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Abstract

Blind image quality assessment can be modeled as feature extraction followed by score pre-

diction. It necessitates considerable expertise and efforts to handcraft features for optimal

representation of perceptual image quality. This paper addresses blind image sharpness

assessment by using a shallow convolutional neural network (CNN). The network takes sin-

gle feature layer to unearth intrinsic features for image sharpness representation and utilizes

multilayer perceptron (MLP) to rate image quality. Different from traditional methods, CNN

integrates feature extraction and score prediction into an optimization procedure and

retrieves features automatically from raw images. Moreover, its prediction performance can

be enhanced by replacing MLP with general regression neural network (GRNN) and support

vector regression (SVR). Experiments on Gaussian blur images from LIVE-II, CSIQ,

TID2008 and TID2013 demonstrate that CNN features with SVR achieves the best overall

performance, indicating high correlation with human subjective judgment.

Introduction

A picture wins a thousand words. With the rapid pace of modern life and the massive dissemi-

nation of smart phones, digital images have been a major source of information acquisition

and distribution. Since an image is prone to various kinds of distortions from its capture to the

final display on digital devices, a lot of attention has been paid to the assessment of perceptual

image quality [1–8].

Subjective image quality assessment (IQA) is the most straightforward. However, it is labo-

rious and may introduce bias and errors. Comparatively, objective evaluation of visual image

quality with full- or reduced-reference based methods enables impartial judgment [9–22].

These algorithms have reached high-level performance, while in most possible situations, the

reference messages are not easy or impossible to acquire. Thus, no-reference or blind IQA

methods are more useful in real applications [23–34].

Blind image quality assessment (BIQA) mainly consists of two steps, feature extraction (T)

and score prediction (f). Before rating an image, T and f should be prepared. The former aims
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to select optimal features for image quality representation, while the latter builds the functional

relationship between the features and subjective scores. With considerable expertise and

efforts, a BIQA system can be built. As such, a test image (I) is input to the system and repre-

sented with features (T). Finally, the function f will quantify the features and figure out a

numerical score (s) as the output, denoting the predicted quality of the test image. The proce-

dure for score prediction can be formulated as follows,

s ¼ f ðTðIÞÞ: ð1Þ

Blind image sharpness assessment (BISA) is studied in this paper. Among various kinds of

distortions, sharpness is commonly degraded by camera out-of-focus, relative target motion

and lossy image compression. It is crucial to readability and content understanding. Sharpness

is inversely related to blur which is typically determined by the spread of edges in the spatial

domain, and accordingly the attenuation of high frequency components. Karam et al. [35]

introduced the Just Noticeable Blur (JNB) model and integrated local contrast and edge width

in each edge blocks into a probability summation model. Later, they improved the model with

the cumulative probability of blur detection (CPBD) [36]. Ciancia et al. [37] selected blur-

related features as the input of a neural network and realized no-reference blur assessment

with multi-feature classifiers. Vu et al. [38] combined two features, the high frequency content

with the slope of local magnitude spectrum and the local contrast with total variation, to form

the spectral and spatial sharpness (S3) index. Vu et al. [39] defined a fast image sharpness

(FISH) metric which weights the log-energies of wavelet coefficients. Hassen et al. [40]

explored the strength of local phase coherence (LPC) based on the observation that blur dis-

rupts image LPC structures. Sang et al. [41, 42] used the shape of singular value curve (SVC) to

measure the extent of blur, because the extent of blur results in attenuation of singular values.

Bahrami and Kot [43] took account of maximum local variation (MLV) of each pixel and uti-

lized the standard deviation of ranking weighted MLVs as the sharpness score. Li et al. [44]

proposed the sparse representation based image sharpness (SPARISH) model that utilizes dic-

tionary learning of natural image patches. Gu et al. [45] designed an autoregressive based

image sharpness metric (ARISM) via image analysis in the autoregressive parameter space. Li

et al. [46] presented a blind image blur evaluation (BIBLE) index which characterizes blur with

discrete moments, because noticeable blur affects the moment magnitudes of images.

