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Abstract: A ringR is called generalized right Baer if for any non-empty subset
S of R, the right annihilator rR(S

n) is generated by an idempotent for some
positive integer n. Generalized Baer rings are special cases of generalized PP
rings and a generalization of Baer rings. In this paper, many properties of these
rings are studied and some characterizations of von Neumann regular rings and
PP rings are extended. The behavior of the generalized right Baer condition
is investigated with respect to various constructions and extensions and it is
used to generalize many results on Baer rings and generalized right PP-rings.
Some families of generalized right Baer-rings are presented and connections to
related classes of rings are investigated.
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1. Introduction

Throughout this paper all rings are associative with identity and all modules
are unital. Recall from [15] that R is a Baer ring if the right annihilator of
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every nonempty subset of R is generated by an idempotent. In [15] Kaplansky
introduced Baer rings to abstract various properties of AW ∗-algebras and von
Neumann algebras. The class of Baer rings includes the von Neumann algebras.
In [10] Clark defines a ring to be quasi-Baer if the left annihilator of every ideal
is generated, as a left ideal, by an idempotent. He then uses the quasi-Baer
concept to characterize when a finite-dimensional algebra with unity over an
algebraically closed field is isomorphic to a twisted matrix units semigroup
algebra.

Closely related to Baer rings are PP-rings. A ring R is called right (left)
PP if every principal right (left) ideal is projective (equivalently, if the right
(left) annihilator of any element of R is generated (as a right (left) ideal) by an
idempotent of R). R is called a PP-ring (also called a Rickart ring [4, p.18]), if
it is both right and left PP. The concept of PP-ring is not left-right symmetric
by Chase [8]. A right PP-ring R is Baer (so PP) when R is orthogonally finite
by Small [22], and a right PP-ring R is PP when R is abelian (idempotents
are central) by Endo [11]. A ring R is called π-regular if for each a ∈ R there
exist a positive integer n = n(a), depending on a, such that an ∈ anRan [14].
A π-regular ring is called (von Neumann) regular when n = 1. According to
Huh et al. [14], a ring R is called a generalized left PP-ring if for any x ∈ R
the left ideal Rxn is projective for some positive integer n, depending on x,
or equivalently, if for any x ∈ R the left annihilator of xn is generated by an
idempotent for some positive integer n, depending on x. Von Neumann regular
rings are right (left) PP by Goodearl [12, Theorem 1.1], and π-regular rings are
generalized PP in the same sense as von Neumann regular rings.

Birkenmeier, Kim and Park in [7] introduced a principally quasi-Baer ring
and used them to generalize many results on reduced (i.e., it has no nonzero
nilpotent elements) PP.-rings. A ring R is called right principally quasi-Baer
(or simply right p.q.-Baer) if the right annihilator of a principal right ideal is
generated by an idempotent. Equivalently, R is right p.q.-Baer if R modulo the
right annihilator of any principal right ideal is projective. The class of p.q.-Baer
rings include any domain, any semisimple ring, any biregular ring, any Baer,
and any quasi-Baer ring. Some examples were given in [7] to show that the
class of left p.q.-Baer rings is not contained in the class of right PP-rings and
the class of right PP-rings is not contained in the class of left p.q.-Baer rings.
From [20], a ring R is called generalized right (principally)quasi-Baer if for any
(principal) right ideal I of R, the right annihilator of In is generated by an
idempotent for some positive integer n, depending on I.

We say a ring R is generalized right Baer if for any non-empty subset S of
R, the right annihilator rR(S

n) is generated by an idempotent for some positive
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integer n, where Sn is a set that contains elements a1a2...an such that ai ∈ S for
1 ≤ i ≤ n. Given a fixed positive integer n, we say a ring R is n-generalized right
Baer if for any non-empty subset S of R, the right annihilator of Sn is generated
by an idempotent. Left cases may be defined analogously. A ring is called a
generalized Baer ring if it is both generalized right and left Baer ring. Baer
rings are clearly generalized right (left) Baer. Also, the class of generalized right
(left) Baer rings is obviously included in the classes of generalized right (left)
quasi Baer rings and generalized right (left) PP rings. Using Examples 2.2 and
2.1, various classes of generalized right (left) quasi Baer rings and generalized
right (left) PP rings are provided which are not generalized right (left) Baer.
On the other hand, in Example 2.3, we give rich classes of generalized right
(left) Baer rings which are not Baer.

These classes of rings arise naturally and play a substantial role in the theory
of operator algebras in functional analysis. In section 2 we provide several basic
results. In section 3 we discuss various constructions and extensions under
which the class of generalized right (left) Baer rings is closed.

2. Generalized Baer Rings

Given a ring R, for a nonempty subset X of R, rR(X) and ℓR(X) denote the
right and left annihilators of X in R respectively. For notation we use Zr(R)
and C(R) for the right singular ideal and the center of the ring R, respectively.

The following examples show that there is rich classes of generalized PP
ring which are not generalized Baer ring.

Example 2.1. (i) For a field F , take Fn = F for n = 1, 2, · · · , let

R =

(

Π∞
n=1Fn

⊕∞
n=1 Fn

⊕∞
n=1 Fn <

⊕∞
n=1 Fn, 1 >

)

which is a subring of the 2 × 2 matrix ring over the ring Π∞
n=1Fn, where <

⊕∞
n=1 Fn, 1 > is the F -algebra generated by

⊕∞
n=1 Fn and 1Π∞

n=1
Fn

. Then by
[7, Example1.6], the ring R is a semiprime PP ring (and hence generalized PP
ring ) which is not p.q.-Baer. Thus by [20, Proposition 2.2(i)] the ring R is not
generalized p.q.-Baer (and hence not generalized Baer ).

