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Abstract. We prove that a non uniformly expanding one-dimensional system de-
fined by an interval map with an ergodic non atomic Borel probability µ with positive
Lyapunov exponent can be reduced to a Markov tower with good fractal geometrical
properties. As a consequence we approximate µ by ergodic measures supported on
hyperbolic Cantor sets of arbitrarily large dimension.

1. Introduction. It was argued in [7] that a hyperbolic measure µ preserved by
a C2 smooth surface diffeomorphism f can be approximated by ergodic measures
supported on large hyperbolic invariant sets, so describing the dynamics of (f, µ)
by a limiting process. The central idea is that hyperbolic behavior of the linearized
system, extended to certain regular neighborhoods, can be combined with non-
trivial recurrence and the existence of some positive exponential growth rates, as
topological or metrical entropy, to produce a rich and complicated orbit structure
characterized by the abundance of horseshoes. In this work we apply these ideas
to non uniformly expanding one-dimensional systems to get the following.

Theorem A Let f be a C2 interval transformation with finitely many non de-
generate critical points leaving invariant an ergodic non atomic Borel probability µ
with positive Lyapunov exponent. Then there is a sequence of f-invariant hyperbolic
Cantor sets Λn and hyperbolic measures µn supported on Λn such that

1. the sequence {µn} converges to µ in the weak topology;
2. dimH(Λn) ↑ dimH(µ) as n → +∞
3. the Hausdorff measure of Λn is uniformly bounded from below, that is:

Hα(n)(Λn) ≥ a > 0 for every n > 0.

Compare [7, Theorem S.5.9] and [13]. Throughout this work dimH(X) denotes the
Hausdorff dimension of a set X and dimH(µ) = inf{dimH(µ)(X) : µ(X) = 1 }
the Hausdorff dimension of µ. See [5] for definitions and [14] for a comprehensive
introduction to the dimension theory of dynamical systems.
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Approximations of one-dimensional systems by Markov subsets were considered
in [6] to compute local dimensions of Borel probabilities left invariant by a piece-
wise monotonic interval transformation. In contrast with Katok’s work [7] and
Hofbauer’s [6] our approach is semi-local and closer in spirit to induction tech-
niques used in one-dimensional dynamics. Roughly speaking we look for suitable
returns to a fixed neighborhood of a point in the support of µ so inducing a Markov
tower structure having the Hausdorff measure as reference measure.

A Markov tower is an abstract system T : (∆,m) � defined by a piecewise ex-
panding map of a compact subset ∆0 onto itself, an integer valued time of return
function R and a reference measure m. The subset ∆0 ⊂ ∆ is called the base of the
tower. The return time R decomposes ∆0 into countably many blocks ∆0,i such
that Ri = R | ∆0,i is a positive integer and such that TRi : ∆0,i −→ ∆ is one to
one and onto with expansion coefficient bounded from below. Moreover, the map
TR defined as TR(x) = TR(x)(x) has a Jacobian with respect to m the reference
measure having bounded backward and forward non linear distortion, up to certain
separation time s(x, y) which is the smallest n ≥ 0 such that Tn(x) and Tn(y)
lies in distinct ∆0,i. The map T is the discrete time semiflow over (∆0, T

R) with
respect to the height function R = R(x).

Theorem B Let (f, µ) be a non uniformly expanding interval transformation
satisfying the hypotheses of Theorem A. Then, for every x0 ∈ supp µ there is an
interval J containing x0 and a compact set ∆0 ⊂ J which is the base of a Markov
tower T : ∆ � with the following properties:

1. The Hausdorff measure of ∆0 is finite and positive. Even more, let d =
dimH(∆0) be the Hausdorff dimension of the base of the tower, then we can
find a constant C > 1 such that

C−1 ≤ Hd(∆0 ∩ B(x, r))
rd

≤ C (1)

for every x ∈ ∆0 and 0 < r < 1;
2. The base of the tower has positive µ-measure. Moreover, µ restricted to ∆0

is equivalent to the Hausdorff measure and µ | ∆0 is exactly dimensional with
dµ(x) = dimH(∆0) for µ-a.e. x ∈ ∆0 and

dimH(∆0) =
hµf∫

ln |f ′|dµ
; (2)

3. The time of return function R = R(x) is Hd-integrable, that is:∫
R(x)dHd(x) < ∞ . (3)

As a consequence, µ can be recovered as the unique invariant measure provided by
[18, Theorem 1] which is absolutely continuous w.r.t. Hd. The local dimension of
µ is defined as the limit

dµ(x) = lim
r→0+

ln µ(B(x, r))
ln r

, (4)

which is proved to exist for almost every point in the support of the measure µ

dµ(x) =
hµf∫

ln |f ′|dµ
µ − a.e. x ∈ [0, 1] . (5)
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In particular, µ | ∆0 is exactly dimensional with dµ(x) = dimH(µ) almost surely.
To my knowledge the formula (5) was first proved in [10] for invariant measures
preserved by interval transformations with positive entropy. Compare also [6].

Tower constructions can be followed back to Kakutani and Rokhlin. More re-
cently they have been used by several authors to get a deeper understanding of
some statistical properties of systems having large non invariant hyperbolic subsets
without being uniformly hyperbolic. The idea is to choose a subset with strong
hyperbolic properties observing that returns to this set allows the system to re-
cover the decay of hyperbolicity due to critical points or homoclinic tangencies,
for instance. Estimations on rates of convergence to the equilibrium and decay of
correlations can be obtained if some information on the tails of the return R time
{x : R(x) ≥ n} is available. See [18].

Theorem B provides a general approach to construct Markov towers for one-
dimensional dynamical system with weak expansion properties, looking at the geo-
metrical properties of the base of the tower regardless of a finer control on the rate
of decay of the tail of the return time. This provides fractal approximations of µ
supported on large horseshoes.

Theorem B also allow us to establish a connection between Ledrappier-Young
characterization of smooth measures as those satisfying the Rochlin-Pesin entropy
formula hµf =

∫
ln |f ′|dµ and existence of induced Markov transformations with

integrable return time for an endomorphism f preserving an absolutely continuous
measure with positive entropy. Cf. [3], [9], [12].

Corollary C Suppose that (f, µ) satisfies the hypotheses of Theorem A. Then,
the following conditions are equivalent:

1. The measure µ is absolutely continuous;
2. It holds the Rochlin-Pesin entropy formula, hµf =

∫
ln |f ′|dµ;

3. Given a point x0 ∈ supp µ there is an interval J such that f induces countably
many expanding branches {fni : Ji −→ J} defining a Markov transformation
with Leb(J − ⋃

i Ji) = 0, whose return time R = R(x) is Lebesgue integrable,
i.e.

∑
i |Ji| < ∞.

The present approach can be extended to higher dimensions using Pesin’s the-
ory for non invertible smooth endomorphisms of compact manifolds. This remark
may sustain a growing believe that Markov tower constructions can be used to
get a deeper understanding of geometrical and statistical properties of hyperbolic
measures in the setting of Pesin’s theory. We refer the reader to [1] and [2] for
alternative constructions of Markov structures for multidimensional non uniformly
expanding endomorphisms.

2. Outline of the proof: pseudo-Markov property for interval transfor-
mations. The proof of Theorem B will be based on an extension of the pseudo-
Markov property introduced in Definition S.4.15 and Theorem S.4.16 in [7] for
non uniformly hyperbolic diffeomorphisms of compact surfaces. See Lemma 4.1 in
Section 4 below. Compare also Lemma 2.1 [17].