Deep learning has revolutionized image representation and shed light on utilizing high-

level features for BIQA [47, 48]. Li et al. [49] adapted Shearlet transform for spatial feature

extraction and employed a deep network for image score regression. Hou and Gao [50] recast

BIQA as a classification problem and used a saliency-guided deep framework for feature

retrieval. Li et al. [51] took the Prewitt magnitudes of segmented images as the input of convo-

lutional neural network (CNN). Lv et al. [52] explored the local normalized multi-scale differ-

ence of Gaussian response as features and designed a deep network for image quality rating.

Hou et al. [53] designed a deep learning model trained by deep belief net and then fine-tuned

it for image quality estimation. Yet it is found that some deep learning based methods need to

handcraft features [49–52] or redundant operations [50, 52, 53].

This paper presents a shallow CNN to address BISA. On the one hand, several studies indi-

cate that image sharpness is generally characterized by the spread of edge structures [35–38,

44, 46]. Interestingly, what CNN learns in the first layer are mainly edges [47, 48]. Thus, it is

intuitive to design a single feature layer CNN for image sharpness estimation. On the other

hand, small data sets make deep networks hard to converge which may increase the risk of

over-fitting. Consequently, a shallow CNN can be well trained with limited samples [54]. To

the best of our knowledge, the most similar work is Kang’s CNN [55]. The network utilizes

CNN for BISA
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two full-connection layers and obtains dense features by both maximum and minimum pool-

ing before image scoring. Relatively, our network is much simpler in the architecture and

more suitable for the analysis of small databases. Besides, our CNN is verified with Gaussian

blurring images from four popular databases. After features are retrieved for representation

of sharpness, the prediction performance of multilayer perceptron (MLP) is compared to

both general regression neural network (GRNN) [56] and support vector regression (SVR)

[57]. In the end, the effect of color information on our CNN and the running time are

reported.

A shallow CNN

The simplified CNN consists of one feature layer and the feature layer is made up of convolu-

tional filtering and average pooling. As shown in Fig 1, a gray-scale image is pre-processed

with local contrast normalization. Then, a number of image patches are randomly cropped

for feature extraction. At last, the features are as input to MLP for score prediction. By super-

vised learning, parameters in the network are updated and fine-tuned with back-propagation.

Feature extraction

Local contrast normalization. It has a decorrelating effect in spatial image analysis by

applying a local non-linear operation to remove local mean displacements and to normalize

the local variance [25, 58]. As in [52, 55], the local normalization is formulated as following,

~Iði; jÞ ¼
Iði; jÞ � mði; jÞ

sði; jÞ þ C
; ð2Þ

where,

mði; jÞ ¼
1

ð2P þ 1Þð2Qþ 1Þ

Xp¼P

p¼� P

Xq¼Q

q¼� Q

Iðiþ p; jþ qÞ; ð3Þ

Fig 1. The proposed BISA system. A gray-scale image is pre-processed with local contrast normalization and then a number of image patches are

randomly cropped for CNN training, validation and final testing.

https://doi.org/10.1371/journal.pone.0176632.g001
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and

s2ði; jÞ ¼
Xp¼P

p¼� P

Xq¼Q

q¼� Q

ðIðiþ p; jþ qÞ � mði; jÞÞ2: ð4Þ

In the equations, I(i, j) is the pixel intensity value at (i, j), ~Iði; jÞ is its normalized value,

μ(i, j) is the mean value, σ(i, j) is the standard deviation and C is a positive constant (C = 10).

Besides, [2P + 1, 2Q + 1] is the window size and P = Q = 3.

Feature representation. Each patch randomly cropped in the pre-processed image is

through convolutional filtering and pooling before full connection to MLP. A feature vector of

an image patch is generated and formulated as,

X ¼ TðIpÞ ¼ ðx1; . . . ; xl; . . . ; xnÞ
0

; ð5Þ

where Ip is an image patch, n is the feature dimension and xl is the lth component of the feature

vector X.

