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Abstract: Mitochondrion harbors its own DNA (mtDNA), which encodes many critical proteins
for the assembly and activity of mitochondrial respiratory complexes. mtDNA is packed by many
proteins to form a nucleoid that uniformly distributes within the mitochondrial matrix, which is
essential for mitochondrial functions. Defects or mutations of mtDNA result in a range of diseases.
Damaged mtDNA could be eliminated by mitophagy, and all paternal mtDNA are degraded by
endonuclease G or mitophagy during fertilization. In this review, we describe the role and mechanism
of mtDNA distribution and elimination. In particular, we focus on the regulation of paternal mtDNA
elimination in the process of fertilization.
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1. Introduction

Mitochondrion is a double-membrane organelle that generates about 90% of cell energy in the form
of adenosine triphosphate (ATP) by the oxidative phosphorylation (OXPHOS) process in mammalian
cells. Mitochondria also play an essential role in a series of signal pathways, including tricarboxylic
acid cycle (TCA), the β-oxidation of fatty acids, and calcium handling [1], and in regulating intrinsic
apoptosis [2,3] and participating in the cell cycle [4,5].

Unlike the other organelles in a mammalian cell, mitochondria have a small amount of their own
DNA, which is known as mitochondrial DNA (mtDNA), which encodes a series of crucial proteins for
mitochondrial respiration. Each mitochondrion contains one or more copies of mtDNA, which are
located in the mitochondrial matrix [6]. Different from nuclear DNA (nDNA), but similar to bacterial
chromosome, mtDNA is packaged by a range of proteins including prohibitins, ATPase family AAA
domain-containing protein 3 (ATAD3), mitochondrial transcription factor A (TFAM), POLG (DNA
polymerase gamma, catalytic subunit), etc., and forms an mtDNA–protein complex, which is called a
nucleoid. Among the identified nucleoid proteins, TFAM (mitochondrial transcription factor A) is the
main protein of the nucleoid, and acts as a transcription factor of mtDNA in mitochondria and plays
an important role in nucleoid distribution and organization [7,8]. mtDNA distributes throughout the
mitochondrial network, which is essential for the maintenance of mitochondrial functions. Defects of
mtDNA distribution are associated with many human diseases [9,10].

The mtDNA is particularly susceptible to certain stress-induced damages due to a lack of histones
in the structure and effective repair mechanisms [11,12]. mtDNA mutation caused by stress-induced
damage is highly associated with various human diseases. mtDNA mutation causes damaged and
dysfunctional mitochondria, which could be eliminated by mitophagy. The well-known pathway of
mitophagy is mediated by the PINK1 (PTEN induced kinase 1)–Parkin pathway [13].
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mtDNA is inherited from the maternal line, and paternal mtDNA is degraded during fertilization.
How paternal mtDNA is removed in the process of fertilization has always been a critical scientific
question. It has been reported that mitophagy and endonuclease G contribute to paternal mtDNA
clearance during fertilization [14–18].

Given the role of mtDNA dysfunction in several human diseases, it is important to understand
mtDNA distribution and clearance in cells. In this review, we focus on the mechanism of mtDNA
distribution, and also discuss the pathways of the paternal mtDNA elimination.

2. mtDNA Structure

The structure of mtDNA is significantly different from that of nDNA; however, similar to the
bacterial chromosome, mtDNA forms a closed circle doubled-stranded DNA in nearly all metazoa [19].
The sense strand and antisense strand of mtDNA are named a heavy (H) strand and a light (L) strand.
In human cells, mtDNA consists of 16,569 base pairs, and encodes 37 genes, including 13 polypeptides,
two ribosomal RNAs, and 22 tRNAs [6,20]. One polypeptide (ND6) and eight tRNAs are located on the
L strand; the other 12 polypeptides, two rRNAs, and 14 tRNAs are encoded by the H strand. mtDNA
also contains a noncoding region, which is called a displacement loop (D-loop), and harbors almost
all the known mtDNA replication and transcription [21]. The 13 polypeptides are the core subunit of
the oxidative phosphorylation (OXPHOS) complexes I, III, IV, and V, and are essential for OXPHOS
activity. Mitochondrial rRNAs and tRNAs constitute a machine for the synthesis of 13 peptides.

