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Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional
shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute
disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations
that are difficult to realize in hardware and are biologically unrealistic.The brain presumably uses simpler methods to extract depth
information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to
be explored. This paper proposes an innovative aVLSI design that leverages the columnar organization of ocular dominance in the
brain and uses time-staggered Winner Take All (ts-WTA) to adaptively create disparity tuned cells. Physiological findings support
the presence of disparity cells in the visual cortex and show that these cells surface as a result of binocular stimulation received
after birth. Therefore, creating in hardware cells that can learn different disparities with experience not only is novel but also is
biologically more realistic. These disparity cells, when allowed to interact diffusively on a larger scale, can be used to adaptively
create stable topological disparity maps in silicon.

1. Introduction

The ability to detect small differences in the interocular
retinal disparities is critical for assessing the depth of objects
and is crucial for survival in living beings. Even in artificial
systems, the ability to perceive depth and distance are
crucial for navigation, control, obstacle avoidance, depth
measurement, environmental reconstruction, security, and so
forth. While the precise biological mechanisms that compute
depth from the relative position of the stimulus received
by the two eyes is still largely unknown, different models
have attempted to explain how 3D depth information could
be extracted from the two-dimensional retinal projections.
These models can be broadly classified into sparse or dense
algorithms [1]. Sparse algorithms includemethods that create
sparse outputs. These algorithms employ explicit matching
of different features such as segments, edges, and corners of
the image seen by one eye with the other [2, 3]. The dense
algorithms on the other hand produce dense outputs, they
are area based, and they are classified as either local or global.
The local methods are window based and compare the left

and right images by defining a moving block or window of
a definite size. Some examples of local methods are block
matching based on Sum of Absolute Differences (SAD) [4],
energy based techniques [5, 6], or phase based techniques
[7]. Global methods operate on the image as a whole
and are mostly energy based. They produce very accurate
results; however, they take much longer computing time,
for example, Dynamic Programming, Global Optimization,
Intrinsic Curves, Graph Cuts, Nonlinear Diffusion, Belief
Propagation, and Correspondenceless methods [8, 9]. Out of
the sparse (feature based) and dense (area based) methods,
while the feature based methods are more resilient to image
variation, the area based methods are easier to implement,
they can be interpolated, and the disparity can be calculated
for every pixel in the image and therefore they are more
widely used. Various hardware implementation of different
algorithms that compute disparity has been proposed by
various groups; for example, the authors in [10] use a
digital approach using FPGA and IIR causal filters for phase
based disparity estimation. However, they implement vari-
ous hardware modules for performing tricky mathematical
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operations likemultiplication, division, and squaringmaking
their approach hardware intensive. Hariyama et al. [11, 12]
propose a digital approach that uses the SAD method. They
employ Laplacian of Gaussian filters to create a system with
an adaptive window for stereo correspondence to increase
disparity estimation quality. Another digital approach pro-
posed by [13] uses amodified phase based technique to create
a SOC using FPGAs that can be used in embedded systems.
While digital approaches are known for their accuracy and
speed, it has been emphasized that analog approaches more
closely replicate the computations in the brain [14] and are
ideal when it comes to emulating local computations in
the brain [15]. Some purely analog models based on sparse
disparity computations are there in literature, for example,
[16, 17]. These models use WTAs and comparator circuits to
estimate disparity. However, although analog, these models
do not seem to take any inspiration from the structure or
functioning of the brain.

Another category of hardwaremodels (not purely analog)
that derive inspiration from some aspect of neural computa-
tions also exists; for example, [18–20] propose mixed analog
digital hardware based on the binocular energy model that
takes inspiration from the hierarchical organization of the
visual cortex to develop disparity tuned complex cells from
simple cells. Another interesting hardware/software codesign
for disparity computation that emulates the asynchronous
event based, sparse coding in the brain can be found in
[21]. But even though this implementation is bioinspired in
some way, it does not take true advantage of the structural
and functional elegance with which the brain is designed.
Therefore, there is a need to look at newer approaches that
take advantage of both structural and functional organization
in the brain and only then can we make true progress in
neuromorphic design.

