
1

Learning Classification Rules Using Lattices

Mehran Sahami

Robotics Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

Telephone: USA (415) 725-8784
Fax: USA (415) 725-1449
sahami@cs.Stanford.EDU

Abstract

This paper presents a novel induction algorithm, Rulearner, which induces
classification rules using a Galois lattice as an explicit map through the
search space of rules. The construction of lattices from data is initially
discussed and the use of these structures in inducing classification rules is
examined. The Rulearner system is shown to compare favorably with
commonly used symbolic learning methods which use heursitics rather than
an explicit map to guide their search through the rule space. Furthermore,
our learning system is shown to be robust in the presence of noisy data.
The Rulearner system is also capable of learning both decision lists as well
as unordered rule sets and thus allows for comparisons of these different
learning paradigms within the same algorithmic framework.

Research Area: inductive learning

Keywords: lattices, decision lists, rule induction

1 Introduction

 Research in rule induction by means of search [Michalski, 1969; Mitchell, 1982; Clark

& Niblett, 1989] has been on-going for some time. Such search methods generally attempt

to find rules which can either be further specialized or generalized to fit a given data set.

While some of these systems, such as Version Spaces [Mitchell, 1982], make direct use of

the data to be learned during rule induction, such methods are highly sensitive to noisy data

and quickly degrade in performance in these cases. In other systems, the search through

the space of possible rules is generally guided by heuristics aimed at finding a good fit to

the data as opposed to using the data to build an explicit map through the space of possible

2

rules to induce. In this capacity, such algorithms are only data-driven to the extent that the

heuristics employed in them make use of the data to be learned.

 We present the Rulearner system which seeks to combine both the direct use of data

with robustness in the presence of noise during the rule induction process. Since the

algorithm uses a Galois lattice constructed from training data [Oosthuizen, 1988;

Oosthuizen & McGregor, 1988] as an explicit guide through the rule space, the algorithm is

directly data-driven as it does not simply heuristically fit the training data, but actually uses

commonalties inherent in the data to induce classification rules. Furthermore, it can readily

be proven that for any given set of instances a unique lattice will be constructed [Kourie et

al., 1992] so that the induction performed using such a lattice will not suffer from ordering

effects of the training data. Moreover, our system is capable of inducing both an unordered

(and non-overlapping) set of classification rules as well as an ordered set of rules, also

called a decision list [Rivest, 1987]. This allows for the Rulearner system to be used in

making direct comparisons between these two learning paradigms within a single

algorithmic framework. Lastly, it is also possible to augment a lattice constructed from

training data with domain knowledge [Oosthuizen, 1988] prior to rule induction with

Rulearner, but this enhancement is beyond the scope of this paper.

 Several experiments with the Rulearner system are presented comparing it with the

commonly used symbolic learning systems C4.5 [Quinlan, 1993] and CN2 [Clark &

Niblett, 1989] on the standard machine learning test-bed of the MONK'S Problems [Thrun

et al., 1991] as well as the real world domain of the Yugoslavian Breast Cancer data set

[Kononenko et al., 1984; Oosthuizen, 1993]. We chose to compare Rulearner with these

algorithms (as opposed to the other lattice based algorithms described in the later section on

related work) as they are the most widely used (and often most effective) induction

algorithms for decision trees and decision lists respectively, thus allowing us to examine

the performance of our algorithm within both of these frameworks against successfully

fielded systems.

3

2 Lattice Construction1

 A lattice is defined to be a directed acyclic graph in which any two nodes, u and v, have

a unique join (a node "higher" in the graph to which a u and v are connected by minimal

length paths) and a unique meet (a node "lower" in the graph which is connected to u and v

by minimal length paths) — referred to respectively as least upper bounds and greatest

lower bounds in formal mathematics. In order to construct such a lattice, we begin by first

creating a single node for every possible feature that an instance in the training set may

have. We refer to these as feature nodes. Then for each instance vector in the training set,

we create a new node (referred to as an instance node) and connect this node to the

corresponding feature nodes for every feature that is present in the instance. While these

connections are being made, it is important to make sure that the "lattice property" is

maintained (that is that every node has a unique join and a unique meet). For example, as

seen in Figure 1, if we connect the instance node ABC and the instance node ABD to their

respective feature nodes, we will violate the lattice property as the two instance nodes no

longer have a unique join (both nodes A and B fit the definition of the join of the two

instances). Therefore, we must create a new node (called an internal node), representing

the feature combination AB, as shown in Figure 2, and make the appropriate connections

with regards to this node. Now the lattice property is once again restored as AB is the

unique join of ABC and ABD. Note that in a proper lattice, we also require a node at the

very top of the lattice (to which all the feature nodes are connected) and a node at the very