(ii) For a field F , let R =<
⊕∞

n=1 Fn, 1 > be F -algebra generated by
⊕∞

n=1 Fn and 1Π∞

n=1
Fn

. Then by [19, Example 1 (2)], the ring R is commutative
von Neumann regular (hence reduced PP) which is not Baer ring. Thus by
Proposition 2.4, we will show that R is not generalized Baer ring.
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(iii) Let R be a reduced PP ring which is not Baer ring (e.g., Example (ii)).
Then by [14, Proposition 3] the ring S(R,n) (as Lemma 3.1) is generalized PP
for each n ≥ 2, but we will show in Corollary 3.4 that the ring S(R,n) is not
generalized right Baer ring.

The following examples show that there are various classes of generalized
quasi-Baer ring which are not generalized Baer. We denote Z and Zn the ring
of integers and the integers modulo n, respectively.

Example 2.2. (i) Let M2(Z) denote the 2-by-2 full matrix ring over Z.
Then by [14, Example 4], M2(Z)[x], the polynomial ring over M2(Z), is not
generalized right PP (and hence it is not generalized right Baer) but it is quasi-
Baer (and hence is generalized right quasi-Baer), by [21, Proposition 16] and
[6, Theorem 1.2].

(ii) Let R = {

(

a b
c d

)

|a, b, c, d ∈ Z, a ≡ d, b ≡ 0 and c ≡ 0(mod2)}.

Since R is a prime ring, so it is quasi-Baer and hence generalized right quasi-
Baer. For each positive integer k, we have 2e22 ∈ rR(2e11)

k, where e11, e12
denote the matrix units. Also the idempotents of R are 0 and 1. Thus R is not
generalized right Baer.

(iii) Assume that R is a abelian generalized right quasi-Baer ring which is
not generalized right Baer (e.g., Example (ii)). Then by [20, Theorem 3.2] the
rings S(R,n) and R[x]/〈xn〉 are abelian generalized right quasi-Baer for each
n ≥ 2, but we will show in Theorem 3.2 that the rings S(R,n) and R[x]/〈xn〉
are not generalized right Baer.

(iv) Let I be a nonempty finite index set and for each i ∈ I, Ri be an abelian
generalized right quasi-Baer ring and assume at least for one i ∈ I, Ri is not
generalized right Baer (e.g., Example(ii),(iii)). Then R =

∏

i∈I

Ri is a generalized

right quasi-Baer ring which is not generalized right Baer, by Proposition 3.11.

The following examples show that there are rich classes of generalized right
Baer rings which are not Baer.

Example 2.3. (i) Let R be a reduced Baer ring. Then we will show in
Theorems 3.2 and 3.7 that for each n ≥ 2 the rings S(R,n) and T (R,n) (as
Theorem 3.7) are abelian generalized right Baer rings but they are not Baer,
since by [5, Proposition 1.5] every abelian Baer ring is reduced but the rings
S(R,n) and T (R,n) are not reduced.

(ii) Let R be a reduced Baer ring. Then the rings S(R, 2) and S(R, 3)
are abelian generalized right Baer by Theorems 3.2. Thus the rings S(R, 2)[x],
S(R, 2)[[x]], S(R, 3)[x] and S(R, 3)[[x]] by Theorems 3.14, 3.20 are generalized
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right Baer which are not Baer.

(iii) Let R be a reduced Baer ring. Then we will show in Theorem 3.7, the
ring T (R,n) for each n ≥ 2 is abelian generalized right Baer ring. Thus the
rings T (R,n)[x] and T (R,n)[[x]] by Theorems 3.14, 3.20 are generalized right
Baer ring but are not Baer ring.

(iv) For each positive integer n and prime number p, it is easy to show that
the ring Zpn is n-generalized Baer and the ring Zn is generalized Baer but they
are not Baer.

(v) Let I be a nonempty finite index set and for each i ∈ I, Ri be an abelian
generalized right Baer ring and assume at least for one i ∈ I, Ri is not Baer.
Then we will show in Proposition 3.11, that the ring R =

∏

i∈I

Ri is a generalized

right Baer ring which is not Baer.

Recall from [3] that a ring R satisfies the IFP (insertion of factors property)
or is semicommutative if rR(x) is an ideal of R for all x ∈ R (equivalently, ab = 0
implies arb = 0, for each a, b, r ∈ R).

We include the following two results to indicate conditions under which
the notions Baer ring, generalized Baer ring and generalized quasi-Baer ring
coincide.

Proposition 2.4. Let R be a ring, then:

(1) A reduced ring R is generalized right Baer if and only if R is Baer;

(2) A ring R satisfying IFP is generalized right Baer if and only if it is
generalized right quasi-Baer;

(3) A semiprime generalized right Baer ring R is quasi-Baer.

Proof. (1) Let R be a reduced generalized right Baer ring and S a subset
of R. Then rR(S

n) = eR, for some element idempotent e of R and positive
integer n. Since R is reduced, rR(S) = rR(S

n), which implies that R is a Baer
ring.

(2) Suppose that R be generalized right quasi-Baer and S an arbitrary
subset of R. Then rR((< S >)n) = eR for some idempotent e in R and positive
integer n, where < S > is the right ideal generated by S. Since R satisfies IFP
we have rR(S

n) = rR((< S >)n). Hence rR(S
n) = eR, which implies that the

ring R is generalized right Baer.