3. mtDNA Mutation and Human Diseases

mtDNA is susceptible to be attacked by oxygen free radicals, and tends to develop somatic
mutations due to the lack of protection by histones [22,23]. mtDNA is located in the mitochondrial
matrix, and is in close proximity to the respiratory chains [20,23], which are the main source of the
reactive oxygen species (ROS). mtDNA encodes the core subunit of OXPHOS that produces the vast
majority of cellular ATP. Excessive mtDNA mutations could result in the dysfunction of OXPHOS,
which subsequently leads to diseases associated with mitochondrial function. In fact, many diseases
have been found to be associated with mtDNA mutations, and most maternal mtDNA diseases can
transmit to their offspring due to the feature of matrilineal inheritance in mtDNA [24].

Since the first human mtDNA mutation was described in 1988 [25], several mtDNA mutations
and the associated mtDNA diseases have been identified. The obvious feature of mtDNA diseases
is characterized by the presence of various neurological features [19]. Kearns–Sayre syndrome (KSS)
and Leber’s hereditary optic neuropathy (LHON) are the early identified syndromes associated
with mtDNA mutation [26,27]. KSS is associated with progressive myopathy, ophthalmoplegia, and
cardiomyopathy, which is caused by single, large-scale deletions [25,26]. LHON is an optic neuropathy
that is caused by mtDNA point mutations (m.3460G > A, m.11778G > A, and m.14484T > C) [27–29].
The point mutation of ATP6 (m.8993T > C or 8993T > G), which is the core subunit of OXPHOS
protein complex V, contributes to Leigh syndrome (LS), which is also known as subacute necrotizing
encephalomyelopathy [30,31]. Myoclonic epilepsy with ragged-red fibers (MERRF), which is a severe
neuromuscular disorder accompanied by symptoms of myoclonic epilepsy, myopathy, dementia, or
ataxia, is caused by the point mutation of tRNA [32,33].

Additional, mtDNA mutations are associated with other human diseases, including diabetes,
Alzheimer’s disease (AD), Parkinson’s disease (PD), and cancer. Diabetes is one of the most common
chronic disorders. mtDNA point mutations (m.3242A > G) and the 10.4-kb deletion of mtDNA
are associated with diabetes and deafness, and the mutations are maternally inherited [34,35]. It is
hypothesized that mtDNA mutations accumulate over time, which plays a central role in the process of
aging and related neurodegeneration [19]. In fact, there is already a lot of evidence that demonstrates
that mtDNA mutations are indeed associated with aging, Parkinson’s disease, and Alzheimer’s disease.
Recent evidence suggests that dysregulated mitochondrial dynamics and mutations caused by mtDNA
replication can lead to aging, and the increasing mtDNA mutation rates increase the aging rate and
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provide an aging clock [36]. A high level of deleted mtDNA has been found in the substantia nigra
neurons of patients with aging and Parkinson’s disease [37]. Parkinson’s disease is a neurodegenerative
disease that is characterized by the loss of dopamine neurons in the substantia nigra of the brain and
the accumulation of α-synuclein [38]. Alzheimer’s disease, another neurodegenerative disease, is
associated with heteroplasmic mtDNA mutations [39]. In addition, tumors and mtDNA mutations
are also inextricably linked. mtDNA mutations contribute to tumorigenicity. ND3 gene mutation
(m.G10398A) had been found to increase the risk of invasive breast cancer in African-American
women [40]. Further data demonstrate that both germ-line and somatic mtDNA mutations contribute
to prostate cancer, and about 11% of all prostate cancer patients harbored mt-CO1 (mitochondrially
encoded cytochrome c oxidase I) mutations [41]. Additionally, the pathogenic mtDNA ATP6 T8993G
germ-line mutation was found to generate tumors that were seven times larger than the wild type
(T8993T) [41].