(1) Need for Adaptable Neuromorphic Stereoscopic Algorithm.
Nature has devised amazing ways to reduce wiring length,
processing time, and power consumption by ensuring that
most of the computations are carried out locally by means
of a few neurons organized in a hierarchical fashion with
minimum long range connections. For this the brain uses
topographic mapping. This topographic mapping is present
in all sensory systems. In the visual system topographic
mapping ensures that adjacent spots on the retina are
represented by adjacent neurons in the lateral geniculate
nucleus and the primary visual cortex. One outstanding
example of this is the ocular dominance map observed in
the visual cortex. This topographic organization ensures that
the neurons corresponding to the same spatial location in the
left visual field and the right visual field are mapped close to
each other on the cortex. It is conjectured that the functional
significance of ocular dominance patterns is in 3D vision or
the perception of depth. This is supported by experiments
that have shown that abnormally reared animals, with only
one functional eye, do not ever develop the ability to perceive
depth [22]. Therefore taking advantage of ocular dominance
(OD) to compute disparity information would imply looking
at disparity the way the brain does. An algorithm that
computes disparity on the basis of OD has been proposed

by [23]; however, this method is difficult to implement in
hardware because it uses complex computations involving
Fourier transforms and logarithms to compute disparity. It
is most unlikely that the brain would use such complex
computations to extract disparity and therefore there is a need
to look at more biologically realistic approaches.

Recent experimental evidence suggests that the percep-
tion of depth comes in as the infant is exposed to its
environment and is not present at birth [24–27]. Therefore it
seems that like ocular dominance and orientation selectivity,
disparity selective neurons also tune their responses over
a period of time after receiving inputs from the two eyes.
Based on this adaptive mechanism a new class of neural
network based models has emerged. These models develop
disparity selective cells or filters from experience and map
their responses to disparity outputs and hence exhibit flex-
ibility and adaptability to work in different environments
[28–31]. These approaches do not match the left and right
images; instead, disparity is detected (bymeans of heightened
response) by these trained disparity selective neurons when
binocular stimuli with a specific disparity are fed into them.
Therefore these models represent a class of adaptive algo-
rithms that take inspiration from cortical plasticity. However,
there has been no hardware implementation of these models.

In this context, the work presented in this paper explores
a novel approach, using purely analog hardware, to build a
disparity selective neuron, which is closer to biology, since
it leverages the organization of ocular dominance columns
to create an adaptive cell based on time-staggered Winner
Take All competition implemented using floating gate pMOS
dynamics [32]. Floating gate based analog hardware emulates
synaptic dynamics very closely and has been used in various
neuromorphic applications for introducing adaptation [33]
and long-term memory [15, 32, 34]. It has also been used
by us to create adaptive feature maps for ocular dominance
and orientation selectivity [15, 32]. In this paper, for the first
time, we move one layer up in the cortical hierarchy to build
cells that take inputs from the ocular dominance patterns and
tune their response to different disparities.This work is novel
because it is the very first attempt to create disparity tuned
cells in analog hardware which are adaptive; that is, they can
learn from experience and are truly bioinspired as they take
advantage of the hierarchical and layered architecture of the
visual cortex.

The simulations were performed using Tanner T-Spice
v13.0 and Cadence Specter v7.1 with BSIM3 level 49 spice
models for 0.35 𝜇m CMOS process. The authors recommend
that the reader should also refer to [15, 32] for complete
understanding and appreciation of the work presented here.

2. Neural Development, Synaptic Competition,
and Time-Staggered Winner Take All

Synapse pruning is a well-accepted mechanism underlying
mammalian neurological development. In infants there is
huge excess of synaptic connections but these synapses lack
strength and precision. As development progresses, some
synapses strengthen and mature and some are removed
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like removing weak branches to strengthen a tree. Because
of this pruning and refining of neural connections, the
1000 trillion or so synapses present in young children are
trimmed to about 100 trillion to 500 trillion by adulthood.
Whether a synapse is maintained or not is determined by the
level of activity in the synapse. During the prenatal period
synaptic activity comes from the spontaneously generated
nerve impulses, whereas after birth the synaptic activity is
primarily due to the sensory input from the environment.
Such inputs include visual stimulation, sound, and touch,
which activate neurons to fire impulses that converge on
a postsynaptic cell. Synapses between neurons that work
together are strengthened, whereas synapses between cells
that are not synchronized are eliminated [35–39]. To be more
precise, when activity at two synapses is separated by 20ms
or less, the activity is perceived as synchronous and the
elimination is prevented [40]. While synapse pruning occurs
throughout our lifespanwhenwe are subjected to new stimuli
or we acquire new skills, majority of this synapse refinement
occurs during a window of opportunity called the critical
learning period during early development [41]. This critical
period varies for different regions of the developing brain
and during this period specific neural centers are especially
receptive to incoming stimulation. In the presence of appro-
priate stimuli, these centers flourish by strengthening and fine
tuning their synaptic connections. Therefore strengthening
of synapses that are active and elimination of synapses that
are inactive are the hallmark of neural development. This
phenomenon of synapse elimination as a means of honing
neural connections is also appropriate for purely analog VLSI
implementation because while it is possible to stop using
some connections, it is not possible to create new ones
dynamically in hardware.