(3) Since every generalized right Baer ring is generalized right quasi-Baer,
R is a quasi-Baer ring by [20, Proposition 2.2(i)].
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Proposition 2.5. Let R be a right Noetherian ring with IFP . Then the
following conditions are equivalents:

(1) R is generalized right Baer;

(2) R is generalized right quasi-Baer;

(3) R is generalized right p.q-Baer;

(4) R is generalized right PP.

Proof. (1) ⇒ (2), (2) ⇒ (3) are clearly true by definitions. (3) ⇔ (4) follows
from [20, Proposition 2.2(ii)]. (3) ⇒ (1) By Preposition 2.4(ii) it is sufficient
to show that R is generalized right quasi-Baer. Let I be a non-zero right ideal
of R, since R is right Noetherian, rR(I

k) = eR for some idempotent e ∈ R
and positive integer k, by [20, Proposition 2.8 (ii)]. Thus R is generalized right
quasi-Baer.

Proposition 2.6. Every prime ideal of a generalized right Baer ring R is
either generated by an idempotent or it is a right essential ideal.

Proof. Let P be a prime ideal of R not essential as a right ideal. Then there
exists a non-zero right ideal I of R such that P ∩ I = 0. Since R is generalized
right Baer, there exists a positive integer n such that rR(I

n) =eR for some
idempotent e ∈ R. It is clear that P ⊆ rR(I

n) = eR. Let x ∈ rR(I
n). So

InxR = 0. Since P is a prime ideal, In ⊆ P or xR ⊆ P . If In ⊆ P then I ⊆ P .
Thus I ∩ P = I = 0, which is a contradiction. Hence x ∈ P and it implies that
P = eR.

As it is well know, every Baer or right PP ring is right non-singular. For
generalized right Baer rings we have:

Proposition 2.7. The right singular ideal Zr(R) of any generalized right
Baer ring R is nil.

Proof. Let x ∈ Zr(R). Then rR(x) is right essential in R. Since R is
generalized right Baer, there exists an idempotent e ∈ R such that rR(x

n) = eR
for some positive integer n. We show that xn = 0. Assume to the contrary
that xn 6= 0. So e 6= 1. Therefore rR(x

n) ∩ (1 − e)R = eR ∩ (1 − e)R = 0 and
(1− e)R 6= 0, which is a contradiction, since rR(x) is right essential. Therefore
xn = 0.

The following example shows that a subring of a generalized right Baer ring
need not be generalized right Baer.
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Example 2.8. (i) Let R = {(a, b) ∈ Z ⊕ Z | a ≡ b(modp)}, where p is
a prime number. Then R is a commutative reduced ring. Note that the only
idempotents of R are (0, 0) and (1, 1). One can show that rR((p, 0)) = (0, p)R.
So that rR((p, 0)R) does not contain a nonzero idempotent of R. Hence R is
not generalized right Baer, but Z⊕ Z is generalized right Baer ring.

(ii) Let F be the quotient field of the commutative domain Z[x] where Z

is the ring of integers. Letting S be the 2-by-2 full matrix ring over F , then
since S is right noetherian, S is orthogonally finite, so it is Baer by [9, Lemma
8.4]. Hence S is a generalized right Baer ring. But the 2-by-2 full matrix ring
over Z[x], which is a subring of S, is not a generalized right PP ring by [14,
Example 7], and hence it not general generalized right Baer.

In [15, Theorem 7], Kaplansky proved that the center of a Baer ring is also
Baer. By [14, Proposition11] the center of PP (generalized PP ) ring is also
PP (generalized PP ). We prove by use of Lemma 2.9, that the center of a
generalized Baer ring is also generalized Baer.

Lemma 2.9. Let S be a subset of C(R) and m,n be positive integers.
Suppose that rR(S

m) = eR and ℓR(S
n) = Rf , for some non-zero idempotents

e, f ∈ R such that She 6= 0 for all h with 0 < h < m and fSk 6= 0 for all k with
0 < k < n. Then m = n and e = f ∈ C(R).

Proof. First assume m < n, then fSm 6= 0 by the condition. Since m < n
and e ∈ rR(S

m), S ⊆ C(R) hence eSn = 0 and e ∈ ℓR(S
n) = Rf . Thus we

have ef = e. Since fSn = 0 and S is central so SmfSn−m = 0 and fSn−m ⊆
rR(S

m) = eR. Now, we prove that fSn−m ⊆ eSn−m(**). Let z ∈ fSn−m then
z = fa1a2...an−m where ai ∈ S. Since fSn−m ⊆ eR, z = ey for some y ∈ R.
But ez = ey = z hence z = ez = efa1a2...an−m = ea1a2...an−m ∈ eSn−m.

Now, if n ≥ 2m then n−m ≥ m and so eSn−m = eSmSn−2m = SmeSn−2m =
0. Hence by using (**), we have fSn−m = 0, a contradiction, as n > n − m.
Consequently m < n < 2m and so by using (**), fSm = fSn−mS2m−n ⊆
eSn−mS2m−n = eSm = Sme = 0. Thus fSm = 0 which is a contradiction, as
m < n. It follows that m ≥ n. Next assume m > n. Then by symmetry of
the preceding case we also obtain a contradiction, hence we have m = n. Then
eR = rR(S

m) = ℓR(S
n) = Rf implies that e = ef = f . Since Re is a two-sided

ideal of R so e = f ∈ C(R).