Score prediction

Multilayer perceptron (MLP). Fig 2 illustrates an MLP with a hidden layer. The output

f(X) with regard to the input feature X can be expressed as following,

f ðXÞ ¼ fmlpðw; b;XÞ; ð6Þ

where fmlp denotes an activation function, while w and b respectively stand for the weight vec-

tor and the bias vector.

General regression neural network (GRNN). GRNN is a powerful regression tool based

on statistical principles [56]. It takes only a single pass through a set of feature instances and

requires no iterative training. GRNN consists of four layers as shown in Fig 3. Assume that

Fig 2. MLP with one hidden layer. It consists of three layers, the input layer, the hidden layer and the output

layer.

https://doi.org/10.1371/journal.pone.0176632.g002
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m samples fXi;Yig
m
i¼1

have been used to train the GRNN. To an input feature vector X, its out-

put f(X) can be described as below,

f ðXÞ ¼ fgrnnðXÞ ¼
Pn

i¼1
Yie� ðX� XiÞ

0
ðX� XiÞ=2s2

Pn
i¼1

e� ðX� XiÞ
0
ðX� XiÞ=2s2

; ð7Þ

where Yi is the weight between the ith neuron in the pattern layer and the numerator neuron in

the summation layer, and σ is a spread parameter. In GRNN, only σ is tunable and a larger

value leads to a smoother prediction.

Support vector regression (SVR). SVR is effective in handling numerical prediction in

high dimension space [57, 59]. For an input X, the goal of ε-SVR is to find a function f(X) that

has the maximum deviation of ε from the subjective score Y for all the training patches. The

function is defined by

f ðXÞ ¼ fsvrðXÞ ¼ w0φðXÞ þ g; ð8Þ

where φ(�) is a nonlinear function, w is a weight vector and γ is a bias. The aim is to find w and

γ from the training data such that the error is less than a predefined value of ε. The radial basis

function is used as the kernel function, K(Xi, X) = e−ρ||Xi−X||, and ρ is a positive parameter that

controls the radius and Xi is a training sample. By using a validation set to tradeoff the predic-

tion error, ρ and ε are determined [60].

Network training

CNN is end-to-end trained by supervised learning with stochastic gradient descent. Assume

there are a set of features fXig
n
i¼1

and corresponding scores fYig
n
i¼1

. The training aims to

Fig 3. A semantic description of GRNN. It consists of four layers, the input layer, the pattern layer, the

summation layer and the output layer.

https://doi.org/10.1371/journal.pone.0176632.g003
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minimize the loss function L(w, b),

Lðw; bÞ ¼
1

n

Xn

i¼1

ð
1

2
jjYi � sijj

2
Þ

¼
1

n

Xn

i¼1

ð
1

2
jjYi � fmlpðw; b;XiÞjj

2
Þ;

ð9Þ

which is the sum of square error between the predicted si and the subjective score Yi.

Using gradient descent, the relationship between the lth and the (l + 1)th iteration to each

weight component can be described as following,

wlþ1 ¼ mwl � Z
@Lðw; bÞ
@wl

; ð10Þ

blþ1 ¼ mbl � Z
@Lðw; bÞ
@bl

; ð11Þ

where μ is the momentum that indicates the contribution of the previous weight update in the

current iteration, and η denotes the learning rate.

Experiments

Images for performance evaluation

Gaussian blurring images are collected from four popular databases. LIVE-II [10] and CSIQ

[61] respectively contain 29 and 30 reference images which are distorted with 5 blur levels and

scored by differential mean opinion scores (DMOS). Both TID2008 [62] and TID2013 [63]

have 25 references and use mean opinion scores (MOS) for scoring. Each reference image in

TID2008 and TID2013 is degraded with 4 and 5 different blur levels, respectively. Fig 4 shows

some representative images.

