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consistent with the known delayed pathogenic role of HMGB1 
in sepsis sequelae. Collectively, these results indicate that P5779 
disrupts binding of disulfide HMGB1 to MD-2, thereby atten-
uating HMGB1-mediated organ failure and mortality in vivo.

These results reveal a novel mechanism of selective innate 
immune cell recognition of HMGB1 by MD-2 that discrimi-
nates the HMGB1 isoforms. By screening HMGB1 peptide 
libraries, we identified a novel tetramer peptide (FSSE, P5779) 
that specifically prevents the MD-2–HMGB1 interaction 
without impairing the MD-2/LPS/TLR4 signaling in innate 
immune cells. This peptide conferred protection not only in 
animal models of sterile injury-elicited inflammatory diseases 
but also after a lethal infection challenge, opening the possi-
bility of developing novel therapeutic strategies to attenuate 

Therapeutic efficacy of MD-2–targeted P5779  
in APAP toxicity, ischemia, and sepsis
In the APAP-induced liver toxicity model, P5779 treatment 
dose-dependently reduced APAP-induced elevation of he-
patic serum enzymes (AST and ALT), proinflammatory cyto-
kines (TNF), liver necrosis, and improved survival (Fig. 6 A, 
arrow). In sterile injury mediated by hepatic I/R, P5779 also 
significantly blunted hepatic serum enzyme release (AST and 
ALT) and neutrophil infiltration (Fig. 6 B, arrow). In addition, 
treatment with P5779 in a sepsis model induced by cecal liga-
tion and puncture (CLP) significantly and dose-dependently 
improved survival rates as compared with scrambled peptide-
treated controls (Fig. 6 C). Importantly, P5779 was effective 
even when administered 24 h after onset of the peritonitis, 

Figure 5.  Development of a tetramer peptide (P5779) as an MD-2–binding HMGB1-specific inhibitor. (A) On SPR analysis, HMGB1 was coated 
on the chip and MD-2 (1 µM) was flowed over as analyte, plus different amounts of P5779 as shown. Inhibition of HMGB1 binding to MD-2 by P5779 
(IC50 = 29 nM) was assessed (top). In the reverse experiment, human MD-2 was coated on the chip, and HMGB1 (1 µM) plus different amounts of P5779 
were added as analytes. HMGB1 binding to MD-2 was inhibited by P5779 (IC50 = 2 nM; bottom). Data are representative of three separate experiments. 
(B) Human primary macrophages, isolated from human blood, were stimulated with HMGB1 (1 µg/ml) or other stimuli (Poly I:C, S100A12, LPS, PGN, and 
CpG DNA) in vitro, plus increasing amounts of P5779 (or scrambled control peptide) for 16 h. TNF release was measured by ELISA. *, P < 0.05 versus 
HMGB1 plus control peptide (ctrl). n = 4–5 experiments. (C) Thioglycollate-elicited peritoneal mouse macrophages were stimulated in vitro with HMGB1 
(1 µg/ml) plus P5779 or control peptide (50 µg/ml) for 16 h, and extracellular levels of various cytokines were analyzed by mouse cytokine antibody array 
(left). Data are representative of three to four experiments, each performed in duplicate and expressed as fold increase over unstimulated cells using den-
sitometry (-HMGB1; right table). *, P < 0.05 versus +HMGB1 group. (D) Primary human macrophages, isolated from blood, were stimulated in vitro with 
LPS (2 ng/ml) for 16 h in the absence or presence of P5779 (50 µg/ml) or control peptide, and extracellular levels of various cytokines were analyzed by 
human cytokine antibody array. Data are representative of three repeats. (E) Male C57BL/6 mice received an LPS injection (8 mg/kg, i.p.) plus P5779 or 
control peptide (500 µg/mouse, i.p.). Animals were euthanized 90 min later. Serum TNF and IL-6 levels were measured by ELISAs. n = 5 mice per group. 
(B and E) Data are presented as means ± SEM.
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recent observations that HMGB1 levels are persistently ele-
vated during later stages of sepsis, despite termination of the 
initial infection, and contribute to long-term pathological 
consequences of sepsis (Valdés-Ferrer et al., 2013). Microbial-
induced sepsis can be clinically indistinguishable from the 
sterile injury-elicited systemic inflammatory response syn-
drome (SIRS; Sursal et al., 2013). Based on the findings that 
TLR4–MD-2 acts as a mutually exclusive signaling receptor 
complex for disulfide HMGB1, it is possible to develop strat-
egies that selectively attenuate DAMP-mediated inflamma-
tory responses while preserving PAMP-mediated signaling.