4. mtDNA Distribution

The mitochondrion is a highly dynamic double-membrane organelle that forms a well-distributed
network in the majority of mammalian cell types. mtDNA is located in the mitochondrial matrix,
associated with the mitochondrial inner membrane, and distributed throughout the mitochondrial
network [20]. Each mitochondrion contains one or more mtDNA molecules [6]. In proliferative cells,
mtDNA is replicated, separated, and distributed equally to daughter cells, which are dependent
on mitochondrial dynamics. In addition, the mitochondrial membrane structure and membrane
composition are also involved in mtDNA attachment and distribution [20].

4.1. mtDNA Distribution and Mitochondrial Dynamics

Mitochondria continuously undergo fusion and fission, which are essential for cell metabolic
activities, as well as mtDNA distribution in mitochondria. Mitochondrial fusion and fission, the
two opposite processes, are both mediated by large GTPases proteins, which are conserved in yeast,
flies, and mammals [42]. Mitochondrial fusion is mediated by three GTPases proteins: Mitofusin
1 (Mfn1), Mitofusin 2 (Mfn2), and Optic Atrophy 1 (OPA1) [43,44]. As the feature of a double
membrane, mitochondrial fusion is a two-step process requiring outer-membrane fusion followed by
inner-membrane fusion [1]. Mfn1 and Mfn2 regulate the mitochondrial outer membrane fusion, and
OPA1 is involved in mitochondrial inner membrane fusion [45]. A deficiency of fusion results in severe
mitochondrial fragmentation and is associated with a range of human diseases [46,47]. The mutation of
Mfn2 causes Charcot–Marie–Tooth disease type 2A in human, which is a common inherited peripheral
neuropathy [47,48]. The dysfunction of OPA1 is associated with dominant optic atrophy (DOA), which
is an optic neuropathy caused by the degeneration of retinal ganglion cells [1,49,50]. Mitochondrial
fission is regulated by Drp1, a cytosolic dynamic protein, which is recruited to mitochondria from the
cytosol, forms spirals around the mitochondria, and then constricts it by hydrolyzing GTP to mediate
mitochondrial scission [1,51].

Mitochondria and mtDNA are highly dynamic [52]. mtDNA are distributed throughout the
mitochondrial network [53], which is important for the uniform distribution of mtDNA-encoded
proteins in mitochondria. Mitochondrial dynamics greatly influence the distribution and maintenance
of mtDNA [54]. A deficiency in mitochondrial fusion has a profound effect on mtDNA (Figure 1A).
It has been demonstrated Mfn1 and Mfn2 conditional knock-out mice in muscle result in muscle
atrophy, mitochondrial dysfunction, and severe mtDNA depletion [55]. OPA1 mediates the fusion of
the mitochondrial inner membrane, and regulates cristae remodeling and cytochrome c release during
apoptosis [56–58]. In addition, OPA1 mutations in patients lead to multiple deletions of mtDNA in their
skeletal muscle [59], and one isoform of OPA1 was associated with mtDNA replication, distribution,
and maintenance [60]. Mitochondrial fission also plays an essential role in mtDNA distribution.
The deficiency of mitochondrial fission caused by the loss of Drp1 leads to hyperfused mitochondria
and enlarged mtDNA nucleoids characterized by mtDNA accumulation [54,61,62]. Mitochondrial
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fusion promotes complementation between two mitochondria, including mtDNA [42,63]; mitochondrial
fission separates mtDNAs into two divided mitochondria, and also contributes to a chance for a
mitochondrion to re-fuse with another part of the mitochondrial network (Figure 1A). Therefore,
mtDNA are distributed throughout the network by continuous fusion and fission [54].
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Figure 1. Regulation of the distribution of mitochondria DNA (mtDNA). (A) Mitochondrial dynamics
regulate mtDNA. Mitochondrial fission and mtDNA segregation happened synchronously, and occur
at the ER and mitochondrial contact site. Upon fission, the endoplasmic reticulum (ER) wraps the
mitochondria, and then the cytosolic dynamic protein Drp1 is recruited to mediated mitochondria
division. Blocking the fission leads to enlarged mitochondria and an mtDNA cluster. Mitochondrial
fusion allows for two mitochondrial exchange substances, including mtDNA. The dysfunction of
fusion leads to mtDNA deletion. (B) The mitochondrial inner membrane is involved in mtDNA
distribution. Certain mitochondrial inner membrane proteins such as prohibitins and ATPase family
AAA domain-containing protein 3 (ATAD3) are mtDNA-binding proteins. In addition, mtDNA
nucleoid contacts with the mitochondrial cristae junction, and MICOS complex and Sam50, which are
involved in the maintenance of the cristae structure, regulate mtDNA distribution.