A B C A B D

A B C D

A B

A B C A B D

A B C D

Figure 1 Figure 2

1The lattice construction algorithm given here is based on [Oosthuizen, 1988].

4

bottom of the lattice (which is connected to all the instance nodes), but these nodes are left

off in our discussion for the sake of brevity.

 The process of adding instance nodes to the lattice and restoring the lattice property is

repeated until all instances in the training set have been added to the lattice. Thus the

generation of such a lattice is simply a straight-forward mechanical process. It is very

important to note (and it can be easily proven but is beyond the scope of this paper) that a

unique lattice will always be generated from any given set of data. The order of adding

instance nodes to the lattice during its construction will not effect the final resultant lattice as

the same unique lattice structure will always be constructed from the same data set. In our

work, all lattices were generated as explained above using the GRAND program

[Oosthuizen, 1988].

 We should also point out some useful definitions in regard to the lattice structure:

Definition: The upward closure of node u in the lattice, denoted UC(u), is defined to be

the set of all nodes that can be reached from u following upward arcs in the lattice,

including the node u itself. Thus, UC(ABC) in Figure 2 is: {ABC, AB, A, B, C}.

Definition: The downward closure of a node u, denoted DC(u), is defined to be the set of

all nodes which contain u in their upward closure. So, DC(B) in Figure 2 is: {B, AB,

ABC, ABD}.

Definition: The cover of a node u, denoted Cover(u), is the number of instance nodes in

DC(u). For example, Cover(A) is 2 in Figure 2.

These definitions will prove useful in the next section which explains how the lattice is

used to perform rule induction in the Rulearner system.

5

3 The Rulearner Algorithm

 The Rulearner algorithm takes as input a lattice, L, and a set of instance classification

labelings, C, which correspond to the instance nodes in L. The algorithm produces a set of

symbolic classification rules as output. The user is also able to specify a noise parameter to

the system as a percentage figure by which each induced rule can misclassify some portion

of the training instances that it applies to. Furthermore, the user can configure the system

to induce either a decision-list or an unordered set of rules, and can also decide whether the

classification rules induced should only identify one given labeling (i.e. derive only rules

with a "positive" labeling) or if the rules should attempt to classify all instances in the

training set. While the basic framework of the algorithm is general enough to properly deal

with more than two classification labelings, we present the algorithm here as a binary

classifier for easier understanding.

PROCEDURE FindRules(L, C)
BEGIN
 Initialize all nodes in the lattice to be "active"
 Label all nodes in the lattice (using the noise parameter)
 WHILE (there are still "active" nodes in the lattice)
 BEGIN
 u ← node with most instances in DC and non-MIXED labeling
 MakeRuleFromNode(L, C, u)
 FORALL (v ∈ DC(u) where v is an instance node)
 BEGIN
 FORALL (w ∈ UC(v))
 BEGIN
 Decrement the cover of w
 IF (cover of w ≤ 0)
 THEN mark w "inactive"
 END
 Mark v as "inactive"
 END
 IF (Decision-List)
 THEN re-label "active" nodes
 END
END

PROCEDURE MakeRuleFromNode(L, C, u)
BEGIN
 antecedent ← feature nodes in UC(u)
 label ← label of node u
 Produce rule "antecedent implies label"
END
Table 1: Pseudo-code for the Rulearner algorithm. Note that L is the input lattice and C is the
classification labelings for the instances which were used in building L.