Proposition 2.10. If R is a generalized Baer ring (n-generalized Baer),
then C(R) is generalized Baer ring (n-generalized Baer).

Proof. Let S be a subset of C(R). Since R is generalized Baer, so rR(S
m) =

eR and ℓR(S
n) = Rf for some idempotents e, f ∈ R and positive integer
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m,n. We may assume that m,n are the smallest such ones. Then m = n and
e = f ∈ C(R) by Lemma 2.9. Now, we claim that rC(R)(S

n) = rR(S
n)∩C(R) =

eC(R). Since Sne = 0, so eC(R) ⊆ rC(R)(S
n). Conversely if a ∈ rC(R)(S

n)
then a = ea ∈ eC(R). Consequently, rC(R)(S

n) = eC(R) and thus C(R) is
generalized Baer.

Example 2.8(ii) show that the concept of generalized right Baer ring is not
a Morita invariant property. Because Z[x] is Baer ( and hence is generalized
Baer) but the 2-by-2 full matrix ring over Z[x] is not generalized right Baer.
But we may find a kind of subring of generalized right Baer rings which may
be generalized right Baer as follows.

Proposition 2.11. Let R be a generalized right Baer (resp. n-generalized
right Baer) ring. Then the ring eRe is generalized right Baer (resp. n-generalized
right Baer), for every idempotent e ∈ R.

Proof. Suppose that S is a subset of eRe. Since R is generalized Baer, there
is an idempotent f ∈ R such that rR(S

n) = fR, for some positive n. Note
that reRe(S

n) = rR(S
n) ∩ eRe. So reRe(S

n) = fR ∩ eRe. Now, we show that
1−e ∈ rR(S

n). Let ai ∈ S ⊆ eRe for every 1 ≤ i ≤ n. Thus there exist elements
ri ∈ R such that ai = erie. Hence a1a2...an(1 − e) = (er1e)(er2e)...(erne)(1 −
e) = 0. It follows that 1 − e ∈ rR(S

n) = fR. Thus 1 − e = f(1 − e) and
ef = efe. Let g = ef . Then clearly g2 = g ∈ eRe. Now we prove that
reRe(S

n) = g(eRe). Since Sn = Sne, Sng = Sn(ef) = (Sne)f = Snf = 0.
It follows that g(eRe) ⊆ reRe(S

n). Conversely, if y ∈ reRe(S
n) then y = ey.

Since y = ey ∈ reRe(S
n) = fR ∩ eRe thus y = ey = fy = eye. Consequently

y = ey = e(fy) = gy ∈ g(eRe). Hence reRe(S
n) ⊆ g(eRe). Therefore the ring

eRe is a generalized right Baer ring.

We will use the following lemma in the sequel.

Lemma 2.12. Assume that S is a subset of R and rR(S
n) = eR for some

positive integer n and a central idempotent e ∈ R. Then rR(S
n) = rR(S

m) for
each positive integer m ≥ n.

Proof. It is enough to show that rR(S
n) = rR(S

n+1). Let x ∈ rR(S
n+1)

then Sn+1x = SnSx = 0. Hence Sx ⊆ eR. It follows that for every a ∈ S
there exists r ∈ R such that ax = er. Now we show that Sx = Sxe. Let
y = ax ∈ Sx. So y = ax = er = ere = axe ∈ Sxe. Thus Sx ⊆ Sxe. Conversely
if t = axe ∈ Sxe, then t = axe = ere = er = ax ∈ Sx, so Sx = Sxe. Hence
Snx = Sn−1Sx = Sn−1Sxe = Snxe = Snex = 0. Thus x ∈ rR(S

n).
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In the next result we investigate a condition for which a ring R being gen-
eralized Baer implies R/Nil(R) is a generalized Baer ring where Nil(R) is the
set of nilpotent elements of R.

Proposition 2.13. Let R be a commutative generalized Baer ring. Then
R/Nil(R) is a commutative PP ring.

Proof. Let R = R/Nil(R) and 0 6= x ∈ R. Since R/Nil(R) is a reduced
ring, ℓR(x) = ℓR(x

k) for every positive integer k. Since R is generalized Baer,
there exists a positive integer n such that ℓR(x

n) = Re for some idempotent
e ∈ R. We show that ℓR(x) = Re. Let r ∈ ℓR(x), then rx ∈ Nil(R). So
there is a positive integer m such that (rx)m = 0. So rm ∈ ℓR(x

mn) = ℓR(x
n)

by Lemma 2.12. Since ℓR(x
n) = Re, rme = rm implies rm(1 − e) = 0. Then

(r(1 − e))m = 0. So r(1 − e) ∈ Nil(R) thus (r − re) ∈ Nil(R). Therefore r
e = r. It follows that ℓR(x) ⊆ Re. Also since exn = 0, it implies (ex)n = 0.
So ex ∈ Nil(R) and this means e ∈ ℓR(x), so Re ⊆ ℓR(x) and the proof is
complete.

A ringR is called orthogonally finite if there are no infinite sets of orthogonal
idempotents in R. By [18, Proposition 6.59] for any ring R, the following are
equivalent:

(1) R satisfies ACC on right direct summands;

(2) satisfies DCC on left direct summands;

(3) R has no infinite set of nonzero orthogonal idempotents.

Proposition 2.14. Let R be a orthogonally finite generalized left Baer
ring. Then for every right annihilator L there exists an idempotent e ∈ R such
that L = eR⊕ (L ∩ (1− e)R) and L ∩ (1− e)R is nil.