Synaptic competition occurs since the total synaptic area
that a neuron can support is metabolically constrained.
Therefore, when synapses from many different neurons are
innervated by a postsynaptic cell, these synapses compete
for resources. The synapses that are more active take up
these resources and the inactive synapses that do not draw
any resources get more and more weakened and ultimately
reach a stage of no recovery or elimination. Usually a single
neuron makes not just one but many synaptic connections
with a postsynaptic neuron. Therefore when many presy-
naptic neurons have their synaptic arbors connected to a
postsynaptic cell, it is only through uncorrelated activity
between the several presynaptic cells that the postsynaptic
neuron can tell from which presynaptic neuron the activity
is more. Therefore if activity of all presynaptic neurons and
the postsynaptic neurons is correlated, synaptic competition
is prevented; however, when the activity is uncorrelated,
competition is enhanced [42]. This uncorrelated activity
between synapses belonging to neurons that respond to
different features of the stimuli is also vital for feature map
formation as has been argued by us previously [15, 32].

Based on these fundamental concepts underlying neural
development, that is, resource limitation, synaptic com-
petition, uncorrelated activity, and synapse elimination, a
truly bioinspired and novel analog CMOS design of a time-
staggered Winner Take All circuit (Figure 1) has been

proposed in [32].This circuit, which is built on the adaptation
dynamics of floating gate PMOS synapses, performs “time-
staggered” (spread over time) competition between two arms
that represent synapses bound to different neurons that
connect at a postsynaptic neuronwhich has limited resources.
When stimulated alternately or in an uncorrelated man-
ner, these synapses compete for the limited resource (fixed
amount of current, 𝐼𝑏, through the bias pFET). If both the
synapses are stimulated equally, the synapse with a stronger
bias (lower initial floating gate voltage) wins; however, if the
stimulation is unequal, the synapse that is stimulated more
emerges as the winner. The synaptic weight, which is the
floating gate voltage, is changed by two antagonistic quantum
mechanical processes of injection and tunneling. Injection
decreases the floating gate voltage by injecting electrons
on it, while tunneling removes electrons from the floating
gate thereby increasing the floating gate voltage. If during
the overall learning phase tunneling is more than injection,
the synapse gets eliminated, and if injection is more than
tunneling, the synapse emerges as the winner. To ensure
that the floating gate voltages or synaptic weights change
according to the level of activity of the synapses, feedback
devices ⟨T⟩ and ⟨I⟩ (in Figure 1(a)) have been devised.
The circuit description and the details of their operation
can be found in [32]. A detailed mathematical analysis of
the dynamics of ts-WTA can be found in [32] and for a
short description of the salient features of ts-WTA and its
comparison with other WTA circuits please refer to section
2 of [15]. Here we reiterate some of the prominent features of
the ts-WTA which make it unique. The ts-WTA can perform
competition between inputs that are uncorrelated or not
applied at the same time. In all other WTA circuits [33, 43,
44] the competition can happen only between inputs that
are applied at the same time. Since uncorrelated inputs are
essential for feature map formation [15, 32] only ts-WTA can
accomplish brain like featuremap formation.Due to the long-
term charge retention capability of floating gate MOSFETs,
ts-TWA has a memory element unlike other WTAs and
therefore is ideal for hardware implementation of long-term
memory.

This ts-WTA competition can be extended to any two
opposing input synapses, for example, left/right eye connec-
tions in ocular dominance,ON/OFF cells in orientation selec-
tivity, and Lagged/Nonlagged cells in direction selectivity,
and could also be extended to other sensory modalities. By
embedding these ts-WTA cells in an RC grid, we have been
able to achieve diffusive interaction and cluster formation. An
application of ts-WTA in forming ocular dominance maps
can be found in [32] and another application of ts-WTA in
forming orientation selective cells can be found in [15] and
we propose that this ts-WTA competitive cell truly emulates
brain like computing and can be used as a basic building
block for recreating artificial featuremaps in silicon of various
sensory modalities as seen in the brain. In this paper, for the
first time, we use ts-WTA to model a hierarchically superior
layer of neurons that take information from the first layer of
the cortex, that is, the ocular dominance pattern, and learn to
detect different disparities that facilitate 3D depth perception.
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Figure 1: (a) Actual circuit of the ts-WTA learning cell and (b) its abstract model. In (a) (𝑉fg)𝑖1 and (𝑉fg)𝑖2 and in (b)𝑊1 and𝑊2 show the
floating gate based weighted connections. 𝑥1 and 𝑥2 are inputs and node voltage 𝑉𝑖 is activation of the cell which is equivalent to 𝐴 in (b).
(c) shows ts-WTA evolution of floating gate voltages. (d) Starting with nearly equal weak connections (left), the cell strengthens the stronger
of the two connections at the cost of the other (right, shows both possibilities). Here I implies connection representing one feature and e
implies connection representing other features (adapted from Gupta and Markan, 2014, [15]).