A first problem to overcome is the lack of inverse for f . For this we switch to
F : (Z, µ) � the Rokhlin extension of (f, µ). The set Z is the inverse limit of f
endowed with a measure µ which is the unique lift of µ to Z making (Z, µ) iso-
morphic to ([0, 1], µ) as measure spaces. See next Section for details. Non uniform
expansion of the system (f, µ) decompose Z into F -invariant unstable manifolds so
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defining a measurable lamination. Moreover, Z may be endowed with a measurable
partition ξ subordinated to the unstable lamination. This partition is increasing,
that is F−1ξ ≥ ξ. Thus, in some sense, we can think of the Rokhlin extension,
endowed with this partition made of uncountably many elements, as a non uni-
formly expanding Markov transformation. By Luzin’s theorem, we can find large
non invariant compact sets Zδ ⊂ Z, such that the atoms of ξ vary continuously on
Zδ and such that Fn : [F−nξ](z) −→ ξ(Fn(z)) is uniformly expanding, whenever
z ∈ Zδ and Fn(z) ∈ Zδ.

We use this setup to construct a class closed subsets Σ ⊂ Z, which shall be called
rectangles. Rectangles Σ are homeomorphic to the product K × J of an interval
J ⊂ [0, 1] and a suitable Cantor set K. This homeomorphism allows to decompose
Σ into level sets Jz, homeomorphic to J and “fibers” Kz homeomorphic to K. In-
deed, let π : Z −→ [0, 1] be the projection onto the first factor of the inverse limit
and let Kz = π−1π(z) ∩ Σ be the fiber of Σ over π(z). The level sets Jz are given
by a continuous family of intervals Jz ⊂ ξ(z), contained in atoms of ξ, whose pro-
jections onto [0, 1] cover a fixed closed interval J ⊂ [0, 1], i.e. π(Jz) ⊃ J for every
z ∈ Σ. This is a consequence of the continuity properties of the Pesin set Zδ. The
decomposition of a rectangle into level sets and Cantor fibers defines a hyperbolic
product structure (see [18, Definition 1]) with the following pseudo-Markov property:
given a point x ∈ Σ which returns to Σ in n iterates, there is an stable “vertical”
rectangle S ⊂ Σ containing x and an unstable “horizontal” rectangle U ⊂ Σ con-
taining Fn(x) such that Fn maps S onto U contracting uniformly the fibers Fz

and expanding S uniformly along unstable directions. Even more, Fn have non
linear distortion along unstable manifolds bounded by constants only depending on
Zδ. Here “vertical” means that for every z ∈ S it holds Kz ∩ S = Kz, that is S
extends fully in the “stable” direction which coincides with the fiber Fz = π−1π(z).
Similarly so, “horizontal” means that U extends fully in the unstable direction. In
particular, Fn : S −→ U preserves the hyperbolic product structure of Σ. See
Lemma 4.1, Section 4.

We use pseudo-Markov property to show that first return maps to closed rect-
angles projects onto piecewise expanding Markov transformations, thus defining
a tower structure. Indeed, the first return map to Σ defines a piecewise hyper-
bolic mapping

⋃
i Fni :

⋃
i Si −→ ⋃

i Ui with infinitely many branches project-
ing onto a Markov transformation defined by countably many expanding branches
fni : Ji ⊂ J −→ J .

A main point here is that the time of return of z ∈ Si does not depend on the
level set Jz ⊂ S, so that hyperbolic branches at the Rohklin extension level project
onto uniquely defined expanding branches fn : J ′ ⊂ J −→ J . See Lemma 4.2 in
Section 4. Compare also [3, Lemma 2].

We choose ∆0, the base of the tower, as the limit set of the iterated function
system defined by the contractions τi = (fni)−1. Bounded non linear distortion
property implies that 0 < Hd(∆0) < +∞. Even more, the Hausdorff measure
is uniformly distributed, bounded by constants depending only in the distortion
and the size of the interval J . This is a well known result for Cantor sets defined
by finitely many expanding branches. See [14, Chapter 7, Section 20]. In the
present case we have infinitely many branches, so we use a limiting argument,
approximating ∆0 by a sequence of hyperbolic Cantor sets defined by finitely many
expanding branches. We prove indeed that ∆0 can be approximated by dynamically
defined Cantor sets ∆n ⊂ ∆ having a measure of maximal dimension µn converging
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to µ | ∆0 such thatµn(B(x, r)) 
 rdimH(∆n) uniformly, meaning that the ratios
µn(B(x, r))/rdimH(∆n) are bounded uniformly independent of x and n. We conclude
that µ(B(x, r)) 
 rdimH(∆0) for every x ∈ ∆0 and 0 < r < 1. This shows that µ | ∆0

is equivalent to the Hausdorff measure and exactly dimensional.
The rest of the paper is organized as follows. In Section 3 we recall some key

facts and terminology of Pesin’s theory in the setting of one-dimensional systems
using the Rokhlin extension of (f, µ). In Section 4 we prove the pseudo-Markov
property for the class of closed ’rectangles’ introduced above. Main theorems will
be proved in Section 5. Section 6 shows how we get approximating ergodic measures
supported on hyperbolic Cantor sets using ideas of [7]. Finally, Section 7 provides
a proof of a technical lemma concerning certain geometrical properties of µ which
should be well known. We provide a proof for the sake of completeness.

3. Pesin’s theory and the Rokhlin canonical extension of a non invertible
endomorphism. Throughout this work f : [0, 1] � denotes a C2 smooth interval
transformation with finitely many critical points 0 ≤ a0 < · · · < an ≤ 1. We
shall suppose that these singularities are non degenerate i.e. there are real numbers
k±

i > 0 such that
∣∣∣∣∣ln

|f ′(x)|
|x − ai|k±

i

∣∣∣∣∣ is bounded in a left (right) neighborhood of ai ,

for every i = 1, · · · , n. For the sake of brevity and following the terminology of
[9] we call these interval transformations C-maps. Hereafter, by a non uniformly
expanding interval transformation (f, µ) we shall mean a C-map f endowed with
an invariant non atomic Borel probability µ with positive Lyapunov exponent.

Now, we recall the notion the Rohklin extension of (f, µ) in order to introduce
some notation and terminology. Let F (z) = (f(x0), x0, x1, · · · ) be defined on Z =
{ {xn}n≥0 : f(xn+1) = xn }, the set of preorbits of f . The set Z, the limit inverse of
f , is a compact metric space endowed with the metric d(z, z′) =

∑+∞
n=0 2−n|zn−z′n|.

The map F acts as an homeomorphism on Z with inverse F−1(z) = (x1, x2, x3, · · · ).
Now, let π(z) = x0 be the projection onto the first factor. Clearly, π◦F = f ◦π, that
is, F : Z � is an extension of f . Moreover, there is a one-to-one correspondence
between Borel probabilities µ on [0, 1] and Borel probabilities µ of Z where µ is the
unique Borel probability on Z such that π∗µ = µ and it makes (Z, µ) isomomorphic
to ([0, 1], µ) as measure spaces. Furthermore, µ is invariant (resp. ergodic, mixing)
if and only if µ is invariant (resp. ergodic, mixing). We shall call F : (Z,B, µ) �
the Rokhlin extension of (f, µ). All this is standard and well known. See [15]
for instance. Compare [3, Theorem 5] or [8] where sufficient conditions to lift an
f-invariant measure of the interval to an invariant measure on of the Hofbauer
extension are given.