6

 The algorithm begins by initializing all nodes in the lattice to be "active," indicating that

all nodes begin as possible candidates for rule induction. Then all nodes in the lattice are

labeled, using the noise parameter if applicable. The labeling process involves first labeling

all instance nodes (whose labelings are given in C) and then filtering these labelings up the

lattice. A node is given a particular label, let's say POSITIVE, if the instance nodes in its

downward closure are all of the class POSITIVE (allowing also for a certain percentage of

mislabelings given by the noise parameter). If there are insufficient instance nodes of any

given class in the downward closure of a node to give that node a particular label, then the

node is labeled MIXED. This process is carried out for every node in the lattice. After this

initialization phase, we begin the rule induction process.

 As long as "active" nodes remain in the lattice, there are still candidate nodes for rule

induction and hence a new rule is induced. We identify the node in the lattice which has the

most instances in its downward closure and has a non-MIXED labeling. If several nodes

have the same number of instances in their downward closure, we prefer the node which

has the fewest features in its upward closure — an application of Occam's Razor. We then

produce a rule from this node by having all the feature nodes in the upward closure of the

node imply the labeling that the node has. Intuitively, this corresponds to finding a

minimal set of features that covers a large portion of the instance space with a given

labeling. An important factor in this minimal set of features is that it is directly derived

from commonalities in the underlying data (which was used to build the lattice) and hence

the antecedent of the rule induced is directly driven by the data in the training set.

 After such a rule is derived, we must then update the appropriate nodes in the lattice so

that we can effectively record that a given portion of the instance space has been classified.

We do so by examining each instance node v in the downward closure of the node u we

just used to derive a rule from. For every such node v, we decrement the cover of each

node in UC(v) by one to effectively denote that the instances covered by the most recently

derived rule are no longer of concern to us. Moreover, we mark as "inactive" any nodes

7

whose cover becomes 0, indicating that these nodes are not worthy of consideration for

rule derivation since they no longer cover any instances which have not already been

classified by some previous rule. Finally, we also mark every node in DC(u) "inactive"

since no more specific instance of the rule we just derived will cover any instances that are

not already covered by the more general rule.

 At this point, if we are generating a set of unordered rules, we can simply repeat the

process above by finding a new "active" node which has the largest cover and a non-

MIXED labeling. If, however, we are deriving a decision-list, then prior to repeating the

process above, we re-label all "active" nodes in the lattice. In this way, some nodes which

may have previously been labeled as MIXED may now be labeled with a specific class if

enough instances in the downward closure of that node have already been classified by a

previously derived rule and are now marked "inactive." Thus in the decision-list format,

we may have rules that overlap in the portion instance space that they classify, but since

these rules are applied in an ordered manner, there is no ambiguity as to how to classify

any given instance. The rule derivation process is repeated until no more "active" nodes

remain in the lattice, indicating that we have derived enough rules to properly partition the

instance space based on the data inherent in the lattice.

4 Experimental Results

4.1 The MONK’S Problems

 The Rulearner system was first tested on the MONK'S Problems, a standard machine

learning test-bed of binary classification problems. Each of the MONK'S Problems is

defined to have a unique training and complete testing set, so that comparisons between

algorithms will not be unduly effected by slight variations in the training data.

 During these experiments, several configurations of each system were used to capture

the best performance of those systems compared to Rulearner. For CN2 both

8

MONK'S Problem #1

Algorithm Accuracy
CN2 (decision-list) 100.0%

 CN2 (unordered rules) 98.6%
C4.5 (unpruned tree) 76.6%
C4.5 (pruned tree) 75.7%
C4.5 -s (unpruned tree) 94.4%

 C4.5 -s (pruned tree) 100.0%
Rulearner (decision-list) 100.0%
Rulearner (unordered rules) 100.0%
Rulearner (unordered, pos rules only) 100.0%

Table 2

descision-lists (ordered rule sets) and unordered rule sets were used. Moreover the CN2

rule significance threshold was set to produce the best results on a known noiseless

domain. For C4.5, which fared very poorly when attribute grouping (the -s flag) was not

used, we include results which make use of this additional feature. We also test three basic

configurations of the Rulearner system. In the first configuration, a decision-list was

derived. The second configuration derived an unordered set of rules to classify both

positive and negative instances. Finally, we derived a rule set to classify only the positive

instances, with instances not covered by these rules being considered negative by default.