The next section discusses the design andworking and salient
features of the disparity selective cell developed.

3. Proposed Disparity-Learning Algorithm

3.1. Disparity-Learning in the Brain. While the anatomy
of the visual system appears to be only two-dimensional,
somewhere in the nervous system information of the third
dimension is extracted from the retinal projections formed
by the left and the right eyes as a result of their viewing the
world from slightly different directions [46]. It is now well
accepted that the brain computes the relative depth of objects
based on the disparity in the relative horizontal position of

the objects in the two eyes. It has also been shown that
binocular disparity is the sufficient cue for stereoscopic depth
computation [47, 48]. Further, physiological experiments
reveal that a substantial number of neurons in the cortex
detect horizontal positional disparities of retinal images [49,
50]. These disparity-sensitive neurons have been found in
all extrastriate cortical visual areas of the macaque, from V2
to V5, and in even higher proportion than in V1 [49–53].
Additionally, some behavioral experiments suggest that new
born humans and monkeys are unable to detect objects in
random stereograms. It seems that in monkeys stereopsis
appears to emerge after 4 weeks [24] and in human babies it
appears after about 4 months [25, 26]. Therefore, it has been
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hypothesized that before these ages the inability to perceive
depth is attributable to the absence of disparity tuned neurons
in V1 [27]. Therefore, it seems that disparity tuned neurons
emerge as an outcome of stabilization of neural circuitry
between the two eyes and the cortex on repeated stimulation
of the two eyes over a period of time after birth and therefore
it can be said that during early development certain neurons
learn different disparities on binocular stimulation. Hubel
andWiesel proposed a hierarchical model of cortex, wherein
information is processed in a bottom up fashion from simple
to complex cells. The early layers of the cortex extract basic
features and subsequent layers use these basic features to
process more complex features. On similar lines, disparity
detection could be considered to be a multistep process in
which the first layer extracts the left and right eye image
properties and the next layer estimates the disparity and an
even higher layer computes 3D depth. Additionally, during
early development or critical learning period, the neurons
tune themselves to different disparities they are exposed to
and later respond to those disparities present in the visual
stimulus (Figure 3).

Many models for estimating the disparity have been
discussed in Section 1, but as pointed out none of them
are truly bioinspired in the context of taking inspiration
from the architecture of the brain. However, a model for
binocular stereo segmentation that captures to some extent
the essence of columnar architecture of the mammalian
brain called the cepstral model is reported in [23]. This
model takes advantage of the columnar interlacing of the
cortex to develop a purely parallel algorithm for real-time
stereo segmentation. Our model is inspired by the cepstral
model in taking advantage of the ocular dominance columnar
architecture; however, we distance ourselves from cepstral
model by employing an adaptive hardware for disparity
learning. The algorithm in [23] on the other hand is not
adaptive and is difficult to implement in hardware because it
uses complexmathematical functions such as logarithms and
Fourier transforms.

3.2. Proposed Design of Adaptive Disparity Selective Cell. The
architecture of the disparity selective cell is similar to the
orientation selective cell described in [15]. The receptive field
of a disparity cell is composed of 9 × 9 ts-WTA cells. A
1 × 4 subportion of the 9 × 9 receptive field is shown in
Figure 2. The output of each ts-WTA is connected through
MOSFETs whose drains connect at a common node which
is the cell’s output node. This is the feed-forward network
of the cell. A buffer device ⟨B⟩ connects the output node
of the cell to the diffusion node. This buffer device conveys
the voltage at the cells output node to the diffusion node;
however, it does not allow the voltage at the diffusion node
to affect the cell’s output directly. This becomes important
when many such cells are diffusively connected with each
other. All the resistances 𝑅𝐷 and 𝑅𝐹 are 1 kohm and the
capacitor 𝐶𝐷 is 10 pF. The resistances 𝑅𝐷 diffusively couple
the output of each ts-WTA with its neighbors so that local
clusters are formed and the resistances 𝑅𝐹 feed the output
of the disparity cell back to the individual ts-WTAs so that

the input patterns for which the response of the cell is high
can get correctly reinforced on the individual floating gates
through the feedback mechanism of each ts-WTA cell.