Let (f, µ) be a non uniformly expanding C-map and (F, µ) its Rokhlin extension.
Let us suppose in addition that ln |f ′| is µ-integrable and

∫
ln |f ′|dµ ≥ χ. Under

these hypotheses it is proved in [9, Proposition 7] that µ is non-degenerate, that
is, the preorbits of f approaches the singularities of the map at a subexponential
speed. Namely, let δ(z) = infi |π(z) − ai|, then it holds

lim
n→+∞

1
n

ln δ(F−n(z)) = 0 µ − a.e. (6)
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Indeed, [9, Proposition 7] says that lim infn→+∞ 1/n ln δ(F−n(z)) = 0. But this
implies (6) as you can easily check using that 0 < δ(F−n(z)) < 1 almost surely.
Moreover, by the same arguments used in [9, Lemma 5.3] we can prove that positive
orbits of f approach the critical points at subexponential speed.

Related to subexponential growth properties as those mentioned before we shall
use the following terminology and facts. We say that a measurable function φε is
tempered if it satisfies

e−ε ≤ φε(F (z))
φε(z)

≤ eε . (7)

The tempering kernel lemma states that, given a positive real number ε > 0 and a
measurable function φ > 0 with subexponential growth, we can find an ε-tempered
function φε > 0 such that φε ≥ φ. See [7, Lemma S.2.12].

The preorbit space Z comes endowed with a decomposition Ξ defined naturally
by S = {Ii}, the decomposition of [0, 1] into the intervals Ii = [ai, ai+1), where
ai are the singularities of the map. Namely, two preorbits z and z′ belongs to the
same Ξ-atom if and only if they have the same S-itinerary.

Remark 3.1. Let Ξn =
∨n−1

k=0 F kπ−1S. {Ξn} is an increasing sequence of measurable
partitions and Ξ =

∨
n≥0 Ξn. We state for further use the following easy to check

properties:

Ξn(z) = F−1Ξn+1(F (z)) and F (Ξn(z)) ⊂ Ξn+1(F (z)) . (8)

Also notice that F−1 : FF (z) −→ Fz is a fiber contraction, where Fz = π−1π(z).
Namely,

d(F−1(w), F−1(w′)) ≤ 1
2
d(w,w′) ∀ w,w′ ∈ Fz and every z ∈ Z . (9)

The next proposition states that non uniformly expanding C-maps have an un-
stable lamination subordinated to Ξ. See [9, Theorem 8] for proof.

Lemma 3.1. There are measurable real functions α > 0 and 1 < β < +∞ with
subexponential growth along the orbits of F such that:

1. Wu
α (z) = {w ∈ Ξ(z) : |π(z) − π(w)| < α(z)} is a neighborhood of z and

|π(F−n(z)) − π(F−n(w))| ≤ β(z)e−nχ|π(z) − π(w)| ∀ n ≥ 0 (10)

for every w ∈ Wu
α (z);

2. |(Fn)′(z)| ≥ (β(Fnz))−1enχ for every n ≥ 0 and almost every z ∈ Z, where
F ′(w) = f ′(π(w)) for every w ∈ Wu

α (z).

Backward contraction along unstable manifolds provides a measurable function
γ = γ(z) with subexponential satisfying:

|π(w) − π(w′)| ≤ d(w,w′) ≤ γ(z)|π(w) − π(w′)|, (11)

for every w,w′ ∈ Wu
α (z). Namely, by (10)

+∞∑
n=0

|wn − w′
n|

2n
≤

+∞∑
n=0

β(z)|π(w) − π(w′)|e
−nχ

2n

=
2eχβ(z)|π(w) − π(w′)|

2eχ − 1
.

Thus, local unstable leaves Wu
α (z) ⊂ Ξ(z), endowed with the metric d = d(z, z′) of

Z, can be seen as isometric copies of [0, 1], up to measurable corrections depending
on z.
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Lemma 3.2. There exists a measurable partition ξ of Z with the following proper-
ties:

1. ξ(z) ⊆ Wu
α (z) for every z ∈ Z and it contains a neighborhood of z, i.e. it

is subordinated to the unstable lamination. Namely, there is a measurable
function ρ > 0 such that, almost surely

{z′ ∈ Wu
α (z) : |π(z) − π(z′)| < ρ(z) } ⊆ ξ(z);

is a neighborhood in Wu
α (z);

2. ξ is increasing, that is, F−1ξ ≥ ξ. Moreover, it generates the σ-algebra of
Borel subset of Z and hµf = H(ξ, F−1ξ).

Cf. [9, Proposition 3.2]. From now on ξ(x) will denote the atom of a Pesin
partition ξ containing x. The following non linear distortion estimates follows from
non uniformly expansion along unstable leaves. See [9, Theorem 8].

Lemma 3.3. There are measurable functions γ1, γ2 : Z −→ (0,+∞), finite and
positive µ-a.e., with subexponential growth, such that

+∞∏
i=0

∣∣∣∣ F ′(F−iw)
F ′(F−iw′)

∣∣∣∣ ≤ exp{γ1(z)d(w,w′)} , (12)

for every w,w′ ∈ ξ(z) and such that∣∣∣∣ (Fn)′(w)
(Fn)′(w′)

∣∣∣∣ ≤ exp{γ2(Fn(z))d(Fn(w), Fn(w′))} , (13)

for every n > 0 and every w,w′ ∈ [F−nξ](z).

Proof. Non linear backward distortion bound (12) follows from contraction proper-
ties of backward iterates of F along the local unstable manifolds and is a standard
fact. See for instance [9, Theorem 8].

Nevertheless, due to the singularities of the map f , some care must be taken to
get (13). Indeed, we claim that for every 0 < ε � 1 there is a constant C > 0 such
that, for every n ≥ 0 there holds:

| ln |F ′(F−nz)| − ln |F ′(F−nw)|| ≤ Cenε|π(F−nz) − π(F−nw)| (14)

for µ-a.e. z ∈ Z and every w ∈ Wu
α (z). Let us suppose (14) proven, then:

ln
∣∣∣∣ (Fn)′(w)
(Fn)′(w′)

∣∣∣∣ = ln
n∏

i=1

∣∣∣∣ F ′(F−i(Fn(w)))
F ′(F−i(Fn(w′)))

∣∣∣∣

≤ 2Cβ(Fn(z))
n−1∑
i=0

e−iχ/2 d(Fn(w), Fn(w′)) ,

for every n > 0 and every w,w′ ∈ [F−nξ](z), where we use (14) and (10), choosing
0 < ε < χ/2. Therefore,

γ2(z) =
2Cβ(z)e−χ/2

1 − e−χ/2
(15)

does work.
Now, we prove (14). First we choose, for every z ∈ Z, a closed interval U(z) ⊆

[0, 1] − {a0, · · · , an} such that

lim
n→+∞

1
n

ln m(U(π(F−nz)) = 0 . (16)
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Even more, given z ∈ Z and w ∈ Wu
α (z) we may suppose that π(F−nw) ∈

U(π(F−nz) for n > 0 large enough. For this we define U(z) = {x ∈ [0, 1] :
|x − π(z)| ≤ δ(z)/4 }. As f is a C-map, for every in x ∈ [0, 1] and i = 1, · · · , n it
holds that ln |f ′(x)| 
 ln |x−ai| bounded by some constant C > 1 not depending on
x neither ai. Therefore, ln |F ′(z)| 
 ln δ(z) for µ-a.e. z ∈ Z. Using these remarks
we get

| ln |F ′(w)| − ln |F ′(w′)|| 
 | ln δ(w) − ln δ(w′)|
≤ C0

δ(z)
|π(w) − π(w′)| ,

for every w,w′ ∈ Wu
α (z) with π(w), π(w′) ∈ U(z) and a suitable constant C0 > 0.