Proof. If L is nil then there is nothing to prove. Assume to the contrary
that L is not nil. So there exists some x ∈ L which is not nilpotent. Since R
is generalized left Baer, so ℓR(x

n) = Rf for some positive integer n and some
idempotent f 6= 1. Thus ℓR(L) ⊆ ℓR(x

n) = Rf and hence (1−f)R = rR(Rf) ⊆
rR(ℓR(L)) = L. Thus L has a non-zero idempotent element. Now let e be a non-
zero idempotent in L such that rR(e) is minimal among all right annihilators of
idempotent elements of L. Then, by a similar argument as that in [18, Theorem
7.55], one can show that L∩(1−e)R is nil. Since R = eR⊕(1−e)R and eR ⊆ L,
it is easy to see that L = eR ⊕ (L ∩ (1− e)R).
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3. Extensions of Generalized Baer Rings

For a ring R and (R,R)-bimodule M , let T (R,M) = {(a, x) | a ∈ R,x ∈ M}
with the multiplication defined by (a1, x1)(a2, x2) = (a1a2, a1x2 + x1a2). Then
T (R,M) is a ring which is called the trivial extension of R by M . Notice that

T (R,M) is isomorphism to the ring of matrices

(

a x
0 a

)

, where a ∈ R,x ∈ M

and the usual matrix operations are used.

Lemma 3.1. [14, Lemma 2] Let R be an abelian ring and define

S(R,n) :=









































a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a















| a, aij ∈ R



























,

with n a positive integer n ≥ 2. Then every idempotent in S(R,n) is of the

form











f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f











, with f2 = f ∈ R and so S(R,n) is an abelian matrix

ring.

We now prove the following result which enables us to generate examples
of generalized right Baer rings which are not Baer.

Theorem 3.2. Let R be an abelian ring. Then R is a generalized right
Baer ring if and only if S(R,n) is a generalized right Baer ring, for each positive
integer n ≥ 2.

Proof. We proceed by induction on n. First, we claim that the trivial
extension S(R, 2) of R by R is a generalized right Baer ring. Let S be a subset
of S(R, 2) and J be the set of entries of main diagonal of the elements of S.
Since R is generalized right Baer, rR(J

m) = fR for some idempotent f ∈ R
and positive integer m. Since R is abelian, rR(J

m) = rR(J
m+1) = · · · =

rR(J
2m) = fR, by Lemma 2.12. For any

(

ai bi
0 ai

)

∈ S where, 1 ≤ i ≤ m,
(

a1 b1
0 a1

)(

a2 b2
0 a2

)

· · ·

(

am bm
0 am

)

=

(

a1a2...am b
0 a1a2...am

)

with b

has m terms, and any term of it contains m − 1, a,is and one bi (*). Assume
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that e =

(

f 0
0 f

)

then e2 = e ∈ S(R, 2). Now we show that rS(R,2)(S
2m) =

eS(R, 2). On the other hand rR(J
m) = fR, so using by (*), we have

(

a1 b1
0 a1

)

· · ·

(

a2m b2m
0 a2m

)(

f 0
0 f

)

= 0. Thus eS(R, 2) ⊆ rS(R,2)(S
2m).

Conversely, if

(

c d
0 c

)

∈ rS(R,2)(S
2m) then

(

a1a2...a2m b
0 a1a2...a2m

)(

c d
0 c

)

=

0, for each

(

a1a2...a2m b
0 a1a2...a2m

)

∈ S2m. It follows that a1a2...a2mc = 0 =

a1a2...a2md + bc. Consequently c ∈ fR , and c = fc, since rR(J
m) = fR.

Therefore by using (*), bc = bcf = 0, hence a1a2...a2md = 0. Thus d = fd, as

rR(J
m) = fR. Consequently

(

c d
0 c

)

=

(

f 0
0 f

)(

c d
0 c

)

, hence rS(R,2)(S
2m) ⊆

eS(R, 2), and S(R, 2) is generalized right Baer ring. Therefore if rR(J
m) = fR

where f2 = f ∈ R, then we have rS(R,2)(S
2m) =

(

f 0
0 f

)

S(R, 2).

Now, assume that S is a subset of S(R,n). Consider the set S1 of elements B
in S(R,n− 1) such that B is obtained by deleting n-th row and n-th column of
a matrix in S, and the set S2 of elements in S(R,n−1) such that B is obtained
by deleting 1-th row and 1-th column of a matrix in S.
Then by the induction hypothesis and Lemma 3.1, there exists e2i = ei in
S(R,n− 1), f2

i = fi ∈ R and positive integers ki for i = 1, 2 such that

rS(R,n−1)(S
(n−1)ki
i ) = eiS(R,n− 1), ei = fiIn−1 and rR(J

ki) = fiR.

Put k = max{k1, k2}. Then rR(J
k) = rR(J

k1) = rR(J
k2), by Lemma 2.12.

Hence f1 = f2, e1 = e2 and e1S(R,n− 1) = e2S(R,n− 1). Since S(R,n− 1) is
abelian, by Lemma 3.1, so by using again Lemma 2.12, we have:

rS(R,n−1)(S
(n−1)k
1 ) = rS(R,n−1)(S

(n−1)k1
1 ) = rS(R,n−1)(S

(n−1)k2
2 )

= rS(R,n−1)(S
(n−1)k
2 ).

Now, suppose that











x x12 · · · x1n
0 x · · · x2n
...

...
. . .