While the design and functioning of the disparity cell
are similar to the orientation cell described in [15] and both
the cells learn one of the input patterns applied to them
depending on their initial biases, one major difference is
that the disparity cell is at a hierarchically superior position
and the input it receives is from the first layer of cortex
(and not the retina as in [15]). The input in this case is
the receptive field of disparity cell, which is in the form of
an interlaced pattern, wherein half part is from the subfield
belonging to the left eye and the other half is from the right
eye (extracted from the ocular dominance pattern). In the
beginning of the simulation, the receptive field of disparity
cell [i.e., 9 × 9] is given random initial biases within 4.8V–
5.5 V. A set of input patterns resembling 4 different disparities
were created, as the 9 × 9 receptive field can accommodate
only 4 different disparities (0, 1, 2, and 3). Each pattern
from the set is comprised of 9 × 9-interlaced image, where
the bright (ON) part of the image represents a high voltage
(+6V) pulse and the dark (OFF) portion represents a low
voltage (−1 V) pulse with a pulse width of 0.02 s. To make
sure that the leaning is not biased towards any particular
disparity, generated input patterns from the set are applied
to the receptive field of disparity cell iteratively in a random-
inside-epoch [15, 32] manner. During this iterative process,
it has been ensured that in each ts-WTA the two opposing
synapses are stimulated alternately. This is made possible by
stimulating the two synapses by complementary patterns [15],
so that when one pFET synapse is ON (gate voltage −1 V) the
other is OFF (gate voltage 6V) and vice versa.This leads to ts-
WTA competition between the individual ON/OFF synapses
and one of the disparities gets selected in a way similar to
orientation selectivity shown in [15]. Depending on the initial
bias of the cell, each pattern evokes a certain response in the
cell in the form of an output voltage. This output voltage is
fed back to the individual ts-WTAs and the feedback regime
of each ts-WTA cell modifies the floating gate voltage of
each synapse appropriately. The input pattern that evokes
the maximum response is the pattern that the cell eventually
learns.

Therefore, total eight different input patterns (4 disparity
patterns and 4 of their complementary patterns) in a random
epoch manner are applied to the disparity cell for 80 epochs
and as the simulation progresses the disparity cell learns
one of the disparities from given set. The cell works in
two phases: (i) the disparity-learning phase (emulating the
critical learning period in the developing cortex) and (ii)
the disparity-detecting phase (emulating the adult cortex).
In the learning phase, inputs patterns with four different
disparities (disparities 0, 1, 2, and 3) and their complementary
patterns are used to stimulate the disparity selective cell.
The learning phase typically takes 3 to 4 seconds. Once
the disparity is learnt, the cell acts like a disparity detector
giving high response whenever an image pattern with the
same disparity is shown to it. The cell takes around 0.001 s
to detect the disparity, qualifying as a real-time disparity
detector. Figure 4 shows how starting from a randomly biased
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Figure 2: (a) shows a 1 × 4 subsection of the 9 × 9 receptive field of ts-WTA cells that form a disparity selective cell.The output of each ts-WTA
is connected in a feed-forward manner using MOSFETs with their drains connected together giving out the response of the cell. The output
of each cell is also connected at the diffusion node with feedback resistances (1 k each). The cell’s output and diffusion nodes are separated by
a buffer device ⟨B⟩ that only allows the cells output to affect the diffusion node voltage but the diffusion node voltage cannot affect the output
node voltage directly. The bias transistor acts like a current source with fixed resources. (b) shows the symbol for the disparity selective cell.
(c) shows the circuit level description of the ⟨B⟩ buffer device (adapted from Gupta and Markan, 2014, [15]).

9 × 9 receptive field the disparity cell develops a receptive
field of disparity 3. As the receptive field of disparity cell
develops, there is an increase in response for a particular
disparity, which can be seen from the sharpness of the tuning
curve. Figure 4(c) shows that the response tuning (maximum
response) of the cell is at disparity 3. Different cells can be
tuned to different disparities and hence we could have an
array of cells tuned to different disparities for each small
segment of the image to ensure retinotopicmapping and local
computations (Figure 4(c), top).

3.3. Experiments and Results. The perception of depth in
stereo image depends on the correctmatching of correspond-
ing patches between left and right images.Thematch is along

the epipolar line because the interest is only in the horizontal
disparities. This would also help in reducing the ambiguity.
The disparity selective cells tuned to 4 different disparities
(Figure 5(c)) can now be used to detect the disparity in a
stereo image which is comprised of 4 different disparities.
Figures 5(a) and 5(b) are set of stereo pair images of size
80 × 80. In order to find the disparity of every pixel using
disparity selective cells, the patch of size, “height (ℎ) × width
(𝑤),” is extracted from both left image and its corresponding
right image. Extracted patches from stereo images are then
joined together along one edge to form a window of size
ℎ × 2𝑤. This resembles the pattern found in layer IV of
primate visual cortex, in form of ocular dominance columnar
pair. In the present case, the size of spliced image should
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Figure 3: A 2-layer hierarchical model of disparity tuning and selection.When an image is shown to the two eyes, depending on its disparity,
its projection in one of the eyes is shifted. The receptive field of the disparity tuned cell is composed of subfields from the two eyes projected
on the lower cortical layer. Therefore, for different disparities and different shifted subfields, different disparity tuned cells respond. Both the
layers of the cortex are topographically arranged.

be 9 × 9, which means that size of 9 × 4 from left image is
spliced along the size of 9 × 5 from right image.The disparity
selective cells are applied on each suchwindowwhich consists
of portion extracted from left image and the right image
with the columnar width as maximum disparity. Out of four
disparity selective cells, one with the same disparity will
have the highest response and is the winner. The disparity
corresponding to the winner cell would be the disparity
of that pixel. Figures 5(d) and 5(e) represent the obtained
disparity map and its 3D reconstruction, respectively.