δ(z) has subexponential growth, since µ is non degenerate, so we get a measurable
function L = L(z) such that | ln |F ′(w)| − ln |F ′(w′)|| ≤ L(z)|π(w) − π(w′)| and

lim
n→+∞

1
n

ln L(F−nz)) = 0 , (17)

for every pair of points w,w′ ∈ Wu
α (z) projecting onto the closed interval U(z).

Therefore, by the tempered kernel lemma, given 0 < ε � 1 we can find C > 1 such
that

|U(π(F−nz))| ≥ C−1e−nε and L(π(F−nz)) ≤ Cenε,

which proves (14).

Proof of the following technical lemma will be left to the end.

Lemma 3.4. Let {µξ(z)} be the family of conditional measures obtained from the
disintegration of µ with respect to the measurable partition ξ. Similarly so {Lebξ(z)},
where µ (resp. Leb) is the lifting of an f-invariant measure µ (resp. the Lebesgue
measure in [0, 1]) to Z. Then, there are measurable functions M,L : Z −→ (1,+∞)
such that:

1
M(z)

≤ µξ(z)(B ∩ ξ(z))
µ(πz(B ∩ ξ(z))

≤ M(z) m − a.e. z ∈ Z (18)

where πz = π | ξ(z) and

1
L(z)

≤ Lebξ(z)(B ∩ ξ(z))
Leb(πz(B ∩ ξ(z))

≤ L(z) almost surely, (19)

for every Borelian subset B ⊆ Z.

Therefore, ξ(z) endowed with the conditional measure µξ(z) can be seen as an
isomorphic copy of the abstract measure space ([0, 1], µ), bounded by non uniform
corrections.

We prove later Lemma 3.4 introducing a family of conditional measures µξ(z)

which produce a new σ-finite Borel measure M equivalent to µ. Namely, µξ(z) is
the pullback π∗

zµ normalized to a probability on ξ(z), and

M(B) =
∫

Zξ

µξ(B)dµξ .

where πz = π | ξ(z) and (Zξ, µξ) is the quotient space (Z, µ)/ξ. See Section 5 for
details.

Now, we can precise the notion of a Pesin set which shall be used later.

Lemma 3.5. Given 0 < δ < 1 there exists a compact subset Zδ ⊂ Z with µ(Zδ) ≥
1 − δ and a constant C = C(δ) > 0 such that:
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1. The family of unstable leaves z �−→ Wu
α (z) is continuous on Zδ;

2. The functions α, β, γ1, γ2 and ρ introduced at Lemmas 3.1 and Lemma
3.2, the functions L,M introduced in Lemma 3.4, the function γ in (11) and
diam (ξ(z)) are continuous on Zδ;

3. Let z ∈ Zδ and suppose that Fn(z) ∈ Zδ, then

|(Fn)′(w)| ≥ Cenχ ∀ w ∈ [F−nξ](z) ; (20)

even more, for every w,w′ ∈ [F−nξ](z) and 0 ≤ k < n it holds:

d(F k(w), F k(w′)) ≤ C−1e(−n+k)χd(Fn(w), Fn(w′)) ; (21)

4. Given z ∈ Zδ and n > 0 such that Fn(z) ∈ Zδ then∣∣∣∣ (Fn)′(w)
(Fn)′(w′)

∣∣∣∣ ≤ exp(Cd(Fn(w), Fn(w′)) ∀ w,w′ ∈ [F−nξ](z) . (22)

Outline of the proof
Linear and non linear expansion estimates (20) and (21) follow from Lemma 3.1 and
Lemma 3.3 using the definition of Zδ as a quotient space and standard arguments.

The existence of Zδ and the continuity of the Borel functions mentioned in
Lemma 3.5 follows from Luzin’s theorem. For the continuity of the local unstable
manifolds we argue as follows. First recall that local unstable manifolds were defined
by local contracting branches of f−1. Indeed, it is proved in [9, Theorem 8] that for
µ-a.e. z ∈ Z there is a sequence of C2 functions {gn

z }n≥0 satisfying the following:

1. gn
z : U(z) −→ [0, 1] is a C2 smooth embedding defined in an open interval

U(z) = (π(z) − α(z), π(z) + α(z)) contained in [0, 1];
2. for every x ∈ U(z) and n ≥ 0 it holds fn(gn

z (x)) = x;
3. |gn

z (x) − gn
z (y))| ≤ β(z)e−nχ|x − y| for every n ≥ 0 and x , y ∈ π(Wu

α (z)).

Therefore, φz(x) = {gn
z (x)}n≥0 is a continuous parametrization of Wu

α (z). More-
over, the map πz = π | Wu

α (z) is an embedding from Wu
α (z) into [0, 1] with inverse

φz. Each gn
z is a n-fold composition of local branches of f−1 defined over suit-

able open intervals. See [9, Theorem 8] and [16, Theorem 5.1] for details. Now,
let E = C2[0, 1]Z

+
be the space of sequences {gn}n≥0 of C2 smooth mappings

gn : [0, 1] −→ [0, 1]. E carries a natural structure of separable Banach space using
the C2 norm at the coordinate spaces. We identify the family of unstable leaves
z �−→ Wu

α (z) as a Borel measurable map z �−→ {gn
z }n≥0 taking values in E. Then,

we use Egorov-Luzin theorem to get Zδ with the claimed properties.

4. Rectangles and pseudo-Markov property: proofs of main technical
lemmas.

Definition 4.1. Let J ⊂ [0, 1] be an interval and X ⊂ Z a subset. A family of sub-
sets of Z, {Jz ⊂ Z}z∈X , is a continuous family of intervals of base J parametrized
by X if, for every z ∈ X the projection πz := π | Jz is a homeomorphism onto J and
the function Φ(z, z′) = (z, πz(z′)) defined on X ×⋃

z∈X Jz ⊂ X ×Z is continuous.

Definition 4.2. Let J ⊂ [0, 1] be a closed interval, K ⊂ Fz a closed subset of
the Cantor fiber over π(z) and {Jz}z∈K a continuous family of intervals of base J
parametrized by z ∈ K. The subset Σ(J,K) =

⋃
z∈K Jz will be called a closed

rectangle of base J and fiber K.
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Let Σ be a closed rectangle. Given a point w ∈ Σ we define Kw = π−1π(w) ∩ Σ.
This is the fiber of Σ over π(w). For any two points z, z′ ∈ Σ there is a holonomy
map φz,z′ : Kz −→ Kz′ defined as φz,z′(w) = Jw ∩ Kz′ which is an homeomorphism
between the fibers. In particular we can define an homeomorphism Φ : Σ −→
J × K, fixing a fiber K = Kz0 setting Φ(w) = (πz(w), φz,K(w)) for every w ∈ Jz

is an homeomorphism, where φz,K : Kz −→ K is the correspondent holonomy
transformation.