Fig 4. Example of Gaussian blurring images in four databases.

https://doi.org/10.1371/journal.pone.0176632.g004
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Experiment design

LIVE-II is taken as the baseline database for tuning parameters in CNN, GRNN and SVR.

Blurred images in LIVE-II are portioned into 20:4:5 for training, validation and test, respec-

tively. After that, parameters in GRNN and SVR are optimized based on learned features from

CNN. In the end, about 60%, 20% and 20% blurring images in each database are randomly

selected for training, validation and test, respectively.

Besides Kang’s CNN [55], ten state-of-the-art BISA methods are evaluated. These methods

are JNB [35], CPBD [36], S3 [38], FISH [39], LPC [40], SVC [42], MLV [43], SPARISH [44],

ARISM [45] and BIBLE [46]. In the end, the running time of involved algorithms and the

effect of color information on our CNN are studied.

Performance criteria

Two criteria are recommended for IQA performance evaluation by the video quality experts

groups (VQEG, http://www.vqeg.org). Pearson linear correlation coefficient (PLCC) evaluates

the prediction accuracy, while Spearman rank-order correlation coefficient (SROCC) mea-

sures the prediction monotonicity. Values of both criteria range in [0, 1] and higher value indi-

cates better rating prediction.

A nonlinear regression is first applied to map the predicted scores to subjective human rat-

ings using a five-parameter logistic function as follows,

QðsÞ ¼ q1

1

2
�

1

1þ eq2ðs� q3Þ

� �

þ q4sþ q5; ð12Þ

where s and Q(s) are the input score and the mapped score, and qi (i = 1, 2, 3, 4, 5) are deter-

mined during the curve fitting.

Software and platform

Softwares are run on Linux system (Ubuntu 14.04). The system is embedded with 8 Intel Xeon

(R) CPU (3.7GHz), 16GB DDR RAM and one GPU card (Nvidia 1070). Kang’s CNN is imple-

mented by us following the paper [55]. Both CNN models are realized with Theano 0.8.2

(Python 2.7.6) and accessible on GitHub at present for fair comparison (https://github.com/

Dakar-share/Plosone-IQA). Other codes are realized with Matlab. Ten BISA methods are pro-

vided by authors and estimated without any modifications, GRNN is with the function

newgrnn and SVR is from LIBSVM [59].

Result

Parameter tuning

Several parameters are experimentally determined, the patch number per image (Pn), the ker-

nel number (Kn) and the kernel size ([Kx, Ky]) in feature extraction, and the iteration number

(Ni) in network training. In addition, the spread parameter (σ) in GRNN and cost function (c)
in ε-SVR are also studied. Note that in the network, we define the size of image patch [16 16],

the learning rate η = 0.01, the bias γ = 0.1 and the momentum μ = 0.9, and other parameters

are set by default.

Parameters in CNN. Fig 5 shows CNN performance when the iteration number (Ni) var-

ies from 103 to 104 and the patch number per image (Pn) changes from 102 to 103. No much

change is found after Ni reaches 4000. On the other side, Pn = 400 is a good point to tradeoff

PLCC and SROCC. Therefore, we use Ni = 4000 and Pn = 400 hereafter.

CNN for BISA
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Table 1 shows the CNN performance with regard to the kernel number (Kn) and the kernel

size ([Kx, Ky]). When Kn = 16, CNN performs well, while it is unstable when Kn = 32. On the

other hand, prediction performance of CNN is insensitive to kernel size [Kx, Ky] changes. So

we define Kn = 16 and Kx = Ky = 7.

Parameters in GRNN and SVR. The spread parameter (σ) in GRNN and the cost func-

tion (c) in ε-SVR are studied with learned CNN features. Fig 6 shows PLCC and SROCC val-

ues when σ or c changes. The left plot indicates that when σ = 0.01, GRNN performs the best.

The right shows that PLCC and SROCC increase when log10(c) increases, while when log10(c)
> 1, SROCC keeps stable. Thus, σ = 0.01 in GRNN and c = 50 in ε-SVR.

