increasing from day 6 to day 9 (p = 0.01),
while it remained unchanged in the other scenarios (p = 0.06) (Figure 3C).

The phosphorus quota (QP, pmol cell−1) in each scenario was the highest on day 3
(0.323 ± 0.104 (HNHP), 0.111 ± 0.005 (HNLP), 0.261 ± 0.016 (LNHP), and 0.114 ± 0.009
(LNLP)). QP then decreased to 0.051–0.071 on day 6 and day 9 (Figure 3D). The QP under
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HP conditions was significantly higher than that under LP conditions on day 3 (HP:LP,
F = 11.078, p = 0.003). However, it did not show a significant difference on day 6 and day 9
(Figure 3D, p = 0.353).

The initial nutrient concentrations were set with an N:P ratio of 15 in the LNHP
scenario, 30 in HNHP and LNLP, and 60 in HNLP; the hierarchy of cellular nitrogen-to-
phosphorus ratios (cellular N:P) was consistent with that of the initial N:P from day 3
to day 9 (N:PHNLP > N:PHNHP and N:PLNLP > N:PLNHP) (Figure 3E). The cellular N:P in
each scenario was the lowest on day 3 (6.839 ± 2.738 (HNHP), 25.448 ± 5.201 (HNLP),
3.853 ± 2.515 (LNHP), and 10.511 ± 3.113 (LNLP)) (Figure 3E), after which it increased to
23.656 ± 2.626 in the HNHP scenario, 41.041 ± 2.694 in the HNLP scenario, 11.367 ± 1.764
in the LNHP scenario, and 16.929± 3.800 in the LNLP scenario on day 6 (Figure 3E). Except
for LNHP, only a slight change was observed from day 6 to day 9 in the other scenarios
(Figure 3E, p = 0.664).

4. Discussion
4.1. Heterosigma Akashiwo Growth Response to Nutrient Limitation

Growth rate is reduced under low P conditions in many HAB species, such as Karlo-
dinium veneficum [19,20], Karenia mikimotoi [21,22], and Pseudo-nitzschia spp. [23]. Although
the cell densities and growth rates of H. akashiwo under HN conditions were slightly higher
than those under LN conditions with the same initial P concentration in the present study,
the difference was not statistically significant (Figure 1A,C; Tables S3 and S4). However,
the cell densities and µ′ of H. akashiwo were significantly inhibited under LP conditions
independent of the nitrogen concentration. Contrary to the present study, HABs could
proliferate rapidly when P was supplemented in Chattonella antiqua (Raphidophyceae) [24].

A nutrient addition bioassay experiment in Hakata Bay of Japan also showed that
the growth of H. akashiwo was not altered by the addition of N alone but was boosted with
the addition of P and N together [10]. However, the positive effect of P on H. akashiwo
did not manifest in nitrogen-deficient water (N < 5 µmol L−1) [17]. This indicates that
the effect of P on the growth of H. akashiwo depends on sufficient nitrogen concentration.
The initial nutrient concentrations of N and P in the present study were 15/30 µmol L−1

and 0.5/1 µmol L−1, respectively, which are similar to those in coastal waters of the ECS
where H. akashiwo blooms [18,25]. Both N and P concentrations satisfy the minimum
demand of H. akashiwo, indicating that P determines the rate and magnitude of the popu-
lation development of H. akashiwo under the nutrient scenarios from the ECS and within
the experimental setup.

Modelling studies have further clarified the significant positive correlation between
DIP concentration and phytoplankton biomass [26]. However, although the growth of
HABs tends to be limited by the availability of phosphorus, ecological risks of HABs can
persist. For example, many HABs can increase their toxin production in phosphorus-
deficient conditions [19–21,23,27]. Further studies are needed to determine the changes in
the toxicity of H. akashiwo under phosphorus deficiency.