A closed rectangle S ⊂ Σ(J,K) is called an s-rectangle if S ∩ Kz = Kz and
S ∩ Jz ⊂ Jz is a closed subinterval, for every z ∈ S. Likewise, a closed rectangle
U ⊂ Σ will be called an u-rectangle if U ∩ Jz = Jz for every z ∈ U and U ∩ K ⊂ K
is a closed subset of K.

Lemma 4.1. Let Zδ be a hyperbolic Pesin set with µ(Zδ) > 1− δ given by Lemma
3.5. Then for every z0 ∈ Zδ ∩ supp µ there is a closed rectangle Σ containing z0

with µ(Σ) > 0 and a constant C = Cδ > 0 only depending on Zδ satisfying the
following pseudo-Markov property.

Let z ∈ Σ and n > 0 such that Fn(z) ∈ Σ, then, there exists an s-rectangle
S = Sz containing z and an u-rectangle U = UF n(z) containing Fn(z) such that
and the following holds:

1. Fn maps S onto U preserving the hyperbolic product structure of Σ: for every
w ∈ S, Fn : S ∩ Jw −→ JF n(w) is one-to-one and onto and Fn(Kw) =
KF n(w) ∩ U for every w ∈ S;

2. Fn : S −→ U is a hyperbolic mapping, that is, it expands uniformly along
unstable leaves and it contracts the fibers Kw, namely:
(a) |(Fn | Jw)′| ≥ Cenχ for every w ∈ S for every w ∈ S and
(b) d(Fn(w0), Fn(w1)) ≤ (1/2)nd(w0, w1) for every w0, w1 ∈ Kw;

3. Fn | S has bounded non linear distortion along unstable leaves: for any w ∈ K
and for every pair of points v, v′ ∈ S lying on the same level set Jw ⊂ Σ it
holds ∣∣∣∣ (Fn)′(v)

(Fn)′(v′)

∣∣∣∣ ≤ exp(Cd(Fn(v), Fn(v′)) . (23)

Moreover, there is an s-rectangle Ŝ containing S and an u-rectangle Û containing
U such that Fn extends to Fn : Ŝ −→ Û and it is hyperbolic and satisfies bounded
distortion estimate (23).

Proof. Let z0 ∈ Zδ ∩ supp µ. Then µ(B(z0, r)− {z0}) > 0 for every r > 0. Such a
point exists because µ is non-atomic.
Claim There exists a closed interval J ⊂ [0, 1] and r0 > 0 and

J ⊂ π(ξ(z)) for every z ∈ B(z0, r) ∩ Zδ .

Let ρ̃(z) be the radius of the maximal open interval contained in π(ξ(z)) and let
ζ = ζ(z) be its “center”. That is, (π(ζ) − ρ̃(z), π(ζ) − ρ̃(z)) ⊂ π(ξ(z)) and it is
maximal with respect to that property. Clearly, z �−→ ρ̃(z) is measurable so we may
suppose that it is continuous on a hyperbolic Pesin set Zδ ⊂ Z, by Luzin-Egorov’s
theorem. Now, we take 0 < r0 < ρ̃(z0)/10 such that |ρ̃(z0) − ρ̃(z)| < ρ̃(z0)/10 for
every z ∈ B(z0, r0) ∩ Zδ and we let c0 = π(ζ0) be the projection onto [0, 1] of the
“center” ζ0 of ξ(z0). Then,

J = [c0 − 2/5ρ̃(z0), c0 + 2/5ρ̃(z0)] ⊂ π(ξ(z)),
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for every z ∈ B(z0, r0) ∩ Zδ. This proves the claim. Now we define

Σ0 =


 ⋃

z∈B(z0,r0)∩Zδ

ξ(z)


 ∩ ΞN (z0) and Σ =

⋃
z∈B(z0,r0)∩Zδ

Jz ,

where Jz = π−1
z (J) ∩ ξ(z) and Ξn are the measurable partitions introduced at

Remark 3.1. {Jz} is a continuous family of intervals over J since {Wu
α (z)} with

z varying in the set B(z0, r0) ∩ Zδ is continuous. Now, let K = Fz0 ∩ Σ0 be
the intersection with the fiber of z0 with Σ and Kz = Fz ∩ Σ. Σ =

⋃
z∈K Jz

is a rectangle of base J and fiber K. Moreover, for every z ∈ Σ the holonomy
map φ = φz,z0 : Kz −→ K defined by the lamination {Jz} is a well defined
homeomorphism. Clearly µ(Σ0) > 0. Moreover, µ(J) > 0 since π(z0) ∈ J and
π(z0) ∈ supp µ. Therefore, µ(Σ) > 0 since µξ(z)(Jz) > 0 almost surely, by Lemma
3.4. Now let z ∈ Σ such that Fn(z) ∈ Σ. We define

U =
⋃

w∈F n(Kz)

Jφ(w) and Û =
⋃

w∈F n(Kz)

ξ(φ(w)) ,

where φ : KF n(z) −→ K is the holonomy map. U ⊂ Σ is a closed u-rectangle
contained in Û ⊂ Σ0. By the Markov property of the Pesin partition Fn maps
[F−nξ](w) one-to-one and onto ξ(Fn(w)), for every w ∈ Kz. Therefore, we can
find an interval IF−nw ⊂ [F−nξ](F−nw) such that

Fn | IF−nw : IF−nw −→ Jw is one-to-one and onto .

Now, let us define

S =
⋃

w∈F n(Kz)

IF−nw and Ŝ =
⋃

w∈F n(Kz)

[F−nξ](F−nw).

S is an s-rectangle contained in Ŝ and Fn maps S onto U . By the properties of the
Pesin set |(Fn)′(w)| > 1 for every w ∈ S. Furthermore, Fn(Kz) ⊂ KF n(z) using
Remark 3.1 and it is contracted uniformly by (9). So Fn : S −→ U is uniformly
hyperbolic. Forward non linear distortion bound (23) follows from (22) Lemma 3.5.

Lemma 4.2. Every hyperbolic branch Fn : S −→ U projects onto a uniquely
defined expanding branch fn : J ′ −→ J .

Compare with [3, Lemma 2].

Proof. Let z ∈ Σ and n > 0 such that Fn(z) ∈ Σ and Fn : S −→ U the cor-
respondent hyperbolic branch. By definition, S =

⋃
w∈F n(Kz) IF−nw. Fix some

w0 ∈ Fn(Kz) and let us define J ′ = π(IF−nw0) ⊂ J . As for every n > 0 we get an
expanding branch fn | J ′ : J ′ −→ J . We claim that this expanding branch does
depend on the level set IF−nw, that is: J ′ = π(IF−nw) for every w ∈ Kz.

First recall that IF−nw ⊂ [F−nξ](F−nw) were chosen such that the restriction
Fn | IF−nw is a diffeomorphism of IF−nw onto Jw. As π | Jw −→ J is a diffeomor-
phism for every w and fn ◦π = π ◦Fn we conclude that fn : J ′ −→ J is one-to-one
and onto.

Now, let us suppose by contradiction that there is w′ ∈ Kz such that J ′′ =
π(IF−nw′) �= J ′. That is, J ′ ∩ J ′′ and the set symmetric difference J ′∆J ′′ are
both non empty. If this happens then, as fn : J ′ −→ J and fn : J ′′ −→ J are
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diffeomorphisms, then there would be an interior point in one of those intervals
which is mapped to the border of J , which is absurd.