Note that an unordered set of rules that all have the same consequent classification is

equivalent to an decision-list of the same form with a default case added. The noise

parameter in this experiment was set at 0% for all Rulearner configurations.

 The first MONK'S Problem (Table 2) represents a concept that is easily representable in

DNF and contains no noise in the training set. As a result, most of the symbolic learning

systems fare very well with this problem. Surprising, however, is the fact that several

configurations of the other learning methods were unable to perform this classification task

with complete accuracy. This would seem to imply that the solutions offered by these

methods were not the most parsimonious, as only four rules are required to achieve 100%

accuracy on this task. All three configurations of the Rulearner system not only performed

with 100% accuracy but also learned the minimal concept description for the problem.

9

MONK'S Problem #2

Algorithm Accuracy
CN2 (decision-list) 72.9%

 CN2 (unordered rules) 75.7%
C4.5 (unpruned tree) 65.3%
C4.5 (pruned tree) 65.0%
C4.5 -s (unpruned tree) 69.0%

 C4.5 -s (pruned tree) 70.4%
Rulearner (decision-list) 74.5%
Rulearner (unordered rules) 74.8%
Rulearner (unordered, pos rules only) 70.4%

Table 3

 The second MONK'S Problem (Table 3) provides a much greater challenge to symbolic

learning systems. This is due primarily to the fact that the concept to be learned in this

problem is not easily representable in DNF, being an exactly k-of-n function. Once again,

there is no noise in the training set, and thus the noise parameters for the learning

algorithms are set accordingly. Here we find that all the symbolic learning methods hover

close to 70% in their accuracy, reflective of the fact that the instance space appears very

much like a checkerboard and rules that attempt to partition this space into large regions will

group large numbers of positive and negative instances together. This is further supported

by the observation that all three learning algorithms generate rather lengthy rule sets or large

decision trees, showing that each rule only covers a small area of the total instance space.

The decision tree paradigm seems to suffer the most drastically in dealing with this sort of

partitioning of the instance space. While it is questionable how often such exactly k-of-n

functions actually appear in real domains, these experiments show that symbolic learning

methods must integrate a bias for more than just functions easily representable in DNF if

they hope to fare well on a wide range of problems.

 Interestingly, we find that the Rulearner configurations which partition the instance

space into both positive and negative regions explicitly are noticeably more accurate than

the method with only attempts to partition positive regions in the instance space. This is

10

MONK'S Problem #3

Algorithm Accuracy
CN2 (decision-list, chi-square = 0.0) 93.3%

 CN2 (unordered rules, chi-square = 0.0) 90.7%
CN2 (decision-list, chi-square = 4.0) 94.4%

 CN2 (unordered rules, chi-square = 4.0) 87.5%
C4.5 (unpruned tree, CF = 15%) 92.6%

 C4.5 (pruned tree, CF = 15%) 97.2%
C4.5 (unpruned tree, CF = 25%) 92.6%

 C4.5 (pruned tree, CF = 25%) 97.2%
Rulearner (decision-list, 5% noise) 94.4%

 Rulearner (unordered rules, 5% noise) 94.0%
Rulearner (decision-list, 10% noise) 94.4%
Rulearner (unordered rules, 10% noise) 95.1%

Table 4

reflective of the different biases in these configurations with regard to how much each

configuration is allowed to expand the region around any cluster of positive instances. The

set of rules which only classify positive instances has a tendency to enlarge the region

classified as positive since there are no competing negative classification rules which are

also attempting to enlarge the regions classified as negative. Reducing the competition

between classifications (as results when only positive classification rules are derived) may

in some cases be desirable when the consequences of a false negative are far more costly

than a false positive prediction. Thus the Rulearner system can be used with different rule

induction biases when faced with an asymmetric cost function for incorrect classifications.