The distribution of mtDNA is tightly interlinked with the dynamics of mitochondria, but the
mechanisms of mtDNA distribution throughout the mitochondrial network are poorly understood.
Recent evidence shows the close proximity between mtDNA and the sites of Drp1-dependent
mitochondrial fission, which is highly conserved in yeast and mammalian cells [61,64,65]. In yeast and
mammalian cells, mitochondrial division occurs at the endoplasmic reticulum (ER) and mitochondria
contact sites (Figure 1A), in which the ER wraps around the mitochondria; then, Drp1 is recruited and
assembled around mitochondria [66,67]. Moreover, the majority of ER-linked mitochondrial division
events occur adjacent to nucleoids [20,65]. Following mtDNA replication, ER-linked mitochondrial
fission occurs between the replicated mtDNAs, which locate at newly generated mitochondrial tips after
scission [53,64,65]. Localizing mtDNA to the newly formed mitochondrial tips could transport mtDNA
to the distal parts of cell, and further fuse with other mitochondria to drive mtDNA distribution.
The mechanism can explain how mtDNA is equivalently distributed in cells and how mtDNA is
distributed into mitochondria following mtDNA replication.

4.2. mtDNA Distribution and Inner Membrane Structure

The structure of the inner mitochondrial membrane (IMM) is divided into two morphologically
and presumably functionally distinct subdomains: the inner boundary membrane (IBM), which is
closely opposed to the outer mitochondrial membrane (OMM), and the cristae membrane (CM), which
protrudes into the matrix [20,68]. The IBM comes into close contact with the OM by the protein transport
complexes [68–70]. The CM is formed by the invaginations of the IBM, and is enriched in respiratory
chain complexes and some small molecules and metabolites [68,71]. There is another substructure of
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the inner membrane—the cristae junction—that connects the IBM with the CM [72,73]. It has been
reported mtDNA is associated with the IMM, and mtDNA is frequently observed intertwined into
cristae [20]. Therefore, there may be several IMM factors regulating mtDNA distribution. Indeed, it
has been found that the MICOS (mitochondrial contact site and cristae junction organizing system)
locates at the cristae junction and is involved in regulating the inner mitochondrial membrane cristae
junction [71,74,75]. In yeast, MIC60 (Fcj1) and Mic10 (Mos10), two key components of the MICOS,
regulate mtDNA nucleoid size and distribution [76]. Deficiencies in the two proteins result in the
formation of large mtDNA nucleoids and giant spherical mitochondria [76]. Consistently, we have
found that MIC60 (IMMT) knockdown led to alterations of mitochondrial tubular morphology to
giant spherical mitochondria and the disorganization and clustering of nucleoids in mammalian cells
(Figure 1A) [77]. Sam50, a MICOS-interacting protein in mammalian cells, is located at the outer
mitochondrial membrane [78]. The loss of Sam50 results in the disorganization of cristae and large
spherical mitochondria, and also leads to enlarged mtDNA nucleoids, which protect mtDNA from
clearance by mitophagy [79]. However, how the mitochondrial inner membrane regulates mtDNA
organization and distribution remains unknown. It has been hypothesized that cristae junctions
contribute to maintaining proper internal membrane compartmentalization, and the loss of these
junctions leads to clustering and the missegregation of mtDNA nucleoids due to the loss of proper
compartmental localization of the mtDNA within the mitochondrial tubules [71].