As µ(Σ) > 0 almost every point in Σ returns infinitely often to Σ. So let τ be
the first return map to Σ: τ(z) = FR(z)(z), where FR(z) ∈ Σ and F k(z) �∈ Σ for
0 < k < R. R = R(z) is the first return time to Σ.

Lemma 4.3. Let τ be the first return map of F to Σ. Then, there is countable
collection of closed s-rectangles {Si} and a collection of closed u-rectangles {Ui}
and integers ni > 0, such that:

1. µ(Σ − ⋃
i Si) = 0 and int Si ∩ int Sj = ∅ whenever i �= j;

2. τ is well defined on
⋃

i Si, up to a µ-zero set. Namely, τ | Si = Fni for every
i > 0, where ni = R(z) is the return time of Si;

3. for every n > 0 the number of s-rectangles Si such that ni = n is finite;
4. Fni : Si −→ Ui is a hyperbolic branch with expansion along unstable leaves

uniformly bounded from below and bounded non linear distortion.

Proof. First notice that the set of points which first returns at time t = n is covered
by finitely many disjoint s-rectangles {Sn

i }. Actually, if Fn(z) ∈ Σ is the first return
of z ∈ Σ and S = Sz the s-rectangle given by Lemma 4.1, then F k(S) ∩ Σ = ∅
for 0 < k < n. This is by the Markov property of Pesin partition. Indeed, if
F k(S ∩ ξ(z)) ∩ Σ �= ∅ then F k(S ∩ ξ(z)) ⊂ ξ(F k(z)), so every point in S ∩ ξ(z)
would return to Σ at time t = k. So, if R(z) = n then R(z′) = n for every
z′ ∈ S ∩ ξ(z). On other hand, F k(Kz) ∩ KF k(z) �= ∅ implies F k(Kz) ⊂ KF k(z) by
Remark 3.1. Therefore, first return time is constant at S = S(z), the s-rectangle
defined by the first return of z to Σ. By construction S ∩ ξ(w) ⊂ [F−nξ](w) for
every w ∈ S. Thus, first returns at time t = n are given by at most countably
many s-rectangles {Sn

i }. They are disjoint because Sn
i ⊂ Ŝn

i and Ŝn
i ∩ Ŝn

j = ∅
for every i, j, where we recall that Ŝ =

⋃
w∈F n(Kz)[F

−nξ](F−nw) is a disjoint
union of ξ-atoms. Furthermore, as Sn

i ∩ Jz have a diameter bounded from below
for every z ∈ K the subsets, since πwFn(Sn

i ∩ Jz) = J for every z, w ∈ K we
conclude that returns to Σ at time t = n are covered by at most finitely many s-
rectangles. Now we decompose Σ, up to measure zero, into countably many subsets
Σn = {z ∈ Σ : R(z) = n} defined by their first return time to Σ which, by the
above remarks, can be covered by at most finitely many s-rectangles Sn

j . We relabel
this collection to get a family of s-rectangles Si, u-rectangles Ui and return times
ni such that Fni : Si −→ Ui satisfies the claimed properties.

5. Proof of Theorem A and Theorem B. Proof of Theorem B
Let us begin constructing ∆0, the base of the tower. Using Lemma 4.3 and Lemma
4.2 we get countably many expanding branches fni : Ji −→ J defined over closed
intervals Ji ⊂ J , where ni is the time of return of the s-rectangle Si. Let ∆0 be the
maximal invariant subset of the piecewise expanding transformation generated by
the branches fni : int Ji −→ int J . Then, µ(∆0) > 0.

Indeed, let ∆∗
0 =

⋂
n∈Z

τ−n(
⋃

i int Si) be the maximal invariant subset of τ , the
first return map to Σ, where int Si =

⋃
z∈K int Iz. Notice that µ(Iz − int Iz) = 0

so
⋃

i Si =
⋃

i int Si, modulo zero. Therefore, µ(∆∗
0) > 0 since µ is τ -invariant

and µ(
⋃

i int Si) > 0. In particular, µξ(z)(∆∗
0 ∩ ξ(z)) > 0 for a subset of positive

measure z ∈ Σ. Hence, by Lemma 3.4, µξ(z)(∆∗
0) > 0 for every z ∈ Σ. Thus

µ(∆0) > 0, since ∆0 = πz(∆∗
0 ∩ ξ(z)).
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Let ∆i,0 = ∆0 ∩ Ji and R(x) = ni for every x ∈ ∆i,0. Then, ∆0 =
⋃

i ∆0,i

(modulo µ-zero sets). The return time function R : ∆0 −→ Z
+ is constant at each

∆0,i and return maps fni : ∆0,i −→ ∆0 are one-to-one and onto.
Let ∆ = { (x, n) ∈ ∆0 × Z

+ : n < R(x) } and define ∆l = {(x, n) ∈ ∆ : n = l}
as the l-th level of the tower. ∆Ri−1,i is at the top of the tower over the block
∆0,i. Now, we define T : ∆ � as being T (x, l) = (x, l + 1) if l + 1 < R(x)
and T | ∆Ri−1,i = fni , which maps the top of the tower onto ∆0. The map
T : ∆ � from the abstract measure space (∆,B,Hd) onto itself is the Markov tower
structure we were looking for. With this notation we define TR : ∆0 −→ ∆0 as
TR(x) = TR(x)(x).

Lemma 5.1. Let ∆0 be the base of the tower and µ∗ the restriction of µ to ∆0

normalized to a probability. There exists a sequence of hyperbolic Cantor sets ∆n
0

contained in ∆0 and measures of maximal dimension µ∗
n such that ∆0 =

⋃
n>0 ∆n

0

and µ∗
n → µ∗. Moreover, there is a constant C > 1 independent of n such that

C−1 ≤ µ∗
n(B(x, r))

rα(n)
≤ C for every x ∈ ∆n

0 and 0 < r < 1 . (24)

for every n > 0, where α(n) = dimH(∆n
0 ) is the Hausdorff dimension of the set.

We continue the proof of Theorem B and let the proof of this lemma to the end
of this Section.

By Lemma 5.1 the set ∆0 has positive and finite Hausdorff measure and its uni-
formly distributed. Indeed, passing to the limit at the inequality (24) µ(B(x, r)) 

rdimH(∆0) for x ∈ ∆0, 0 < r < 1. This proves that the Hausdorff measure of ∆0 is
non trivial, i.e. 0 < Hd(∆0) < +∞, by Frostman’s Lemma, proving that Hausdorff
measure on ∆0 does work as a reference measure for the tower.

Moreover, as µ(B(x, r)) 
 rdimH(∆0) we conclude µ | ∆0 is equivalent to the
Hausdorff measure. In particular, R(x) is integrable w.r.t. Hd, since first return
time function R = R(z) is µ integrable, by Kac’s formula

∫
R(z)dµ(z) = (µ(Σ))−1.