 The third MONK'S Problem (Table 4) provides an interesting test case for symbolic

learning methods as the concept to be learned is easily representable in DNF, but 5% of the

training instances are misclassified due to noise. Note that the testing set does not contain

any such noise. To maximize the performance of the learning algorithms, but still maintain

brevity, we tested certain basic configurations of each algorithm using different noise

toleration parameters to produce the best results for each algorithm. Here we see that all

three algorithms are clearly able to learn in the presence of noise. More importantly,

however, we see the importance of pruning as reflected in the results from C4.5. Since

CN2 and Rulearner currently do no pruning of their induced rules in a post-processing

11

phase, it appears that this could be a promising venue to further increase the accuracy of

both of these algorithms on noisy data, especially since Rulearner outperforms C4.5 before

pruning. Another point of interest with regard to this problem is the fact that when the

noise parameter in the Rulearner systems was increased from 5% to 10%, there was an

improvement in the system overall. This is indicative of the fact that the classification noise

inherent in the training data is not evenly distributed over the instance space but may be

localized within a few regions. Thus by allowing for more than 5% noise in the system,

we can compensate for regions of the instance space where noise may be clustered while

not degrading the performance of the algorithm in classifying regions of the instance space

which contain relatively little or no noise.

4.2 Breast Cancer Data

 All three algorithms were also tested on a standard real world domain: predicting the

recurrence of breast cancer from the Yugoslavian Breast Cancer data set. In this domain, a

standard data set is partitioned into a training and testing set, 70%/30% respectively. Three

such partitions of the data were made and the results shown reflect the mean and standard

deviation of the algorithms over the partitionings. Since the original data set contained

some duplicate feature vectors with differing classifications, one of the duplicate instance

vectors was randomly discarded from the data. Also, some of the data in the breast cancer

data set was originally numeric, but was partitioned into equally-sized high grain symbolic

features prior to learning as an implementation necessity. Again, several configurations of

each system were tested, each with a variety of noise toleration parameters. In Table 5 we

see the results of these experiments.

 Foremost, it is important to note the difficulty of learning inherent in this data set in that

none of the algorithms tested perform significantly better than the default rule, which is

simply to predict the majority classification for all instances. In results reported by other

researchers on this same data set [Clark & Niblett, 1989], there are actually many other

12

Breast Cancer

Algorithm Accuracy
 Default Rule (majority) 71.7 ± 7.2%

CN2 (decision-list, chi-square = 0.0) 65.0 ± 1.4%
 CN2 (unordered rule set, chi-square = 0.0) 69.7 ± 4.9%

CN2 (decision-list, chi-square = 4.0) 73.3 ± 6.0%
 CN2 (unordered rule set, chi-square = 4.0) 71.3 ± 4.5%

CN2 (decision-list, chi-square = 8.0) 72.1 ± 4.0%
 CN2 (unordered rule set, chi-square = 8.0) 72.9 ± 5.3%

C4.5 (unpruned tree, CF = 15%) 67.7 ± 9.8%
 C4.5 (pruned tree, CF = 15%) 75.2 ± 7.6%

C4.5 (unpruned tree, CF = 25%) 67.7 ± 9.8%
 C4.5 (pruned tree, CF = 25%) 73.3 ± 4.5%

C4.5 (unpruned tree, CF = 35%) 67.7 ± 9.8%
 C4.5 (pruned tree, CF = 35%) 72.5 ± 4.6%

Rulearner (decision-list, 20% noise) 70.5 ± 6.9%
 Rulearner (unordered rules, 20% noise) 72.1 ± 4.0%

Rulearner (decision-list, 30% noise) 74.9 ± 5.8%
 Rulearner (unordered rules, 30% noise) 74.1 ± 6.4%

Rulearner (decision-list, 40% noise) 74.8 ± 6.6%
Rulearner (unordered rules, 40% noise) 73.6 ± 7.8%

Table 5

induction algorithms which perform even worse than the default prediction rule on this data

set, so the results given here should actually be considered encouraging. Nevertheless, this

data set gives us some critical insights into the applicability of such rule induction methods.

Foremost, we again see the importance of pruning as the results with C4.5 clearly indicate,

showing a jump in predictive accuracy by as much as 8% on a very difficult data set when

pruning is employed. As mentioned previously, since CN2 and Rulearner do no currently

employ a rule pruning scheme, the addition of such a post-processing mechanism to the

algorithms should produce even better results in the future. In spite of this shortcoming,

the Rulearner system still performs on par with the pruned trees produced by C4.5 and

seems to outperform both CN2 and the unpruned trees from C4.5, although not by much in

some cases.