As the receptive field size increases, the number of
disparities that can be represented also increases. To illustrate,
20 receptive fields of disparity cells, each of size 10 × 40, were
developed,which corresponded to the 20 disparities, in a sim-
ilar fashion. Now total 40 different input patterns (20 patterns
corresponding to the disparity and its 20 complementary
patterns) are applied to the disparity cell (with random initial
values between 4.8V and 5.5 V) in a random epoch manner
for 80 epochs. As the simulation progresses, the disparity cell
would learn one disparity out of 20 disparities from the given
set. Once the disparity is learnt, we get 20 such disparity
selective cells that can be used to find disparities from 0 to
19. We have applied these 20 disparity selective cells on a
benchmark stereo image, which has maximum disparity as
20. In this case, 20 disparity selective cells are applied on each
such spliced image of size 10 × 40 (10 × 20 from left and
right image each). To reduce the noise, the spliced pattern of
size 10 × 40 is applied to the Gaussian filter whose output is
more stable with respect to noise in the stereo image. Figures

6(a) and 6(b) show the left and right stereo images with 20
disparities, Figure 6(c) shows the true disparity map, and
Figure 6(d) shows the obtained disparity map.

While this resolution is only for low level vision, this
can be improved by additional filtering mechanisms like
edge detection filtering. This method helps to identify the
discontinuity that corresponds to abrupt changes in the
image.The stereo image is first filtered through edge-detector
filter and then the disparity selective cells are applied to the
spliced image.This filteringwould improve the result in terms
of disparity map of the stereo image as shown in Figure 6(e).
The field size is increased in accordance with the increase in
the number of disparity levels intended to detect. A 10 × 40
field size will be suitable for any image size given that the
disparity levels in the image are in the range from 0 to 19.

3.4. Comparison. Over past few decades, conscious efforts
have been made by researchers to study the field of stereo
vision with the aim of gaining greater insight into visual
perceptual mechanisms that nature has optimized. These
models explain how 3Ddepth information could be extracted
from the two-dimensional retinal projections and can be
broadly classified into sparse or dense algorithms [1].

The major impediment in working with these computer
based software approaches is the serial behavior, which
has limitations in real-time processing. To overcome this
limitation, the recent stereoscopic research uses dedicated
hardware platform for real-time stereo vision, such as digital
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Figure 4: (a) represents an undeveloped receptive field with random initial biases. (b) represents the developed floating gate voltages or
the disparity tuned receptive field after the learning phase is over. (c) shows the tuning curve for the disparity selective cell. Out of all the
disparities it has the maximum response for disparity 3; therefore we say it is tuned for disparity 3. It is tuned at hwhh = 2.7 which is a good
tuning measure.

signal processors (DSP) [10–12], field programmable gate
arrays (FPGA) [13], and application-specific integrated cir-
cuits (ASIC) [16, 17]. The implementation of these offline
stereo algorithms in hardware board results in better effi-
ciency as compared to serial software stereo vision algo-
rithms.

Regardless of these astounding advances to match the
human visual processing, one continues to be humbled by
salient features of the brain. These offline computational
approaches and hardware are not enough to understand the
way that several different tasks are performed in the visual
cortex. There are many models, which either try to depict
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Figure 5: (a) and (b) Synthetic left and right stereo images with 4 disparities. (c) shows the 9 × 9 receptive fields of 4 disparity cells tuned to
different disparities that are used as filters to extract disparity from (a) and (b). (d) represents the obtained disparity map. (e) represents 3D
reconstruction of the disparity map showing the exact depth of each subfigure.
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Figure 6: (a) and (b) represent left and right stereo images with 20 disparities. (c) represents the true disparity map. (d) represents the
obtained disparity map by using disparity cells tuned to 20 different disparities as filters; average error is 68%. (e) represents the improved
map obtained by adding edge detection filters; average error is 22%.

the functioning of brain or design the model on the principle
based on biological way of extracting disparity. Like receptive
field base algorithms, which are used to detect the visual
information, for instance, edges and features can be utilized
in an integrated visual system [18–20]. All these algorithms
suffer from inability to adapt to experience. None of these
approaches takes genuine benefit of the layered architecture
and information organization in the brain and none of them

exactly imitates the developmental or adaptation aspects of
the brain.