In particular, ∫
R(x)dHd(x) =

+∞∑
i+0

niHd(∆0,i) < +∞ , (25)

where d = dimH(∆0). Moreover,

dimH(∆0) = lim
r→0+

ln µ(B(x, r))
ln r

almost everywhere, so proving that the local dimension of the measure µ at x, exists
for almost surely for x ∈ ∆0 and is constant: dµ(x) = dimH(∆0). Therefore, µ | ∆0

is exactly dimensional, so dµ(x) = dimH(µ | ∆0) for µ-a.e. As µ is ergodic then⋃
j f j(∆0) covers [0, 1], up to a measure zero subset. This proves that µ is exactly

dimensional. Now, by (5) we conclude

dimH(∆0) =
hµf∫

ln |f ′|dµ

so proving (2).
To conclude the proof of Theorem B, we have to show that TR has a Ja-

cobian w.r.t. the reference measure and that it has bounded distortion. Now,
fni : ∆0,i −→ ∆0 has a Jacobian JHfni w.r.t. to the Hausdorff measure, indeed
JHf = |f ′|d. Therefore TR has a Jacobian JHFR which satisfies a bounded dis-
tortion property up to certain separation time s(x, y) which is the smallest n ≥ 0
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such that (TR)n(x) and (TR)n(y) lies in distinct ∆0,i. Namely, let ℘ = {∆0,i} be
the partition of ∆0 defined by the return time and ℘n = (TR)−1℘, then:

s(x, y) = sup{n > 0 : ℘n(x) = ℘n(y) }
Then, we can find constants C > 0 and 0 < α < 1 such that

∣∣∣∣JH(TR)n(x)
JH(TR)n(y)

− 1
∣∣∣∣ ≤ Cαs(x,y)−n) (26)

for every x, y ∈ ∆0. Indeed, by (23)∣∣∣∣ (f
n
i )′(x)

(fn
i )′(y)

∣∣∣∣
d

≤ exp(dCd(fn
i (x), fn

i (y)) .

Therefore, we can find a constant C ′ > 1 such that∣∣∣∣JH(TR)n(x)
JH(TR)n(y)

− 1
∣∣∣∣ ≤ C ′λ−(s(x,y)−n)d((TR)s(x,y)(x), (TR)s(x,y)(y)) ,

using the definitions of JH(TR), the separation time and expansion properties of
TR. Inequality (26) follows inmediatly from the above estimative.

Proof of Theorem A
By Lemma 5.1 dimH(∆n

0 ) −→ dimH(∆0). Now we let Λn =
⋃+∞

j=0 f j(∆n
0 ) be

the f-invariant saturated of ∆n
0 . For every n > 0 there exists mn > 0 such that

Λn =
⋃mn

i=1

⋃ni

j=0 f j(∆n
0 ), therefore dimH(Λn) = dimH(∆n

0 ) and Hα(n)(Λn) is uni-
formly bounded away from zero since Hα(n)(∆n

0 ) ≥ C−1 for every n > 0 and a
suitable constant C > 1. Hence, by (2) and (5) dimH(Λn) −→ dimH(µ).

The existence of a sequence of hyperbolic measures µn of maximal dimension
supported on Λn converging to µ follows using arguments similar to those used in
the proof of Lemma 5.1. See [7] or [17, Lemma 6.1]. This completes the proof of
Theorem A.

Proof of Corollary C
By Theorem B, dimH(∆0) = 1 iff ∆0 has positive Lebesgue measure, since ∆0 is a
regular Cantor set. Therefore µ is an absolutely continuous invariant measure iff it
satisfies the Rokhlin formula. Moreover, if µ satisfies the Rokhlin entropy formula,
then

µz(B) =

∫
ξ(z)∩B

∆(z, w)dLebz(w)∫
ξ(z)

∆(z, w)dLebz(w)
, (27)

where

∆(z, w) =
+∞∏
i=0

|F ′(F−iz))|
|F ′(F−iw))| .

See [9]. Now, recall that µz(B) 
 Lebz(B) for every Borelian B ⊆ Z for every
z ∈ Zδ, bounded by some constant C = C(δ) > 1, using Lemma 3.4 and Lemma
3.5. In particular, µz is equivalent to Lebz and then it is equivalent to Lebz for every
z in a hyperbolic Pesin set. So, arguing as in Theorem A’s proof we find Σ ⊂ Z with
positive measure and a collection of non-overlapping s-rectangles Si ⊂ Σ and u-sets
Ui such that τ maps each Si hyperbolically onto Ui and such that Lebz(Σ−⋃

i Si) =
0 almost surely. So, Leb(J −⋃

i Ji) = 0, ∆0 = J and
∑+∞

i=0 ni|Ji| < ∞ since Leb is
equivalent to Lebz by Lemma 3.4, concluding the proof.
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6. Proof of Lemma 5.1. Let T :
⋃

i Ji −→ J be the Markov map defined by the
expanding branches fni : Ji −→ J . Given 0 < δ < 1 we can find N = N(δ) > 0,
the first integer such that

∑N
i=1 diam (Ji) ≥ (1 − δ)diam (

⋃+∞
i=1 Ji). Then, choose

J(δ) ⊆ J a closed interval such that
⋃N

i=1 Ji ⊆ J and diam (J(δ)) ≥ (1 − δ/2)|J |.
Now, we choose closed intervals Ji(δ) ⊆ Ji such that Ti : Ji(δ) −→ J(δ) is 1-

to-1 and onto and define Tδ | Ji(δ) = Ti | Ji(δ). Denote ℘(δ) = {Ji(δ)}1≤i≤N .
Tδ :

⋃
i Ji(δ) −→ J is expanding and has bounded distortion with the same coeffi-

cients as T and ℘(δ) is a Markov partition for Tδ. As the atoms of ℘(δ) are pairwise
disjoint, so Λδ, the maximal invariant subset of Tδ is a topologically mixing hyper-
bolic Cantor set conjugated to a full-shift in N = N(δ) symbols. Notice that the
non linear distortion and the expansion coefficients of Λδ are independent of δ.

Now, 0 < Hα(Λδ) < +∞ and there is a unique ergodic Gibbs measure µδ

equivalent to Hα | Λδ such that

C−1 inf
i

diam (Ti(Ji)) ≤ µδ(B(x, r))
rdimH(Λ)

≤ C sup
i

diam (Ti(Ji)) (28)

for every x ∈ Λ and 0 < r < 1. C > 1 is a universal constant which only depends
on the distortion and the expansion coefficient so it is constant and independent of
δ. µδ is the measure of maximal dimension of Λ,m that is, dimH(µδ) = dimH(Λ).
See [14]. Now, we fix 0 < δ0 < 1 such that for every 0 < δ < δ0 and N = N(δ) it
holds

(1 − δ0/2)diam (J) ≤ min
P in℘(δ)

diam (TδP ) ≤ max
P∈℘(δ)

diam (TδP ) ≤ diam (J).

We get a constant C > 1 such that for every n > 0, µδ(B(x, r)) / rdimH(Λ(δ)) is
bounded in [C−1, C] for every x ∈ Λδ and 0 < r < 1 and for every 0 < δ < δ0.

Let {φi}i>0 be a dense countable subset of C0(J). We fix first an ε(n) > 0 such
that

|x − y| < ε(n) =⇒ |φi(x) − φi(y)| < 1/4n, for i = 1, · · · , n.

Let ℘ = {Ji}i>0 the initial Markov partition of T . We can find for every n > 0 an
integer Nn > n such that

diam (T−Nn+k℘) < ε(n) for k = 0, · · · , n.