 In comparing the decision-list and unordered rule sets produced by CN2 and Rulearner

we find that neither paradigm seems to be a clear winner. Of interest, however, is the fact

that both learning paradigms — decision-lists and unordered rule sets — produce the best

13

results when using the same noise toleration parameter (30%) in Rulearner. Thus it

appears that both paradigms are equally sensitive to noise in the training data.

5 Complexity Issues

 Several interesting complexity issues arise when dealing with the problem of producing

lattices. In the worst case, the lattice can contain one node for every combination of

features — forming the power set of the feature space — and thus will have a time and

space complexity that is exponential in the number of features. This would seem to render

the construction of such lattices impossible. Nevertheless, a great deal of empirical

evidence [Oosthuizen, 1994; Carpineto & Romano, 1993] has shown lattice construction to

require polynomial time and space — with bounds as low as O(m2), where m is the

number of instances, reported. In our experiments, lattice construction fell well within

polynomial bounds concurring with previously reported results setting an empirical upper

time and space bound at O(mn3), where m is the number of instances and n is the number

of attributes per instance. The actual running time for all of our experiments was quite

reasonable with lattice construction and rule induction (along with calculating extensive

diagnostic information) taking less than 1 hour per data set on a mid-range workstation.

6 Related Work

 The interested reader should also be aware of previous systems such as CHARADE

[Ganascia, 1987] and GRAND [Oosthuizen, 1988] which have also made use of lattices to

guide the formation of classification rules. These systems, however, differ markedly from

ours in their induction mechanisms. In the CHARADE system, a Galois connection is

defined between two implicit lattices which contain hierarchies of relations (concept

descriptions) and instances, respectively. Rules are then induced by by finding the most

specific description in the relation lattice lattice which satisfies a basic initial description.

Since instance classifications are simply considered an additional feature of each instance,

14

we can set our initial description to be (class = 1), for example, and then use the Galois

connection to find the set of instances, S, in the instance lattice that satisfies this

description. The algorithm then finds the most specific rule in the relation lattice which

encompasses the instances in S — a different bias than that used in Rulearner.

 In the same spirit, the GRAND system constructs an explicit lattice from the training

data presented to it. As in CHARADE, each instance classification is treated as merely

another feature of each instance vector and is thus included in the construction of the lattice.

This lattice is then traversed beginning from feature nodes which represent a particular class

to find the meet of this class node with various subsets of other features and induce rules

based on the features found at such meets. While the lattice construction method we use is

based directly on [Oosthuizen, 1988], our induction method differs considerably in that we

do not include instance classifications as explicit features in our lattices, but rather use

instance classifications as informational metrics which are used along with the instance

lattice to induce rules. This makes our system substantially different from that of

Oosthuizen who relies heavily on the existence of classification features in the lattice for

rule induction as outlined above.

7 Future Work

 A number of venues for exploration are still open in the development of Rulearner and

related systems. As indicated by several experiments, the next step in helping to make

Rulearner a more effective learner is to incorporate a post-processing rule pruning phase in

the induction process. Such a mechanism has proven effective in systems such as C4.5

and there is no reason that similar techiniques could not be effective when applied to the

rules generated by Rulearner. Furthermore, Rulearner could be made even more robust in

the presence of noise by simply requiring a minimum cover value at a node before inducing

a rule from that node in the lattice. In this way we could help to avoid producing very

specific rules that are likely to be fitting noise in the training data. Combining these line of

15

research, another route for future work will involve using Rulearner to induce all — even

redundant — rules from the instance lattice and then apply pruning to this extended rule set

to produce an “optimal” rule set with respect to the training data. There are considerable

complexity issues involved in this latter line of research which would also need to be

considered. The effect of the noise parameter in Rulearner also needs to be more

rigorously tested using methods such as cross-validation as opposed to the simple manual

hill-climbing search used for noise parameters in the experiments reported here. Finally,

much more detailed empirical experiments comparing unordered rule sets versus decision-

lists need to be performed to discover what the true advantages of each paradigm are.