4.2. Nutrient Uptake Dynamics

Some marine phytoplankton species can store DIP and utilise DOP as coping strategies
to periodical P limitation [28–30]. H. akashiwo also shows coping strategies in response to P
deficiency [14,15,31]. In general, P is deficient in the upper layer of stratified waters but
sufficient in the lower layer. Owing to its motility, H. akashiwo is able to vertically migrate
at night to P-rich depths to accumulate P and store it as polyphosphate. It then returns
to the upper layer in the daytime to perform photosynthesis by using the accumulated
polyphosphate [14]. Moreover, H. akashiwo can luxuriously consume P when the P-starved
cells are exposed to P-rich environments [32]. In addition, the utilisation of DOP is another
important coping strategy for H. akashiwo [15,31]. The P-storage strategy can also be seen
in our study. Cells were P-starved in the pre-culture. The rapid uptake of P during stage 1
in the experiment (Figure 3B) may indicate luxury consumption of P. It can be seen that P
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was exhausted on the third day in all scenarios (Figure 2B). However, the populations kept
growing until day 6, indicating that H. akashiwo may be using stored phosphorus. Other
alternative coping strategies, such as the uptake of DOP or rapid phosphorus recycling [33],
were not measured in the present study.

4.3. Stoichiometry of H. akashiwo

The cellular stoichiometry of phytoplankton mainly depends on the nutrient supply
ratio [28,34] and the allocation strategy [35]. The results of the present study showed that
the cellular N:P ratios were influenced by the initial ratio of nutrient supply (Figure 3E).
Although the cellular N:P ratios were not the same as the initially supplied N:P ratios
in the different scenarios, the hierarchy of cellular N:P ratios was consistent with that of
the initially supplied N:P ratios. For example, the lowest cellular N:P ratio was observed in
the LNHP scenario with the lowest initially supplied N:P ratio, while the highest cellular
N:P ratio was observed in the HNLP scenario. The cellular N:P ratios varied in each
scenario during the present study (Figure 3E). This is because the stoichiometry of H.
akashiwo varies during its different growth phases due to changeable dynamic allocation
and nutrient demands [36].

The nutrients lost from the seawater mainly result from intracellular accumulation
and, to a lesser degree, adsorption [37]. Organic nutrient compounds are also released from
phytoplankton cells following metabolism and decomposition. In our present study, we
did not determine intracellular accumulation directly and this should be a focus of future
work. In order to evaluate the net stoichiometry of H. akashiwo nutrient uptake, QN and
QP were estimated from Equation (2), although this may overestimate the nutrient quota
per cell.

The largest contributor of cellular QN is proteins, while that of cellular QP is ribosomal
RNAs (rRNAs) [38,39]. Therefore, the cellular N:P ratio is determined by the ratio of protein
and rRNAs, reflecting changing physiological requirements [40]. Similar QP but different
QN were observed in the four scenarios on day 6 and day 9 (Figure 3C,D), which indicates
that QN had the greatest influence on the cellular N:P ratio. This suggests that the cellular
rRNA contents in all the scenarios were similar, but the protein contents were different.

4.4. Applicability of Low-Nutrient Setup

Numerous studies have focused on the effect of nutrients on the growth of H. akashiwo.
However, few studies have paid attention to its growth under realistic nutrient concentra-
tions representing those in the natural environment (Table S5). Model parameterisations
should simulate the growth of HAB communities under natural conditions to represent
and predict HAB episodes. The nutrient concentrations in the present study were fixed
according to those found in the ECS coastal waters during occurrence of H. akashiwo
blooming [18]. The maximum cell densities in our study are similar to natural bloom
concentrations (103–105 cells mL−1) [41–43]. P was shown to be a major factor influencing
the population development of H. akashiwo in the ECS by the present study.

Further studies should include competition between other prominent phytoplankton
and H. akashiwo under P deficiency as a factor in their analyses. H. akashiwo could out-
compete other species in the P-limited waters of the ECS resulting in blooms. The ECS
is gradually changing from being nitrogen deficient to being phosphorus deficient [44];
and, an H. akashiwo bloom was observed in the ECS in summer under a very low P
concentration [25].

5. Conclusions

Our results showed that the µ′ and the population densities were significantly reduced
by 17–21% and 41%, respectively, under low P conditions, indicating that phosphorus con-
centration is a key factor for the development of H. akashiwo blooms in the ECS. The study
showed that the cellular N:P ratio is highly dependent on the initially supplied N:P ra-
tio and the allocation strategy. This study provides new understanding of the growth
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and nutrient uptake dynamics of H. akashiwo under varying, but realistic, nutrient con-
centrations, which could serve as a reference for coastal water management and marine
ecological management.
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results of two-way ANOVAs of the effects of nitrate (N) and phosphate (P) and their dual effect on
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