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Voluntary vaccination policies for childhood diseases present parents with a sub-

tle challenge: if a sufficient proportion of the population is already immune, either

naturally or by vaccination, then even the slightest risk associated with vaccination

will outweigh the risk from infection. As a result, individual self-interest might pre-

clude complete eradication of a vaccine-preventable disease. We show that a formal

game theoretical analysis of this problem leads to new insights that help to explain

human decision-making with respect to vaccination. Increases in perceived vaccine

risk will tend to induce larger declines in vaccine uptake for pathogens that cause

more secondary infections (such as measles and pertussis). Following a vaccine

scare, even if perceived vaccine risk is greatly reduced, it will be relatively difficult

to restore pre-scare vaccine coverage levels.

The history of vaccination policy includes numerous bouts of public resistance, often

in the form of vaccine scares (1–4). In the United Kingdom, for example, a pertussis

vaccine scare in the 1970s caused a decline in the level of vaccine coverage, resulting

in substantial increases in morbidity and mortality from whooping cough (4). Currently,

measles-mumps-rubella (MMR) vaccine uptake is declining in the United Kingdom, with

mounting concern that widespread outbreaks of measles may recur (5).

In deciding whether or not to vaccinate their children, parents consider the risk of

morbidity from vaccination, the probability that their child will become infected, and the

risk of morbidity from such an infection. The decisions of individual parents are indirectly

influenced by the decisions of all other parents, because the sum of these decisions yields

the vaccine coverage levels in the population and hence the course of epidemics.

Game theory (6–9) attempts to predict individual behavior in such a setting, where

the payoff to strategies chosen by individuals depends upon the strategies adopted by

others in the population. Here, we integrate epidemic modeling (10) into a game the-

oretical framework in order to analyze population behavior under voluntary vaccination

policies for childhood diseases. This approach allows us to quantify how risk perception
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influences expected vaccine uptake and coverage levels and what role is played by the

epidemiological characteristics of the pathogens.

The Vaccination Game

Description of game For simplicity, we imagine that all individuals are provided with the

same information and use this information in the same way to assess risks. An individual’s

strategy is the probability P that s/he will choose to vaccinate. The vaccine uptake level in

the population is the proportion of newborns who will be vaccinated and hence is the mean

of all strategies adopted by individuals in the population. We ignore any delay between

changes in vaccine uptake and corresponding changes in overall vaccine coverage in the

population; consequently, if there is no disease-related or vaccine-related mortality, then

the proportion of the population vaccinated, p, will be equal to the vaccine uptake level.

The payoff to an individual will be greater when morbidity risk (probability of adverse

consequences) is lower. We use rv and ri to denote the morbidity risks from vaccination

and infection, respectively, and πp to denote the probability that an unvaccinated individ-

ual will eventually be infected if the vaccine coverage level in the population is p. With

this notation, the payoff is −rv to a vaccinated individual and −riπp to an unvaccinated

individual. Thus, the strategy of vaccinating with probability P yields expected payoff

E(P, p) = P(−rv)+(1−P)(−riπp) . [1]

In the context of vaccination, parents act according to perceived morbidity risks, which

may differ significantly from actual morbidity risks (3, 11). Consequently, we interpret

ri and rv as the perceived morbidity risks from infection and vaccination, and E(P, p)

as the perceived payoff. The game is unchanged if we scale the payoff function by a

constant. Therefore, we can eliminate one of the parameters, leaving only the relative

risk, r = rv/ri. Thus, we can write

E(P, p) =−rP−πp(1−P) . [2]
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Characterization of Nash equilibria We now seek to identify which strategies are likely

to be adopted. If most of the population adopts strategy P, and individuals that adopt any

other strategy Q always obtain a lower payoff than those adopting P, then P is said to

be a Nash equilibrium. In contrast, if most individuals adopt strategy Q, but individuals

adopting a strategy that is closer than Q to P obtain a higher payoff than those adopting

Q (and those adopting a strategy further from P obtain a lower payoff), and if this is true

for any Q 6= P, then P is said to be convergently stable. If P is a Nash equilibrium, and

everyone is currently playing P, then no one should change strategy. If P is convergently

stable, then regardless of what strategy is most common in the population, individuals

should start to play strategies closer to P, and ultimately adopt P. It is generally expected

that a strategy observed in a real population (12) must be a convergently stable Nash

equilibrium (CSNE).