Fig 5. CNN prediction performance with Ni or Pn changes.

https://doi.org/10.1371/journal.pone.0176632.g005

Table 1. CNN performance with regard to kernel number and kernel size.

Kernel number 8 16 24 32

PLCC 0.9444 0.9634 0.9352 0.9298

SROCC 0.9519 0.9543 0.9504 0.9323

Kernel size [3 3] [5 5] [7 7] [9 9]

PLCC 0.9606 0.9508 0.9632 0.9319

SROCC 0.9669 0.9684 0.9579 0.9278

https://doi.org/10.1371/journal.pone.0176632.t001

Fig 6. GRNN (left) and SVR (right) respectively perform when the spread parameter σ and the cost

function c changes based on learned CNN features.

https://doi.org/10.1371/journal.pone.0176632.g006
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Learned CNN features

One trained kernel is visualized by using “monarch.bmp” in LIVE-II. Blurred images and their

filtered results are shown in Fig 7. The top row shows Gaussian blurring images and the bottom

row are images after convolutional filtering with the trained kernel. Underneath the filtered

results are subjective scores, where lower scores indicate better visual quality. Compared to the

relatively high-quality image (y96), fine structures vanish in low-quality images (y11 and y103).

Algorithm performance

Table 2 summarizes the PLCC values and the highest values are marked in bold face. With

handcrafted features, BIBLE [46] predicts the best, followed by SPARISH [44]. For CNNs,

Kang’s CNN is instable. It achieves the best performance on TID2013 and the lowest value on

Fig 7. One trained kernel visualized by using “monarch.bmp”. After convolutional filtering with the trained

kernel, edge structures is hard to notice in heavily blurred images (y11), while fine structures can be seen in

relatively high-quality images (y96).

https://doi.org/10.1371/journal.pone.0176632.g007

Table 2. Performance evaluation with PLCC on Gaussian blurring images.

LIVE-II CSIQ TID2008 TID2013 Overall

JNB [35] 0.8161 0.8061 0.6931 0.7115 0.7567

CPBD [36] 0.8955 0.8822 0.8236 0.8620 0.8658

S3 [38] 0.9434 0.9107 0.8542 0.8816 0.8975

FISH [39] 0.9043 0.9231 0.8079 0.8327 0.8670

LPC [40] 0.9181 0.9158 0.8573 0.8917 0.8957

SVC [42] 0.9416 0.9319 0.8556 0.8762 0.9013

MLV [43] 0.9429 0.9247 0.8583 0.8818 0.9019

SPARISH [44] 0.9595 0.9380 0.8891 0.9004 0.9217

ARISM [45] 0.9560 0.9410 0.8430 0.8954 0.9088

BIBLE [46] 0.9622 0.9403 0.8929 0.9051 0.9251

Kang’s CNN [55] 0.9625 0.7743 0.8803 0.9308 0.8875

Our CNN 0.9627 0.9255 0.8977 0.8875 0.9184

CNN features + GRNN 0.9857 0.9473 0.9059 0.9117 0.9377

CNN features + SVR 0.9730 0.9416 0.9374 0.9221 0.9435

https://doi.org/10.1371/journal.pone.0176632.t002
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CSIQ. For the proposed methods, CNN features with GRNN or SVR shows advantage. In gen-

eral, retrieved features with SVR reaches an average PLCC value of 0.9435, and CNN features

with GRNN gets 0.9377, followed by BIBLE (0.9251) and SPARISH (0.9217). Our CNN

achieves an average PLCC of 0.9184.

Table 3 shows SROCC and bolded values indicate best predication monotonicity. BIBLE

[46] shows superiority over algorithms based on handcrafted features, followed by SPARISH

[44] and ARISM [45]. Kang’s CNN [55] achieves the highest SROCC on Gaussian blurring

images from LIVE-II and TID2013, while it gets the second lowest SROCC on images from

CSIQ among all metrics. On contrary, SROCC values from our CNN methods are robust on

images from different databases. Particularly, CNN features with SVR outperforms other

methods on CSIQ and TID2008. Furthermore, it ranks the second and the third place on

TID2013 and LIVE-II, respectively. Generally, learned CNN features with SVR reaches an

average SROCC of 0.9310, which is higher than CNN features with GRNN (0.9283), BIBLE

(0.9160) and other methods.