Acknowledgments. The author is grateful to Nils Nilsson who proposed many of the

early insights that compose the foundations of the Rulearner system. The author is also

indebted to Deon Oosthuizen for many thought provoking discussions regarding the use of

lattices in machine learning and also for providing both the GRAND program for the

construction of lattices as well as the breast cancer data set. Additional thanks are also

extended to Peter Clark for providing CN2 and to George John, Pat Langley, Ronny

Kohavi and two anonymous reviewers for their insightful pointers regarding existing rule

induction systems. The author is supported by a Fred Gellert Foundation ARCS

fellowship.

References

[Birkhoff, 1967]
Birkhoff, G. Lattice Theory, 3rd Edition. Providence, Rhode Island: American Mathematical Society,
1967.

[Carpineto & Romano, 1993]
Carpineto, C. and Romano, G. GALOIS: An Order-Theorestic Approach to Conceptual Clustering. In
Proceedings of the International Machine Learning Conference, pp. 33-40, Amherst, Massachusettes, 1993.

[Clark & Niblett, 1989]
Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3:261-83, 1989.

[Ganasci, 1987]
Ganascia, J. G. CHARADE: A Rule System Learning System. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, Volume 1, pp. 345-347, Milan, Italy, 1987.

[Kononenko et al., 1984]
Kononenko, I. et al. Experiments in Automatic Learning of Medical Diagnostic Rules. Ljubljana,
Yugoslavia: E. Kardelj University, Electrical Engineering Technical Report, 1984.

[Kourie et al., 1992]
Kourie, D. G. et al. Lattices in Artificial Intelligence: Complexity Issues. University of Pretoria
Technical Report CSTR 92/08, 1992.

[Michalski, 1969]
Michalski, R. S. On the Quasi-minimal Solution of the General Covering Problem. In Proceedings of the
Fifth International Symposium on Information Processing, pp. 125-128, Bled, Yugoslavia, 1969.

[Michalski & Stepp, 1983]
Michalski, R. S. and Stepp, R. E. Learning from Observations: Conceptual Clustering. In R. S.
Michalski, J. G. Carbonell, T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach,
Tioga, Palo Alto, 1983.

[Mitchell, 1982]
Mitchell, T. M. Generalization as Search. Artificial Intelligence, 18(2): 203-226, 1982.

[Nilsson, 1992]
Nilsson, N. J. N-Cube Lattices and Their Role in Machine Learning. Working paper, Department of
Computer Science, Stanford University, Stanford, CA, 1992.

[Oosthuizen, 1988]
Oosthuizen, G. D. The Use of a Lattice in Knowledge Processing. PhD Thesis, University of Strathclyde,
Glasgow, 1988.

[Oosthuizen, 1989]
Oosthuizen, G. D. Machine Learning: A Mathematical Framework for Neural Network, Symbolic, and
Genetics-Based Learning. In Proceedings of the 3rd International Conference on Genetic Algorithms, pp.
385-390, 1989.

[Oosthuizen, 1993]
Oosthuizen, G. D. personal communication, 1993.

[Oosthuizen, 1994]
Oosthuizen, G. D. The Application of Concept Lattices to Machine Learning. University of Pretoria
Technical Report CSTR 94/01, 1994.

[Oosthuizen & McGregor, 1988]
Oosthuizen, G. D. and McGregor, D. R. Induction Through Knowledge Base Normalization. In
Proceedings of the European Conference on Artificial Intelligence, Munich, 1988.

[Quinlan, 1986]
Quinlan, J. R. Induction of Decision Trees. Machine Learning, 1:81-106, 1986.

[Quinlan, 1993]
Quinlan, J. R. 1993. C4.5: Programs For Machine Learning. San Mateo, CA: Morgan Kaufmann.

[Rivest, 1987]
Rivest, R. L. Learning Decision Lists. Machine Learning, 2:229-246, 1987.

[Thrun et al., 1991]
Thrun, S. B. et al. The MONK'S Problems. Carnegie-Mellon University Technical Report CMU-CS-91-
197, December, 1991.