Suppose that a proportion ε of the population vaccinates with probability P and the

remainder vaccinate with probability Q. Since we ignore any difference between vaccine

uptake, εP +(1− ε)Q, and overall vaccine coverage in the population, p, we can always

write

p = εP+(1− ε)Q . [3]

The payoff to individuals playing P is, therefore,

EP(P,Q,ε) = E(P, εP+(1− ε)Q) , [4]

while the payoff to individuals playing Q is

EQ(P,Q,ε) = E(Q, εP+(1− ε)Q) , [5]

The payoff gain to an individual playing P in such a population is

∆E = EP−EQ = [πεP+(1−ε)Q− r](P−Q) . [6]

The payoff gain ∆E is a measure of the incentive for an individual to change strategies

from Q to P. For any given relative risk r there is a unique strategy P = P∗ such that ∆E
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is strictly positive for all strategies Q 6= P∗ and all proportions ε, where 0 ≤ ε < 1 (see

the Appendix for a proof). The special case of this fact for small proportions playing Q

(ε near 1) implies that P∗ is a Nash equilibrium. We also show in the Appendix that if

neither P nor Q is equal to the Nash equilibrium P∗, but P is closer than Q to P∗, then

∆E > 0, implying that P∗ is convergently stable and hence a CSNE.

The unique CSNE in this vaccination game is easily found (see the Appendix). If the

vaccine is perceived to be sufficiently risky (r ≥ π0) then the CSNE is “never vaccinate”

(P∗ = 0). In contrast, if r < π0 then the CSNE is “vaccinate with non-zero probability

P∗” (0 < P∗ < 1). In the latter case, the CSNE is said to be mixed (as opposed to the pure

strategies P = 0 and P = 1).

Incorporation of an epidemic model

To make more precise predictions we must specify the infection probability πp. For this,

we need an epidemiological model. We use a standard three-compartment model in which

individuals are either susceptible to the disease (S), infectious (I) or recovered to a state

of lifelong immunity (R). This SIR model, and variants thereof, are widely used in mod-

eling childhood diseases (10, 13). The model is specified by the rates of change of the

proportions of the population in each compartment,

dS
dt

= µ(1− p)−βSI−µS , [7]

dI
dt

= βSI− γI−µI , [8]

dR
dt

= µp+ γI−µR . [9]

Here, µ is the mean birth and death rate, β is the mean transmission rate, 1/γ is the

mean infectious period, and p is the vaccine uptake level (assuming, for simplicity, that

individuals are never infected before being vaccinated). Once a dynamical steady state is

reached, the vaccine coverage level in the population will equal the uptake level. Since

we shall focus on the steady state solution of the model, our notation p for vaccine uptake

is consistent with our notation in the game-theoretical analysis (cf. Eq. 3).
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The third equation in the SIR model above is superfluous because S + I +R = 1. The

remaining two equations can be written in a convenient, dimensionless form,

dS
dτ

= f (1− p)−R0(1+ f )SI− f S , [10]

dI
dτ

= R0(1+ f )SI− (1+ f )I , [11]

where τ = t/γ is time measured in units of the mean infectious period, f = µ/γ is the

infectious period as a fraction of mean lifetime, and R0 = β/(γ+µ) is the basic reproduc-

tive ratio (the average number of secondary cases produced by a typical primary case in

a fully susceptible population). For childhood diseases, f < 0.001 and R0 ∼ 5–20 (e.g.,

Ref. 10).

The predictions of the SIR model depend on the critical coverage level that eliminates

the disease from the population (10), pcrit , which itself is a function of R0,

pcrit =

0 if R0 ≤ 1,

1− 1
R0

if R0 > 1.

[12]

If p≥ pcrit then the system converges to the disease-free state (Ŝ, Î) = (1− p,0), whereas

if p < pcrit , it converges to a stable endemic state given by

Ŝ = 1− pcrit , [13]

Î =
f

1+ f
(pcrit− p) . [14]

Since S and I are constant in this situation, the probability that an unvaccinated individual

eventually becomes infected can be expressed, using Eqs. 10-14, as the proportion of

susceptible individuals becoming infected versus dying in any unit time,

πp =
R0(1+ f )ŜÎ

R0(1+ f )ŜÎ + f Ŝ
= 1− 1

R0(1− p)
. [15]

(Note that the parameter f does not appear in this expression for πp, so the CSNE will

not depend on the birth rate or the infectious period of the disease.) The condition r < π0,

which yields a mixed CSNE, can therefore be written

R0(1− r) > 1 . [16]
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The value of the mixed CSNE P∗, obtained by solving the equation r = πP∗ for P∗, is

P∗ = 1− 1
R0(1− r)

. [17]

Results and Discussion

For any perceived relative risk r > 0, the expected vaccine uptake is less than the eradica-

tion threshold, i.e., P∗ < pcrit (Figure 1). This formalizes an argument that has previously

been made qualitatively (8, 14); namely, it is impossible to eradicate a disease through

voluntary vaccination when individuals act according to their own interests. In situations

where vaccination is perceived to be more risky than contracting the disease (r > 1), one

would expect—even without the aid of a model—that no parents would vaccinate their

children. Our game theoretical analysis shows that, in fact, the threshold in perceived

relative risk beyond which all parents should cease vaccinating depends upon R0. In

particular, parents can be expected to play a pure nonvaccinator strategy if r > π0, i.e., if

r > 1− 1
R0

. [18]

For childhood diseases this relative risk threshold is close to 1, but for diseases with

relatively small R0, the threshold could be substantially smaller.