The solution lies in learning based algorithms thatmature
the filters that amalgamate other visual information and
adjust themselves to the changes in surroundings. There
are models representing a class of adaptive algorithms that
take inspiration from cortical plasticity; however, there has
not been any hardware implementation of these models
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[2, 31, 54]. In this paper, we propose an analog design for
adaptive disparity selective cells; that is, they can learn from
experience and be used to detect disparity in stereo images.
This approach is truly bioinspired as it takes advantage of
the hierarchical and layered architecture of the visual cortex.
Table 1 summarizes the comparison of the various hardware
based disparity algorithms with the proposed method.

In this paper, we opt to give less weightage to efficiency
as compared to adaptability, robustness, and self-learning. To
the best of our knowledge, no other model takes inspiration
from both the structure and function of the brain and no
other model shows cortical plasticity or adaptability the way
our implementation does. Although the resolution is only
for low level vision right now, this can be improved by
adding additional filtering mechanisms. The training phase
typically takes 3-4 seconds, while the detection phase takes
around 0.001 s for any pattern, hence suitable for real-time
implementation. The proposed design also has lower power
dissipation than the other hardware models (data for which
is available).

This work introduces a novel concept of disparity-
learning cells, which is purely original and has never been
developed in analog hardware ever before. The approach has
biological propinquity, since it captures the essence of both
the developing and the developed human brain.

4. Diffusive Interaction of Disparity Cells

Evolution ensured that the brain optimizes on power con-
sumption and processing speed while remaining small in
size by ensuring that most of the computations happen
locally so that wire lengths could be minimized. This was
achieved through topological mapping and formation of
feature detectors that are smoothly spread over thewhole cor-
tical structure. Various topologicalmaps (patterns of synaptic
connections), like ocular dominance, orientation selectivity,
direction selectivity, and so forth, have been reported in
the visual cortex [55, 56]. All these feature maps have three
characteristics in common, continuity, diversity, and global
order. Continuity means that nearby neurons show similar
feature preference that varies smoothly across the cortical
surface. Diversity implies that there is equal representation of
all features over the cortical surface and global order ensures
there is periodic organization of all features on the cortical
surface. In a similar way, disparity maps have also been
observed in the visual cortex [45]. These maps are critical to
the functioning of the brain and most of them are formed
during a critical learning period [41]. If for some reason
the organism receives abnormal inputs during this critical
learning period, there is malformation in the cortical feature
maps and that function is impaired [22].

In this section, we will discuss the ability of the disparity
selective neurons to form clusters, whichmakes them suitable
for map formation. In our previous papers [15, 32] we
have used Diffusive-Hebbian learning, which is based on
the biological phenomenon of Reaction-Diffusion to model
ocular dominance and orientation selectivity maps. Here,
we attempt to apply the Reaction-Diffusion framework for

formation of disparity maps with disparity selector cells. The
essence of working is that if the disparity selective cells have
overlapping receptive fields and they receive similar inputs,
then they are forced to have similar responses. Hebbian
learning will confirm that these cells form a cluster. In the
brain, it is conjectured that diffusion acts by means of leaking
chemicals from an active cell which reduce the threshold
of neighboring cells making them fire more readily and
thereby making clusters of nearby cells that fire together. In
hardware, Reaction-Diffusion can be implemented by means
of an RC network and we have used it successfully for ocular
dominance and orientation selectivity [15, 32]. Similar RC
network has been used in this paper to connect two disparity
selective cells. Figure 7 shows the development of two cells
with and without diffusive interaction. As can be seen, when
the cells are not connected they develop to have preference
for different disparities; however, when they are connected at
their diffusion node, the cell with the stronger bias influences
the development of the other cell and they both learn to
respond to the same disparity. Fundamentally, the disparity
selective cell learns one out of the four different disparities
that it is stimulated with during the learning phase according
to its initial (genetic) biases.

5. Disparity Map Formation

Theabove-mentioned diffusion process between the disparity
cells is responsible for the formation of clusters and can
crudely be modeled by means of a polynomial whose stable
roots represent different disparities:

𝑋

= (𝑥 − {disparity + 1}) ⋅ ⋅ ⋅ 𝑥 ⋅ ⋅ ⋅ (𝑥 + {disparity + 1}) .
(1)

In the above given equation, for different values of 𝑥, the
equation stabilizes to different roots analogous to learning
different disparities.Therefore, if we take a patch of the cortex,
where each cell is a disparity-learning cell, and allow each cell
to develop according to (2), then according to its initial bias
each cell falls into one stable root representing its disparity
(Figure 8(a)):