...
0 0 · · · x











∈ rS(R,n)(S
nk),
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









a1 · · · ank y12 · · · y1n
0 a1 · · · ank · · · y2n
...

...
. . .

...
0 0 · · · a1 · · · ank











be in Snk. Since rS(R,n−1)(S
(n−1)k
1 ) = rS(R,n−1)(S

(n−1)k
2 ) = e1S(R,n − 1), x

and x,ijs are in f1R for each i and j except x1n. We have a1 · · · ankx1n +
y12x2n + · · · + y1nx = 0. Since x,ijs except x1n are in f1R and f1 is central,

a1 · · · ankx1n+y1nx = 0. Now, we know that x = f1x = xf1 and rR(J
nk) = f1R,

so a1 · · · ankx1nf1 + y1nxf1 = a1 · · · ankf1x1n + y1nx = y1nx = 0. It follows that
a1 · · · ankx1n = 0, then x1n ∈ f1R. Hence rS(R,n)(S

nk) ⊆ e1S(R,n). Con-

versely, since e1 is central and f1 ∈ rR(J
k), Snke1 = (Ske1)

n = 0. It implies
that e1S(R,n) ⊆ rS(R,n)(S

nk), hence S(R,n) is a generalized right Baer ring.
Now, let S(R,n) be a generalized right Baer ring, we show that R is also
generalized right Baer. Let S be a subset of R. Put B = {aIn|a ∈ S
where In is the identity n × n matrix}. Since S(R,n) is generalized right
Baer, rS(R,n)(B

k) = eS(R,n) for some e2 = e = fIn and positive integer k,
where f2 = f ∈ R, by Lemma 3.1. Hence for any ai ∈ S where 1 ≤ i ≤ k
we have a1 · · · akfIn = 0, since Bke = 0. It follow that a1 · · · akf = 0.
Thus fR ⊆ rR(S

k). Conversely if b ∈ rR(S
k) then for any ai ∈ S we have

a1 · · · akb = 0. Hence a1 · · · akbIn = 0. Thus bIn ∈ rS(R,n)(B
k) = eS(R,n).

It follows that b ∈ fR. Therefore rR(S
k) = fR, and R is generalized right

Baer.

Corollary 3.3. Let R be an abelian Baer ring. Then S(R,n) is a n-
generalized right Baer ring, for each n ≥ 2.

Corollary 3.4. Let R be a reduced ring. If S(R,n) is a generalized right
Baer ring, then R is a Baer ring.

Proof. By Theorem 3.2, the ring R is generalized right Baer. Since R is
reduced, so R is Baer by Proposition 2.4.

Since every n-generalized right Baer ring is n-generalized PP, we have:

Corollary 3.5. [14, Proposition 6] Let D be a domain. Then S(R,n) is
an n-generalized PP ring.

Corollary 3.6. [20, Corollary 3.5] Let D be a domain. Then S(R,n) is
an n-generalized right p.q-Baer ring.
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Let R be a ring. Consider the following set of triangular. matrices

T (R,n) :=









































a1 a2 a3 · · · an
0 a1 a2 · · · an−1

0 0 a1 · · · an−2
...

...
...

. . .
...

0 0 0 · · · a1















| ai ∈ R



























,

with n ≥ 2. It is easy to see that T (R,n) is a subring of the triangular ma-
trix ring, with matrix addition and multiplication. We can denote elements of
T (R,n) by (a1, a2, · · · , an), then T (R,n) is a ring with addition pointwise and
multiplication given by
(a1, a2, · · · , an)(b1, b2, · · · , bn) = (a1b1, a1b2 + a2b1, · · · , a1bn + a2bn−1 + · · · +
anb1), for each ai, bj ∈ R. On the other hand, there is a ring isomorphism
ϕ : R[x]/〈xn〉 → T (R,n), given by, ϕ(a1+a2x+· · ·+anx

n−1) = (a1, a2, · · · , an),
with ai ∈ R, 1 ≤ i ≤ n. So T (R,n) ∼= R[x]/〈xn〉, where R[x] is the ring of
polynomials in an indeterminant x, and 〈xn〉 is the ideal generated by xn.

Theorem 3.7. Let R be an abelian ring. Then R is a generalized right
Baer ring if and only if T (R,n) is a generalized right Baer ring, for each positive
integer n ≥ 2.

Proof. The proof is similar to that of Theorem 3.2.

Corollary 3.8. Let R be an abelian ring. Then R is a generalized right
Baer ring if and only if R[x]/〈xn〉 is a generalized right Baer ring, for each
positive integer n ≥ 2.

Corollary 3.9. Let R be an abelian Baer ring. Then R[x]/〈xn〉 is a
n-generalized right Baer ring, for each n ≥ 2.

Corollary 3.10. Let R be a reduced ring. If R[x]/〈xn〉 is a generalized
right Baer ring, then R is a Baer ring.

Proposition 3.11. Let Ri, i ∈ I be a ring for a nonempty index set I.

(i) Ri is an n-generalized right Baer ring for each i ∈ I if and only if R =
∏

i∈I

Ri is an n-generalized right Baer ring;

(ii) If R =
∏

i∈I

Ri is a generalized right Baer ring, then Ri is a generalized

right Baer ring for each i ∈ I.