With knowledge of the perceived relative risk, r, we can thus predict vaccine coverage

levels under voluntary policies. However, risk perception (and hence the value of r) can

change over time in response to a variety of factors, such as media coverage and the ac-

tivities of anti-vaccination groups (3,11,15–17). Under normal circumstances the relative

risk is perceived to be very low (typically much lower than the relative risk threshold,

r� π0 < 1). During a vaccine scare, the perceived risk of vaccination will rise (by defini-

tion) and hence relative risk will increase to some new level r′ > r. Note that a reduction

in the perceived risk of morbidity from disease has the same effect. In either case, the

qualitative nature of our predictions depends on whether the new risk ratio exceeds the

relative risk threshold; if r < r′� π0 then behavioural changes will be relatively minor
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during a scare, whereas if r� π0 < r′ then dramatic changes in vaccine uptake can occur

(see Table 1 and Figure 2).

Several lines of evidence suggest that it is likely that r′ > π0 during a vaccine scare.

Many parents currently have concerns about the safety of the MMR vaccine (18,19) (and

other vaccines (20)), and many parents (in developed countries) believe that diseases such

as measles and whooping cough are essentially harmless (21) (together these observations

indicate that r′ > 1 for measles, mumps and rubella at present in the UK). Targetted

surveys show that among subscribers to a parenting magazine (22) and among inhabitants

of specific areas in the UK (23), a significant proportion of parents believe vaccines entail

more risk than the diseases against which they protect (r′ > 1) and this perception is

correlated with not vaccinating (22).

When r� π0 < r′, the degree to which a vaccine scare is likely to impact vaccination

behaviour depends sensitively on the value of R0. The payoff gain ∆E that measures the

incentive to switch from the previous CSNE P (associated with r� π0) to the new CSNE

P′ (associated with r′ > π0) is always larger for diseases with larger R0. Consequently,

we would expect individuals to be convinced more rapidly to change their vaccination be-

haviour in the face of a vaccine scare for measles or whooping cough (for which R0 > 10)

than for less transmissible infections. In general, for a given increase in risk perception,

we expect precipitous reductions in vaccine uptake to be more common for diseases with

higher R0.

If R0 is large, individuals are also likely to be more responsive to any reductions

in the perceived relative risk of vaccination that occur after a vaccine scare (Figure 3

and Table 1). Such reductions in r might result from media coverage of a few severe

cases of disease (which are more likely as vaccine uptake drops and disease incidence

rises). More importantly, education programmes that aim to increase public confidence

in vaccines following a scare are likely to be most effective for precisely the vaccines for

which scares have the greatest impact.

Unfortunately, the effectiveness of education programmes is constrained in a way
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that vaccine scares are not. During a vaccine scare, the payoff gain ∆E is given by the

expression in the second row of Table 1; this expression is bounded below by a positive

number for all ε (even for ε = 1), so the incentive not to vaccinate remains substantial

even as the vaccine coverage approaches zero. In contrast, during successful education

programmes to combat a vaccine scare, there will be a shift in risk perception from r >

π0 to r′ < π0, and the proportion of the population vaccinated will climb to the new

CSNE level as more and more individuals are vaccinated. In this case, the payoff gain for

adopting the new CSNE is given by the third row of Table 1, which implies (regardless

of R0) that ∆E→ 0 as ε→ 1; this means that the incentive to vaccinate diminishes as the

vaccine coverage approaches the new CSNE level. We conclude that, generally, it will be

relatively easy to induce a drop in vaccine uptake during a scare, but relatively difficult

to restore uptake levels afterwards. This prediction is consistent with the history of the

pertussis vaccination scare during the 1970s in Britain (24), for which vaccine uptake

dropped much more quickly than it later recovered after the scare. All else being equal,

we anticipate that when the current MMR scare in Britain is over, vaccine uptake will rise

more slowly than it declined.