4.3. mtDNA Distribution and Cholesterol

Cholesterol is a composition of lipid rafts, and contributes to being a dynamic glue that keeps
the raft assembly together [80,81]. Recent data demonstrate that the human mtDNA–protein complex
colocalizes with the cholesterol-rich membrane [82]. Additional, cholesterol is also rich at the site
of the ER-associated mitochondrial membrane (MAM), which is involved in mtDNA distribution
and segregation [20,83,84]. Thus, it is possible that cholesterol is associated with the distribution
of mitochondrial nucleoids. ATAD3 (ATPase family AAA domain-containing protein 3), locating
at the mitochondrial inner membrane, is colocalized with mitochondrial nucleoids in mammalian
cells by binding to the D-loop of mtDNA (Figure 1B) [85,86]. A deficiency of ATAD3 in cells results
in the disorganization of mitochondrial nucleoids, which is also found in the mouse model and in
patients with pathogenic mutations in ATAD3 [87,88]. Furthermore, ATAD3 is involved in regulating
cholesterol metabolism [87,88]. Therefore, it seems that ATAD3 regulates mtDNA maintenance by
regulating cholesterol metabolism.

5. mtDNA Release and Inflammasome

mtDNA locates in the mitochondrial matrix under normal conditions, but when apoptosis occurs,
mtDNA could be released into the cytoplasm of the cell. It has been reported that mtDNA release is
dependent on the NALP3 (also called NLRP3, NLR family pyrin domain containing 3) inflammasome
and the production of ROS [89]. Nakahira et al. found that upon treatment with lipopolysaccharide
(LPS) and ATP, wild type macrophages could produce ROS to activate the NALP3 inflammasome,
which leads to the release of mtDNA (but not nuclear DNA) into the cytoplasm and causes the
aggregation of mtDNA. In NALP3-deficient cells, LPS and ATP-induced mtDNA release are inhibited,
although mitochondrial ROS production was not affected [89]. Thus, NALP3 is critical for mtDNA
release, but how mtDNA release into the cytoplasm is still obscure. During apoptosis, the BAK-BAX
play a major role in the mitochondria-mediated apoptotic pathway [90]; BAK/BAX form oligomers in
the mitochondrial outer membrane and alter the permeability of the outer membrane, which result in
the release of apoptotic factor cytochrome c [91,92]. The release of mtDNA is performed by a single
discrete point rather than being dispersed throughout the cytoplasm and is constricted, indicating
that the release of mtDNA is limited due to the presence of certain obstacles in the mitochondrial
inner membrane. McArthur et al. found that when BAK/BAX is activated, cytochrome c is released
outside the mitochondrial outer membrane; then, the mitochondrial network is destroyed, and the
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BAK/BAX oligomers are gathered and form large pores at the mitochondrial outer membrane [93].
Large pores allow the extrusion of the mitochondrial inner membrane carrying mtDNA into the
cytoplasm [93,94]. In addition, Riley et al. reported that during apoptosis, BAK/BAX-mediated
mitochondrial outer membrane pores gradually widen, and the mitochondrial inner membrane
permeability changes, allowing mtDNA to pass through the mitochondrial inner membrane and release
into the cytoplasm [95]. Importantly, mtDNA release could trigger the extracellular innate immune
cGAS-TMEM173 (STING) pathway and secrete type-I interferon [96,97]. Thus, mtDNA release is
highly associated with inflammation.

6. mtDNA Elimination

In most types of cells, wild-type mtDNA or mutant mtDNA could be eliminated by mitophagy,
which is a selective pathway to degrade damaged mitochondria. Here, we mainly discuss the
elimination of paternal mtDNA.