𝑋new = 𝑋 + 𝛼 (𝑋) , (2)

where 𝛼 is reaction constant.
However, when a diffusion term is added (see (3)), neigh-

borhood influence starts to act on each cell and clusters of
cells of the same disparity start emerging. Once the learning
period is over, periodically distributed clusters representing
different disparities can be seen. Between different clusters
there is gradual variation in the feature preference:

𝑋new = 𝑋 + 𝛼 (𝑋) + 𝐷𝑢 (𝑋) , (3)

where 𝛼 is reaction constant and𝐷𝑢 is diffusion constant.
Here, the map created by the disparity selective cells with

diffusive interaction exhibits continuity, diversity, and global
order, thus fulfilling the three important tenets of the feature
map in the brain. Further, a small portion extracted from
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Figure 7: (a) represents two disparity cells that are allowed to develop under individual bias but no neighborhood influence. They usually
develop to have different disparity tuning. (b) When the same disparity cells are connected by means of a diffusive resistor (100 ohms), the
more strongly biased cell influences the development of the other cell and they form cluster of the same feature preference. On a larger scale
this leads to the formation of feature maps.

20 40 60 80 100

10

20

30

40

50

60

70

80

90 −6

−4

−2

0

2

4

6

(a)

−6

−4

−2

0

2

4

6

20 40 60 80 100

10

20

30

40

50

60

70

80

90

(b)

Figure 8: (a) Development of disparity tuned cells, starting from random initial biases for disparities, in the absence of diffusive interaction
with neighborhood. All cells develop under the influence of individual initial biases only. (b) The same cells when allowed to develop under
diffusive neighborhood influence grow in clusters of cells with the same disparity preference with disparity tuning varying smoothly across
the clusters, therefore demonstrating continuity, diversity, and global order.

the obtained disparity map of Figure 8(b) as shown in
Figure 9(b) shows the consistency with the recent phys-
iological discoveries about the smooth change of stimuli
preference (continuity) in biologically observed disparity
maps [45].Therefore, theReaction-Diffusion frameworkwith

the proposed adaptive disparity selective cells is effective in
forming clusters and hence is suitable for the formation of
disparity maps found in the brain.

Recreating these maps adaptively in silicon has huge
potential in areas such as robotics, artificial vision systems,
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Figure 9: (a) Biological disparity map of neurons in cortex of macaque monkeys evoked by stimuli with seven different disparities. The
position of the two crosses is constant through all the images marked as (B)–(H) (adapted from [45]). (b) A small portion extracted from
the obtained disparity map to show consistency with the recent physiological discoveries about the smooth change of stimuli preference
(continuity) in topographic maps in the brain as shown in (a).

and even cortical prosthesis, where damaged portion of the
cortex could be replaced by adaptive silicon chips that could
fine-tune to the specific environment and perform the same
function.

Therefore, ts-WTA based disparity selective cell is an
innovative design that could be used to create disparity
selectivemaps in siliconwith potential application in artificial
vision systems which would learn from their environment as
they operate.

6. Discussion

The paper discusses a novel application of the time-staggered
Winner Take All algorithm and circuit to design a disparity
selective neuron that learns different disparities through
an adaptive learning mechanism based on the biological
phenomenon of synapse elimination implemented using
floating gate pMOS dynamics. It is well established that the
brain is designed in a hierarchical fashion, where the lower
cortical layers extract basic features from the input space
and the higher layers use these basic features to extract
more meaningful information. For example, in the visual
cortex, the lower cortical layers extract basic features like
left or right eye connectivity, orientation selectivity, direction
selectivity, color, texture, and so forth. The cortical layers
beyond these use these features to detect edges, depth, and
so forth. A similar hierarchy of cortical processing is present
in all sensory modalities.

The ts-WTA has been successfully used to form ocular
dominance and orientation selective feature maps at the first
layer of cortex. In this paper, wemove one step up in the hier-
archy by using the ts-WTA to extract information fromocular
dominance patterns (layer 1) in the form of interlaced images
from the left and the right eye as inputs going into a higher
layer (layer 2), where disparity is detected. By exploiting the
idea behind cortical hierarchy and competitive learning using
ts-WTA, similar hierarchical feature maps can be created in
other sensory modalities. Eventual integration of all these
hierarchically organized adaptive feature maps, processing
different sensory inputs, would lead to the formation of a
generic and adaptive cortical structure that would to some
extent capture the true essence of cortical plasticity andwould
lead to a new era of intelligent machines that would not rely
on preprogramming or prewired hardware but would learn
from experience just like the human brain does.

Appendix

A rigorous stress analysis under parameter variation has
been done for the disparity selective cell designed and can
be found in the Supplementary Material available online at
http://dx.doi.org/10.1155/2016/8751874.
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