We have demonstrated previously that game theory can be a useful tool for evaluating

schemes to prepare for the potential reintroduction of a pathogen that has been eradicated

globally through mass vaccination (9). Here we have investigated the feedback between

individual vaccination decisions and population-level processes that determine vaccine

uptake and herd immunity for an endemic disease, bearing in mind that vaccination de-

cisions are strongly influenced by incorrect risk perception (11, 15). Since our goal has

been to elucidate the most fundamental issues, we have focussed on the simplest possible

epidemiological model appropriate for childhood diseases and have assumed implicitly

that transient dynamics (13), seasonal forcing (13, 25) and stochasticity (13, 26) all have

negligible effects. We have also ignored variance in risk perception and any effects of risk

perception spreading non-homogeneously through social networks. All of these features

of real systems merit further investigation.
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Appendix

The probability πp that an individual eventually becomes infected must decrease strictly

with the proportion p of the population that is vaccinated, until p reaches the eradication

threshold, pcrit = 1−1/R0. Thus the maximum of πp occurs for p = 0, and for p ≥ pcrit ,

πp = 0.

Nash equilibrium If r ≥ π0 then r > πp for all p > 0, so for any ε ∈ [0,1) in Eq. 6,

∆E > 0 for all Q 6= P if and only if P = 0. Thus, P∗ = 0 is the unique Nash equilibrium. If

r < π0 then there exists a unique p∗ ∈ (0, pcrit) such that πp− r > 0 if p < p∗, πp∗ = r and

πp−r < 0 if p > p∗. For any Q < P, we have p = εP+(1−ε)Q < P for all ε∈ [0,1) and,

similarly, for any Q > P we have p > P for all ε ∈ [0,1). Therefore, in this case where

r < π0, for any ε ∈ [0,1) in Eq. 6, ∆E > 0 for all Q 6= P if and only if P = p∗. Thus, the

Nash equilibrium P∗ is the unique solution of the equation πP∗ = r.

Convergent stability Given relative risk r, let P∗ denote the associated Nash equilibrium.

Suppose a proportion ε of the population play a strategy P (not necessarily equal to P∗)

while the remainder play Q 6= P. We must show, for ε� 1, that if Q < P≤P∗ or P∗≤P <

Q then individuals playing P obtain a higher payoff than those playing Q, i.e., ∆E > 0 in

Eq. 6. In fact, this is true for any ε ∈ [0,1) and follows immediately because πp decreases

with p and πP∗ = r. If Q < P≤ P∗ then πεP+(1−ε)Q− r > 0, whereas if P∗ ≤ P < Q then

πεP+(1−ε)Q− r < 0. Hence, in either case, ∆E > 0 in Eq. 6.
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Figure 1: Vaccine coverage p∗ at the CSNE versus relative risk r, from Eq. 17, for vari-

ous values of R0. Dashed horizontal lines demarcate the critical coverage level pcrit that

eliminates the disease from the population (Eq. 12). In the limit of very large R0, the plot

of p∗ versus r approaches a step function with a step at r = 1 (Eq. 17).
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Figure 2: Analysis of vaccine scares: Payoff gain, ∆E, and change in vaccine uptake, ∆P,

after a shift in risk perception from r < π0 to r′ (see Table 1). For this figure, r = 0.1 and

the proportion of individuals currently adopting the new CSNE is ε = 0 (corresponding

to the start of a vaccine scare); the shapes of the curves are qualitatively similar for other

values of r and ε.
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Figure 3: Analysis of public education programmes to counteract vaccine scares: Payoff

gain, ∆E, and change in vaccine uptake, ∆P, after a shift in risk perception from r > π0

to r′. As in Figure 2, ε = 0 here. The results are independent of r (because the CSNE is

always P = 0 when r > π0). The shapes of the curves are qualitatively similar for other

values of ε, but the maximum of ∆E goes to zero as ε increases to 1.
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Case Payoff gain, ∆E ∆P

r < π0, r′ < π0
(1−ε)(r′−r)2

R0(1−r){1−[(1−ε)r′+εr]}
1

R0
r−r′

(1−r)(1−r′)

r < π0, r′ > π0

[
1− 1

R0(1−r)

][
r′−π0 + 1−ε

R0

(
R0(1−r)−1

1+ε[R0(1−r)−1]

)]
−
(

1− 1
R0(1−r)

)
r > π0, r′ < π0

1−ε

R0

(
[R0(1−r′)−1]2

ε+(1−ε)R0(1−r′)

)
1− 1

R0(1−r′)

r > π0, r′ > π0 0 0

Table 1: Payoff gain ∆E (Eq. 6) to an individual adopting the new CSNE P′ (associated

with perceived relative risk r′) when a proportion ε of the population does the same,

and the remainder play the strategy P (which is the CSNE associated with relative risk

r). π0 is the probability that an individual will eventually become infected if nobody is

vaccinated (cf. Eq. 15). To see that ∆E is always strictly positive if 0 ≤ ε < 1, note that

r < π0 if and only if R0(1− r) > 1. The third column of the table shows ∆P = P′−P, the

change in the population’s vaccine uptake after the change in risk perception. When both

r and r′ exceed π0, the CSNE is the same before and after the change in risk perception

(P′ = P = 0).