The most prominent feature of mtDNA is a maternal inheritance, which means that the mtDNA
of offspring is inherited solely from the mitochondria of the oocyte [6,98]. Some human diseases
caused by mtDNA mutations are maternally inherited. Maternal inheritance is an almost universal
feature of eukaryotes, but the mechanism of paternal mtDNA clearance vary in different organisms.
The “simple dilution model” has long been used to explain maternal inheritance. In this model, the
copy number of paternal mtDNA is lower than that of maternal mtDNA, and mtDNA is simply diluted
away by the excess of oocyte mtDNA, and consequently is hardly detectable in the offspring [98,99].
However, recent studies have found that paternal mitochondria containing mtDNA were selectively
eliminated, either before or after fertilization, to prevent paternal mtDNA from transmiting to the next
generation [98].

6.1. Endonuclease G-Mediated Degradation of Paternal mtDNA

DeLuca et al. showed that the mtDNA in Drosophila is eliminated to ensure mature spermatozoa
lacking mtDNA during spermatogenesis. They found that the mitochondria of mature Drosophila sperm
lack mtDNA, and two processes are required for clearing mtDNA during spermatogenesis [15,16].
mtDNA are gradually degraded from the sperm cells and move from the head to the tail during
spermatogenesis, and mtDNA are largely cleared when the sperm are fully elongated [15]. During
this process, mitochondrial endonuclease G (EndoG) is required for the degradation of paternal
mtDNA [14–17]. EndoG is essential for paternal mitochondrial deletion, and EndoG mutations
result in the persistence of mtDNA in elongated sperm [15,100]. Interestingly, in EndoG mutants,
persisting mtDNA can be cleared by the other mechanism during the individualization stage, in which
mtDNA and cellular debris are sequestered into a waste compartment that is extruded from the sperm
body [15,101]. Consistently, CPS-6 (CED-3 protease suppressor-6), a mitochondrial endonuclease G
in C. elegans, is essential for paternal mtDNA clearance [17]. The paternal mitochondria rapidly lose
their inner membrane integrity in the fertilization of C. elegans. After fertilization, the CPS-6 relocates
from the intermembrane space of the paternal mitochondria to the mitochondrial matrix to promote
paternal mitochondrial mtDNA clearance (Figure 2A). CPS-6 deletion delays mitochondrial inner
membrane rupture, the autophagosome enclosure of paternal mitochondria, and paternal mitochondrial
elimination [17]. In addition, CPS-6 was originally recognized as an apoptotic nuclease that transferred
from mitochondria to the nucleus during apoptosis, mediating chromosome breaks [102,103]. Together,
endonuclease G plays a conserved role in paternal mtDNA clearance.
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Mechanism of mtDNA elimination in Drosophila melanogaster. Pre-fertilization, the mtDNA of sperm in
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panel, mtDNA could not clear in EndoG mutant cells during sperm elongation, but it will be deleted by
another mechanism, in which mtDNA is sequestered into a waste bag and then is excluded in vitro from
sperm cells. (b) Paternal mtDNA clearance after fertilization. In mammals (left panel), the paternal
mitochondria are labeled with ubiquitination and then degraded by the lysosome or proteasome after
fertilization. In C. elegans (middle panel), after fertilization, the paternal mitochondria are quickly
wrapped by autophagic vacuoles after fertilization and degraded by the lysosome; or the mitochondrial
inner membrane of paternal mitochondria loses their integrity and EndoG/CPS-6 (CED-3 protease
suppressor-6) relocates from the intermembrane space to the matrix to degrade paternal mtDNA
(right panel), and the paternal mitochondria are then degraded by autophagy or the proteasome
machine. (B) The putative mechanism of degradation mtDNA in somatic cells. Mitochondrial DNA
is damaged by exogenous stimulation or reactive oxygen species (ROS). Upon reaching a certain
threshold, damaged mitochondria are recognized and selectively degraded by mitophagy depending
on the PINK1 (PTEN induced kinase 1)–Parkin pathway or not.