Time consumption

The time spent on score prediction of image sharpness is shown in Fig 8. Among traditional

methods, several algorithms show promise in real-time image sharpness estimation, such as

LPC, MLV, SVC and FISH which require less than 1 s. For CNN-based methods, both models

take about 0.02 s to rate an image. It should be noted that the major time of CNN models is

spent on local contrast normalization which costs about 8 s for an image. Moreover, GRNN

and SVR need time after the model is well trained. Fortunately, with the help of code optimiza-

tion and advanced hardware, it is feasible to accelerate these algorithms and to satisfy real time

requirement.

Effect of color information

Chroma is an important underlying property of human vision system [64, 65] and it is highly

correlated with image quality perception [30, 44]. Effect of color information on image sharp-

ness estimation is studied with our CNN. The performance of CNN with gray and color inputs

is shown in Fig 9. It is observed that chromatic information positively enhances CNN’s

Table 3. Performance evaluation of SROCC on Gaussian blurring images.

LIVE-II CSIQ TID2008 TID2013 Overall

JNB [35] 0.7872 0.7624 0.6667 0.6902 0.7266

CPBD [36] 0.9182 0.8853 0.8414 0.8518 0.8742

S3 [38] 0.9436 0.9059 0.8480 0.8609 0.8896

FISH [39] 0.8808 0.8941 0.7828 0.8024 0.8400

LPC [40] 0.9389 0.9071 0.8561 0.8888 0.8977

SVC [42] 0.9343 0.9055 0.8362 0.8589 0.8837

MLV [43] 0.9312 0.9247 0.8548 0.8787 0.8974

SPARISH [44] 0.9593 0.9141 0.8869 0.8927 0.9133

ARISM [45] 0.9511 0.9261 0.8505 0.8982 0.9065

BIBLE [46] 0.9607 0.9132 0.8915 0.8988 0.9160

Kang’s CNN [55] 0.9831 0.7806 0.8496 0.9215 0.8837

Our CNN 0.9579 0.9048 0.8403 0.8376 0.8852

CNN features + GRNN 0.9744 0.9205 0.9163 0.9020 0.9283

CNN features + SVR 0.9646 0.9253 0.9189 0.9135 0.9310

https://doi.org/10.1371/journal.pone.0176632.t003
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Fig 8. The time spent on score prediction of image sharpness. Several algorithms show promise in real-

time image sharpness estimation.

https://doi.org/10.1371/journal.pone.0176632.g008

Fig 9. Effect of color information on our CNN. Compared to gray-scale input, color image input positively

enhances our network’s prediction metrics.

https://doi.org/10.1371/journal.pone.0176632.g009
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performance on image sharpness estimation. The improved magnitude of PLCC ranges from

0.013 (LIVE-II) to 0.040 (TID2008). Meanwhile, the improved magnitude range of SROCC is

from 0.014 (CSIQ) to 0.067 (TID2008).

Future work

The proposed shallow CNN methods have achieved the state-of-the-art performance on simu-

lated Gaussian blur images from four popular databases. Our future work will be to integrate

handcrafted features and CNN features for improved prediction capacity. On the other hand,

deeper networks will also be considered for representative features in image sharpness. In

addition, with the public accessibility to the real-life blurring image databases of BID2011 [37]

and CID2013 [66], it will be interesting to explore the proposed algorithm for more general

and more practical applications [32, 67, 68].

Conclusion

A shallow convolutional neural network is proposed to address blind image sharpness assess-

ment. Its retrieved features with support vector regression achieves the best overall perfor-

mance, indicating high correlation with subjective judgment. In addition, incorporating color

information benefits image sharpness estimation with the shallow network.
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