(iii) If | I |< ∞ and for each i ∈ I, Ri is abelian generalized right Baer ring
then R =

∏

i∈I

Ri is generalized right Baer ring.
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Proof. (i) Suppose that every Ri is n-generalized right Baer. Let S be
a subset of R. Hence S =

∏

i∈I

Si for some subsets Si of Ri. Since Ri is n-

generalized right Baer, rRi
(Sn

i ) = eiRi for some idempotents ei ∈ Ri. Since
rR(S

n) =
∏

i∈I

rRi
(Sn

i ), rR(S
n) =

∏

i∈I

eiRi. Put e = (ei)i∈I ∈ R =
∏

i∈I

Ri, it is

clearly that e is idempotent. Thus rR(S
n) = eR. The converse is clear.

(ii)The proof is obvious.
(iii) Let for every i = 1, 2, ..., k the rings Ri are abelian generalized right

Baer ring. We show that the ring R =
k
∏

i=1
Ri is generalized right Baer. Let S

be a subset of R. Hence there exist subsets Si of Ri such that S =
k
∏

i=1
Si. Since

for every i the rings Ri are generalized right Baer, rRi
(Sni

i ) = eiRi for some
e2i = ei ∈ Ri and positive integer ni. Put n = max{n1, n2, ..nk}. Since Ri is

abelian, by Lemma 2.12, rRi
(Sn

i ) = eiRi for every i. Hence rR(S
n) =

k
∏

i=1
eiRi.

Put e = (ei)
k
i=1 ∈ R =

k
∏

i=1
Ri, it is clear that e is idempotent. Hence rR(S

n) =

eR. Therefore R is generalized right Baer ring.

The following example shows that the direct product of abelian generalized
right Baer rings, when the index set is infinite, may not be generalized right
Baer.

Example 3.12. Let D be a domain. Then S(D,n) is abelian gen-
eralized right Baer for each n ≥ 2, by Lemma 3.1 and Theorem 3.2. Put

R =
∞
∏

n=2
S(D,n). Then by [14, Example 5] the ring R is not generalized right

PP, so R is not a generalized right Baer ring.

From [1], a ring R is called an Armendariz ring if whenever two polynomials

f(x) =
m
∑

i=0
aix

i and g(x) =
n
∑

j=0
bjx

j satisfy f(x)g(x) = 0 we have aibj = 0 for

each i and j. Following [13], for a ring R and for each positive integer n, put

rAnnR(2
R)(n) = {rR(U

n)|U ⊆ R }

and
rAnnR[x](2

R[x])(n) = {rR[x](V
n)|V ⊆ R[x] }.

Also for a polynomial f(x) ∈ R[x], let Cf denotes the set of coefficients of f(x)
and for a subset S of R[x], let CS denotes the set

⋃

f∈S Cf .
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Proposition 3.13. Let R be an Armendariz ring. Then for every positive
integer n; the map ϕ : rAnnR(2

R)(n) → rAnnR[x](2
R[x])(n);A → AR[x] is

bijective.

Proof. Let U be a subset of R. Since rR[x](U
n) = rR(U

n)R[x] so ϕ is a well-
defined mapping. Obviously ϕ is injective. Now we prove that ϕ is surjective.
First we show that for every f1, f2, ..., fn ∈ R[x] then

rR[x](f1f2...fn) = rR[x](Cf1Cf2 ...Cfn).

Let g(x) =
m
∑

j=0
bjx

j ∈ rR[x](f1f2...fn). Then (f1f2...fn)g = 0. Since R is

Armendariz, by [1, Proposition 1] (a1a2...an)bi = 0 for every ai ∈ Cfi and

bi ∈ Cg. Thus Cf1Cf2 ...Cfng(x) =
m
∑

j=0
Cf1Cf2 ...Cfnbj = 0. It follows that

g(x) ∈ rR[x](Cf1Cf2 ...Cfn). Conversely we can prove similarly. Now, let S
be a subset of R[x]. Hence we have rR[x](S

n) = rR[x](
⋃

fi∈S
{f1f2...fn}) =

⋂

fi∈S
rR[x](f1f2...fn) =

⋂

fi∈S
rR[x](Cf1Cf2 ...Cfn) = rR[x](

⋃

fi∈S
Cf1Cf2 ...Cfn).

On the other hand, it is clear that (CS)
n =

⋃

fi∈S
Cf1Cf2 ...Cfn . Since for

every subset U of R, rR[x](U) = rR(U)R[x], thus rR[x](S
n) = rR[x]((CS)

n) =
rR((CS)

n)R[x]. It implies that ϕ is surjective and the proof is complete.

Theorem 3.14. Let R be an Armendariz ring. If R is a generalized right
Baer (resp. n-generalized right Baer) ring, then R[x] is generalized right Baer
(resp. n-generalized right Baer).

Proof. Assume that S is a subset of R[x]. Since R is generalized right Baer,
rR((CS)

n) = eR for some idempotent e ∈ R and positive integer n. Hence by
Proposition 3.13, rR[x](S

n) = rR((CS)
n)R[x]. It follows that rR[x](S

n) = eR[x],
and R[x] is a generalized right Baer ring.

Theorem 3.15. Let R be a ring. If R[x] is a generalized right Baer
(resp. n-generalized right Baer) ring, then R is a generalized right Baer (resp.
n-generalized right Baer) ring.