6.2. Mitophagy-Mediated Degradation of Paternal mtDNA

Mitophagy selectively degrades damaged mitochondria, and is thought to mediate degradation
of the paternal mitochondria during embryonic development [18,104,105]; certainly, mtDNA is cleared
during this process. Recent findings have shown that fertilization triggers selective autophagy to
prevent the transmission of paternal mitochondrial DNA to progeny, and abnormal autophagy leads to
embryonic heterogeneity [18,105]. Sutovsky et al. found that autophagy and the ubiquitin–proteasome
system contributed to sperm mitophagy after mammalian fertilization (Figure 2A) [18]. In rhesus
monkey and pig cases, the paternal mitochondria in fertilized eggs are modified with ubiquitin,
and then selectively eliminated by the proteasome or lysosome [18]. The treatment of proteasome
inhibitors such as MG132 or lactacystin could block the degradation of paternal mitochondria [18,106].
On the other hand, the lysosomotropic agent ammonium chloride treatment causes the retardation of
paternal mitochondrial degradation in bovine fertilized eggs [107]. However, the precise mechanism of
paternal mtDNA degradation is still unclear. There are at least three putative pathways participating
in clearing sperm mitochondria by autophagy and the ubiquitin–proteasome system [18]. (1) The
first is P62 (sequestosome 1, SQSTM1), an ubiquitin-binding autophagy receptor, that binds to the
ubiquitinated paternal mitochondria and interacts with LC3 (MAP1LC3B, microtubule associated
protein 1 light chain 3 beta) or GABARAP (GABA type A receptor-associated protein) to deliver them
to the lysosome for degradation. (2) The second pathway involves ubiquitinated proteins that could
be extracted from the mitochondria and form aggresomes, which are the protein aggregates induced
by HDAC6 (histone deacetylase 6); HDAC6 could transport aggresomes along the microtubules
to the autophagosome for degradation. (3) Valosin-containing protein (VCP), a protein dislocase,
could extract and deliver the ubiquitinated mitochondrial membrane proteins to the 26S proteasome
for degradation [18]. In addition, prohibitin, a mitochondrial inner membrane protein, could be
ubiquitinated and recognized by the ubiquitin–proteasome system of the fertilization egg [108,109].

Similarly, in C. elegans, sperm triggers mitophagy rapidly and subsequently paternal mitochondria
degradation in the 16-cell stage (Figure 2A) [98,105]. Immediately after fertilization, autophagosomes
were formed around the paternal mitochondria [105,110]. Then, paternal mitochondria engulfed
by autophagosomes were delivered to lysosomes for degradation during early embryogenesis [98].
The knockdown or knock-out of lgg-1, an autophagy-related gene, results in the legacy of paternal
mitochondria and mtDNA in late-stage embryos and even in larvae [110]. However, the ubiquitination
of paternal mitochondria in C. elegans is not observed [105]. Therefore, the degradation of paternal
mitochondria requires LC3-dependent autophagy, but is not on ubiquitinated mitochondria in C.
elegans. Recently, the mitochondrial inner membrane protein, prohibitin-2 (PHB2), was found to be
served as an mitochondrial inner mitophagy receptor to mediate mitophagy, which is essential for
paternal mitochondrial elimination in C. elegans [111]. The loss of PHB2 results in the accumulation of
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sperm-derived mitochondria in the 64-cell to 100-cell stage. Thus, the interaction of PHB2 and LC3
could deliver paternal mitochondria to the lysosome for subsequent degradation in C. elegans.