The following property of our construction will be used below. Given a sequence
β(n) −→ 1 we may choose δn > 0 small enough in the above construction such
that µ∗(

⋃
T−Nn℘(n)) ≥ β(n) where ℘(n) = ℘(δn) is the initial Markov partition

of Λ(δn). This follows since µ | ∆0 is ergodic and T -invariant.
With the above choice of constants we define ∆n

0 = Λ(δ(n)) and µ∗
n be the

unique (Gibbs) measure of maximal dimension of ∆n
0 . Clearly, µ∗

n satisfies the
uniform distribution property (24) and ∆0 =

⋃
n ∆n

0 as stated in Lemma 5.1. We
will prove below that µ∗

n −→ µ∗.
For this, let us define

Γn = {x ∈ J : |1
k

k−1∑
j=0

φi(T j(x)) −
∫

φi(y)dµ∗(y)| <
1
4n

,

∀ k ≥ n i = 1, . . . , n}
µ∗(Γn) −→ 1 by ergodicity. Now we choose δ(n) −→ 0+ above such that there is
an integer n0 > 0 with

µ∗(
⋃

{P ∈ T−Nn℘(δ(n)) : µ∗(P ∩ Γn) > 0}) ≥ µ∗(Γn)
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for every n ≥ n0. In particular ℘(n) ≡ {P ∈ T−Nn℘(δ(n)) : P ∩ Γn �= ∅} is
non-empty and we define ℘(n) = {TNn(P ) : P ∈ ℘(n)} and define

∆n
0 =

⋂
k≥0

T−k(
⋃

℘(n))

as the maximal invariant subset of T in
⋃

℘(n). ∆n
0 is a topologically mixing,

hyperbolic Cantor set, conjugated to some shift with mn ≤ ν(δ(n)) symbols. We
also have

µ∗(
⋃

℘(n)) −→ 1 and Leb(
⋃

℘(n)) −→ Leb(
⋃
i

Ji),

since µ∗(Γn) −→ 1, where Leb is the Lebesgue measure.
Now, take a point xP ∈ P ∩Γn for every P ∈ ℘(n) ⊆ T−Nn℘(n) which intersects

Γn to form a subset Dn ⊆ Γn. Thus, given x ∈ ∆n
0 , N > 0 and a piece of the orbit

{T j(x) j = 0, · · · , nN}
we find an ordered sequence xk ∈ D, j = 1, · · · , N such that

|T j(x) − T j(xk)| < ε j = (k − 1)n, · · · , kn − 1

for every k = 1, · · · , N . Then ∣∣∣∣∣∣
1

nN

nN−1∑
j=0

φi(T j(x)) − mu(φi)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
1
N

N∑
k=1

{ 1
n

n−1∑
j=0

φi(T (k−1)n+j(x)) − 1
n

n−1∑
j=0

φi(T j(xk))}
∣∣∣∣∣∣ +

∣∣∣∣∣∣
1
N

N∑
k=1

{ 1
n

n−1∑
j=0

φi(T j(xk)) − µ∗(φ)}
∣∣∣∣∣∣ ≤

1
2n

for i = 1, · · · , n. For every n > 0 and a generic point x ∈ ∆n
0 for µ∗

n we can find
Kn > 0 such that ∣∣∣∣∣∣

1
k

k−1∑
j=0

φi(T j(x)) − µ∗
n(φi)

∣∣∣∣∣∣ <
1
2n

∀ k ≥ Kn

and Kn −→ +∞. Now for each n ≥ n0 take Nn > 0 such that Nn ≥ Kn and
xn ∈ ∆n

0 as above then

|µ∗
n(φi) − µ∗(φi)| <

1
n

∀ i = 1, · · ·n
and we are done.

7. Proof of Lemma 3.4. Let µ be any Borel probability in [0, 1], µ its lift to Z
and let µz be the family of conditional measures obtaining by pulling-back to ξ(z),
via πz = π | ξ(z), the Borel measure µ | π(ξ(z)), normalized to a probability. This
family {µz} integrates to a new σ-finite measure µ∗ on Z defined by

µ∗(B) =
∫

Zξ

µz(B ∩ ξ(z)) dµξ(ξ(z)),
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where (Zξ,Bξ, µξ) is the quotient space of Z defined by the measurable partition ξ.
Cf. [15]. We first prove that

µz � µz µ − a.e. z ∈ Z (29)

For this we notice that, for every Borel measure µ on [0, 1], it holds µ(π(B)) ≥ µ(B)
for every Borelian B ⊆ Z. This can be seen from the definition of the lift measure
(see below). Now, by definition, µ∗(B) = 0 if and only if µz(B∩ξ(z)) = 0 for µξ-a.e.
ξ(z) ∈ Zξ so that µ(π(B ∩ ξ(z)) = 0 for µ-a.e. z ∈ Z. Therefore, µ(π(B)) = 0 and
then µ(B) = 0, proving that µ absolutely continuous with respect to µ∗. Hence,
µz � µz almost surely. Indeed, µ has a density w.r.t. µ∗ and then

dµξ(z)

dµz
(w) =

dµ

dµ∗ (w) almost surely.

Cf. [11, Proposition 4.1].
Now, let us recall the lift a measure to the canonical extension. For each n ≥ 0

we let πn : Z −→ [0, 1] be the projection onto the n-th factor: πn(z) = xn. Given
µ ∈ M we define µn(π−1

n (B)) = µ(B) for B ∈ B any Borel subset in [0,1]. The
measure

µn : Bn −→ [0, 1]
is a countably additive, non-negative function and µn(∅) = 0 defined over the σ-
algebra Bn = π−1

n B. Clearly
∨+∞

n=0 Bn = B. Hence,

µ ≡
+∞⊗
n=0

µn : B −→ [0, 1]

is a Borel probability on Z with π∗
nµ = µ for every n ≥ 0. Let B =

⋂n
k=0 π−1

k (Bk).
Then, Leb(B) =

∏n
k=0 Leb(Bk) where Bk = πk(B) for k = 0, · · · , n. Now, for Leb-

a.e. z ∈ Z we get πk(B ∩ ξ(z)) = gk
z (π(B ∩ ξ(z))) ⊆ Bk for k = 0, · · · , n, where

gk
z are the contractive inverse branches of fk associated to the pre-orbit z ∈ Z.

Leb(B) = 0 iff there is some 0 ≤ k ≤ n such that Leb(Bk) = 0. In particular,
Leb(πk(B ∩ ξ(z))) = 0 for Leb-a.e. z ∈ Z. Thus, Leb(π(B ∩ ξ(z))) = 0 for Leb-a.e.
since gk

z are non singular maps. We conclude that Leb∗(B) = 0. Therefore

Leb∗ | Bn � Leb | Bn ∀ n ≥ 0,

where Bn =
∨n

k=0 π−1
k B and then Leb∗ will be absolutely continuous w.r.t. Leb,

since the sequence Bn generates the Borel subsets of Z. We conclude Lebz � Lebξ(z)

for Leb-a.e. z ∈ Z. Thus, by (29), Lebz is equivalent to Lebξ(z) almost surely. Let
us consider now an f invariant Borel probability µ and let B ∈ Bn. µ(B) = 0 iff
there exists 0 ≤ k ≤ n such that µ(Bk) = 0. But,

πk(B ∩ ξ(z)) = gk
z (π(B ∩ ξ(z))) ⊆ Bk.

Thus, µ(gk
z (π(B ∩ ξ(z)))) = 0 for µ-a.e. z ∈ Z. Therefore, µ(f−k(π(B))) = 0, since

f−k(π(B)) =
⋃

{gk
z (π(B ∩ ξ(z)) : z ∈ π−1π(B)}

and then µ(π(B)) = 0, by the invariance of µ. We conclude that µz is absolutely
continuous w.r.t. to µξ(z) for µ-a.e. z ∈ Z so they are equivalent almost surely.
QED
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