Proof. Let S be a subset ofR. SinceR[x] is generalized right Baer, rR[x](S
n) =

e(x)R[x] for some (e(x))2 = e(x) ∈ R[x] and positive integer n. Assume e0 is
the constant coefficient of e(x). Then e20 = e0. Since Sne(x) = 0, Sne0 = 0.
Hence e0R ⊆ rR(S

n). Conversely, if b ∈ rR(S
n) then Snb = 0, b ∈ rR(S

n)∩R =
e(x)R[x] ∩ R. So b = e(x)h(x) for some h(x) = h0 + h1x + ... + hkx

k ∈ R[x].
It follows that b = e0h0 hence b ∈ e0R. Therefore rR(S

n) = e0R, and R is
generalized right Baer ring.
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Since every reduced ring is Armendariz, by Theorems 3.14 and 3.15, for
some n = 1 immediately implies the following corollary.

Corollary 3.16. [2, Theorem B] Let R be a reduced ring. Then R is a
Baer ring if and only if R[x] is a Baer ring.

Corollary 3.17. [16, Theorem 10] Let R be an Armendariz ring. Then
R is a Baer ring if and only if R[x] is a Baer ring.

The following example shows that there is a large class of Armendariz and
generalized right Baer rings which are not Baer and satisfying in Theorem 3.14.

Example 3.18. (i) Let R be a reduced Baer ring. Then by [16, Proposi-
tion 2] the rings S(R, 2) and S(R, 3) are Armendariz. Also the rings S(R, 2) and
S(R, 3) are generalized right Baer by Theorem 3.2. Thus the rings S(R, 2)[x]
and S(R, 3)[x] are generalized right Baer which are not Baer, since the rings
S(R, 2) and S(R, 3) are not reduced.

(ii) Since by [1, Theorem 2] the ring R is Armendariz if and only if R[x]
is Armendariz. Hence the rings S(R, 2)[x] and S(R, 3)[x] are also Armendariz.
Thus the rings (S(R, 2)[x])[y] and (S(R, 3)[x])[y] are generalized right Baer by
Theorem 3.14.

(iii) Let R be a reduced Baer ring. Then by [1, Theorem 5], the ring
R[x]/〈xn〉, (and hence the ring T (R,n)) is Armendariz for each n ≥ 2. Also
by Corollary 3.9, the ring T (R,n) is n-generalized right Baer. Thus the ring
T (R,n)[x] is generalized right Baer which not Baer.

From [17], a ring R is called an power-serieswise Armendariz ring if when-

ever power series f(x) =
∞
∑

i=0
aix

i and g(x) =
∞
∑

j=0
bjx

j satisfy f(x)g(x) = 0 we

have aibj = 0 for each i and j. Power-serieswise Armendariz rings are Armen-
dariz.

Following [17], for a ring R and for each positive integer n, put

rAnnR(2
R)(n) =

{rR(U
n)|U ⊆ R } , rAnnR[[x]](2

R[[x]])(n) = {rR[[x]](V
n)|V ⊆ R[[x]] }.

Proposition 3.19. Let R be a power-serieswise Armendariz ring. Then
for every positive integer n; the map

ϕ : rAnnR(2
R)(n) → rAnnR[[x](2

R[x]])(n);A → AR[[x]]

is bijective.
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Proof. The proof is similar to that of Proposition 3.13.

Theorem 3.20. Let R be a power-serieswise Armendariz ring. If R is a
generalized right Baer (resp. n-generalized right Baer) ring, then R[[x]] is also
a generalized right Baer (resp. n-generalized right Baer) ring.

Proof. The proof is similar to that of Theorem 3.14.

Theorem 3.21. Let R be a ring. If R[[x]] is a generalized right Baer
(resp. n-generalized right Baer) ring, then R is a generalized right Baer (resp.
n-generalized right Baer) ring.

Proof. The proof is similar to that of Theorem 3.15.

Since every abelian Baer ring is reduced and by [16, Lemma 2.3 (1)], reduced
rings are power-serieswise Armendariz, for n = 1 by Theorems 3.20 and 3.21,
it immediately implies the following:

Corollary 3.22. [16, Corollary 2.7] Let R be an abelian ring. Then R is
a Baer ring if and only if R[[x]] is a Baer ring.

The following example shows that there is a large class of power-serieswise
Armendariz ring and generalized right Baer which are not Baer ring and satis-
fying in Theorem 3.20.

Example 3.23. (i) Let R be Baer reduced ring. Then the rings S(R, 2)
and S(R, 3) are power-serieswise Armendariz ring and generalized right Baer
by [17, Proposition 3.3 , Corollary 3.6] and Theorem 3.2. Thus the rings
S(R, 2)[[x]] and S(R, 3)[[x]] by Theorem 3.20 are generalized right Baer but
those are not Baer rings, since the rings S(R, 2) and S(R, 3) are not reduced.

(ii) Let R be a reduced Baer ring. Then by [17, Proposition 3.3] the ring
R[x]/〈xn〉, (and hence the ring T (R,n)) is power-serieswise Armendariz for each
n ≥ 2. Thus the ring T (R,n)[[x]] is generalized right Baer, by Theorem 3.20.

The following example shows that condition “Armendariz” in the Theorem
3.14 and condition “power-serieswise Armendariz ” in Theorem 3.20 are not
superfluous.

Example 3.24. Let R be the 2-by-2 full matrix ring over Z. Then R is
Baer and hence is generalized right Baer but by [14, Example 4], R[x] is not
generalized right PP (and hence it is not generalized right Baer). But R is not
Armendariz (and hence it is not power-serieswise Armendariz). This is because,
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if we take f(x) =

(

1 0
0 0

)

+

(

1 −1
0 0

)

x and g(x) =

(

0 0
0 1

)

+

(

0 1
0 1

)

x, then

f(x)g(x) = 0. But

(

1 0
0 0

)(

0 1
0 1

)

6= 0.
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