6.3. The Clearance of Mutant mtDNA

Each mitochondrion contains multiple copies of mtDNA that show a high mutation rate due
to the ineffective repair mechanisms, which leads to the mutants of mtDNA. The individual cell
has some mitochondria containing the mutant mtDNA and some that contain the wild-type (WT)
mtDNA; this phenomenon is called heteroplasmy [112]. In heteroplasmic cells, the phenotype of a
pathogenic mtDNA mutation is determined by the ratio of mutant and WT genomes [113,114]; if the
ratio reaches a threshold, such as 90%, this causes the occurrence of diseases. The mutation of mtDNA
is accumulated over time, which is implicated in a range of diseases including aging, Parkinson’s
disease, Alzheimer’s disease, cancer, etc. Therefore, targeting mutant mtDNA to decrease the ratio
of mutant mtDNA and WT has been considered as a therapeutic strategy [114]. Several engineered
mitochondria-targeted site-specific nucleases have been used for the selective degradation of mutated
human mtDNA [113], such as engineered zinc-finger nucleases [114,115], restriction enzymes [116,117],
and transcription activator-like effector nucleases [115]. In the mouse model, mitochondria-targeted
restriction endonucleases and TALENs (transcription activator-like effector nucleases) were used to
prevent the transmission of mutated mtDNA to offspring [118]. These strategies are expected to
be applied to prevent human diseases caused by mtDNA mutations. In addition, there must be a
pathway for clearing mutant mtDNA in living organisms. In the somatic cells of Drosophila melanogaster,
mutant mtDNA could be eliminated by mitophagy, and the stimulation of autophagy, activation of
the PINK1/Parkin pathway, or decreased levels of mitofusin result in a selective decrease of mutant
mtDNA (Figure 2B) [113]. However, how human cells eliminate mutant mtDNA is still obscure, which
is a key scientific issue and need to be further explored.

7. Perspectives

mtDNA distribution is dependent on mitochondrial fission, which occurs at the endoplasmic
reticulum (ER) and mitochondria contact sites, and mtDNA are separated into two daughter
mitochondria during this process [64–66]. Thus, the disruption of mitochondrial fission may impair
mtDNA distribution. Indeed, the absence of Drp1 results in the disorganization and accumulation of
nucleoids [61]. In addition, we previously found that MIC60 (IMMT, inner membrane mitochondrial
protein) and SAMM50 (SAMM50 sorting and assembly machinery component) play an essential role
in regulating mitochondrial morphology and mtDNA distribution [77,79]. Enlarged mitochondria and
accumulated mtDNA nucleoids were displayed in the absence of MIC60 or SAMM50 [77,79], because the
SAMM50–MIC60 axis regulates mitochondrial membrane contact and cristae organization [74,119,120].
Moreover, mtDNA nucleoids are often in close vicinity to mitochondrial cristae. These findings suggest
that the mitochondrial cristae structure may be important for the distribution of mtDNA, but how
mitochondrial cristae modulate mtDNA localization remains obscure, and needs to be further explored.

Many research studies have focused on the mechanism of the paternal mtDNA clearance in sperm
or in fertilized eggs. Mitochondrial protease EndoG, the ubiquitination system, and mitophagy have
been reported to play an important role in the degradation of paternal mtDNA [18,98]. However, the
mechanism of mtDNA elimination in normal cells is not well understood. The PINK1/Parkin-mediated
mitophagy pathway has been found to be involved in the clearance of mutant mtDNA in Drosophila [115].
mtDNA is encapsulated by several proteins, including Prohibitin1, Prohibitin2, TFAM, PLOG, etc.,
which may serve as regulators of the elimination of mutant mtDNA. Indeed, the paternal mtDNA of
fertilized eggs could be eliminated by PHB2 (prohibitin-2)-mediated mitophagy [121]. In addition,
we found that Sam50 depletion-induced mtDNA clustering could protect mtDNA from elimination
by PINK1–Parkin-mediated mitophagy [79], suggesting that mtDNA distribution is associated with
mtDNA elimination. Together, we proposed that certain mitophagy receptors may specifically
recognize the mitochondria containing damaged mtDNA and mediate mtDNA elimination. Ultimately,
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future studies on the identification of mitophagy receptors for mtDNA elimination will be critical for
advancing our understanding of mitochondrial and its related diseases.
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