KnowOps: Towards an Embedded Knowledge Base for Network Management and Operations

Xu Chen*, Yun Mao*, Z. Morley Mao†, Kobus Van der Merwe*

*AT&T Labs – Research †The University of Michigan – Ann Arbor
What is Network Management?

• In short
 – Keep the network in a “healthy” state
 – Deliver SLA-compliant services for customers

• Not so short
 – Planned maintenance/upgrade
 – Fault management
 – Configuration management
 – Traffic/performance management
 – Security management
 – ...
Simplified View of Network Management Systems

- Ticketing System
- Process Automation
- Event Correlation
- Network Instrumentation
- Network Interface
- Configuration Management
- Network Inventory
- Event Manager
Simplified View of Network Management Systems

- Network Instrumentation
- Event Correlation
- Process Automation
- Ticketing System
- Vendor configuration example
- Provider service design documents
- Operational Experience/Domain Knowledge
- Network Inventory
- Configuration Management
- Interface

Knowledge Base

- Captured in text-based documents
- Require manual work to inject from documentation to management systems
- Difficult to keep in-sync across systems

Network
KnowOps: Using Shared and Machine-readable Knowledge Base

- Ticketing System
- Process Automation
- Event Correlation
- Network Instrumentation
- Embedded Knowledge Base
- Event Manager
- Network Inventory
- Configuration Management
- Network Interface
- Network
COOLAIID [CoNEXT 2010]

- Capture domain knowledge in a declarative language
 - Vendors: protocol mechanisms, dependencies
 - Service providers: service realizations, misconfigurations
- Automated reasoning mechanisms *decoupled* from the rules
 - Bottom-up reasoning
 - Top-down reasoning
Shared Knowledge Base in KnowOps

- What to do?
- What should be avoided?

- What events should be correlated?
- What time windows should be used?

- What to monitor?
- What to alarm?

- What to do?
- What should be avoided?

Process Automation
Event Correlation
Network Instrumentation

Service Requirements
Vendor Rules
Service Provider Rules
Network Configuration

Network
Preliminary Experience

• DROOLS: open-source business logic
 – Rule engine
 – Process automation
 – Event correlation
 – Optimization/Planning
Example VPLS

MPLS, RSVP, OSPF

P

P

BGP Session

LSP Connection

VPLS Connection

Site1

Site2
Example: VPLS

Graph:
- VPLS
 - LSP
 - MPLS
 - BGP
 - RSVP
 - OSPF
- Interface Configuration
Rules for OSPF

Rule 1

Dependency on interface configuration

rule "ospf_local"

dialect "mvel"

dialect "mvel"

dialect "mvel"

when

$int : interface(ospfarea != "", adminEnabled == true, &r : router)
$router : Router(this == $r)
$pre : InterfacePrefixConfig(interface == $int)
	hen

OspfRoute fact0 = nf.createOspfRoute();
fact0.setArea($int ospfarea); fact0.setRouter($router);
fact0.setPrefix($pre.prefix); fact0.setNexthop "local" |

insertLogical(fact0);

end

Rule 2

rule "ospf_remote"

dialect "mvel"

dialect "mvel"

when

$route: OspfRoute($pre : prefix, $r1 : router, $area : area)
$int1: Interface(router -- $r1, adminEnabled -- true, ospfarea -- $area)
$int2: Interface(adminEnabled -- true, ospfarea -- $area)
$link0: Link(interfaces[0] == $int1 && interfaces[1] == $int2) |

not (exists |OspfRoute(area == $area, prefix == $pre, router == $r2, metric <= (route.metric + $int1 ospfMetric)))

then

OspfRoute fact0 = nf.createOspfRoute();
fact0.setArea($area); fact0.setRouter($r2) ;
fact0.setPrefix($pre); fact0.setNexthop($int1.name);
fact0.setMetric($route.metric + $int1 ospfMetric)
insertLogical(fact0);

end
Planned Maintenance Example

Automation Process

Pre-maintenance check

Disable related alarms

Shut down interface

Device Vendor Rules

Service Provider Rules

“Disrupting VPLS service should raise a warning.”
Conclusions

• Take-aways
 – Knowledge transfer in current management systems are mostly text-based, thus costly and error-prone to build and maintain
 – We should build management systems based on a machine-readable, shared, and embedded knowledge base

• Challenges
 – What does the knowledge base really look like
 – Better integrate different contributors
 – Migrate from existing systems

• Future (on-going) work
 – Drools-based implementation
 – Application to mobility management tasks
Questions? Comments?

- Thanks!