Substantial evidence supports the necessity to preserve early 
PAMP-mediated innate immune responses to counteract  
microbial infections. For instance, defective TLR4 signaling in 
C3H/HeJ mice is associated with aggravated disease severity and 
increased mortality in animal models of infection (Khanolkar 
et al., 2009). LPS enhances macrophage phagocytic activity 

DAMP-mediated injurious inflammatory responses without 
inhibiting PAMP-elicited innate immunity.

MD-2 carries a -cup fold structure composed of two 
antiparallel -sheets that form a large hydrophobic pocket for 
binding to LPS (Park et al., 2009). The estimated affinity of 
MD-2 binding to HMGB1 (12 nM) is comparable with MD-
2 binding to LPS (65 nM; Visintin et al., 2006). Further struc-
tural analysis is required to reveal the disulfide HMGB1-binding 
site on MD-2.

HMGB1-neutralizing antibodies are protective against ster-
ile injury (Tsung et al., 2005), and agents capable of inhibiting 
HMGB1 release or its extracellular activities (Wang et al., 
1999; Yang et al., 2004) also confer protection against sepsis. 
During early stages of sepsis, PAMP-mediated inflammatory 
responses are essential to host defense. At later stages, the re-
lease of DAMPs amplifies the cytokine storm and organ dys-
function (Wang et al., 2014). This notion is supported by 

Figure 6.  Treatment with the HMGB1 inhibitor P5779 ameliorates APAP-mediated toxicity, I/R injury, and sepsis mortality in vivo. (A, top left) 
C57BL/6 mice received an APAP injection (i.p.; see Materials and methods) and were administered with P5779 (at doses indicated) or control peptide (ctrl;  
500 µg/mouse, i.p.). Mice were euthanized at 24 h after APAP, and serum enzyme (ASL and ALT) and cytokine (TNF) levels were measured by ELISAs. n = 6–10 
mice per group. (bottom left) In survival experiments, mice received an APAP injection (i.p.) and were administered with P5779 or control peptide (i.p.; see 
Materials and methods). Survival was monitored for 2 wk (percent survival). n = 30 mice/group. (right) Representative H&E images of liver tissue sections are 
shown for normal (untreated) or APAP-injected mice receiving P5779 or control peptides. Clinical scores were assessed and are shown on the right. Liver 
necrosis is demonstrated by an arrow. n = 6–10 mice/group. *, P < 0.05 versus control peptide group. (B, left) P5779 or control peptide was administered  
(500 µg/mouse, i.p.) at the time of I/R surgery, and mice were euthanized 6 h later to measure serum levels of ALT and AST and to evaluate histological liver 
injury. *, P < 0.05 versus I/R group. n = 5–7 mice/group. (right) Representative H&E liver tissue sections are shown (neutrophil infiltration: arrow). n = 3–5 
mice per group. (A and B) Data are presented as means ± SEM. Bars, 100 µm. (C) Mice received CLP surgery, and P5779 or control peptide was administered 
i.p. at the doses indicated. Animal survival was monitored for 2 wk (percent survival). *, P < 0.05 versus control peptide group. n = 20 mice/group.
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50 µg/ml, and TLR9 agonist CpG DNA at 1 µM, plus increasing amounts of 
P5779 (or scrambled control peptide) as indicated for 16 h. TNF release was 
measured by ELISA.

Immunoprecipitation assay. Recombinant rat HMGB1 with a CBP tag 
or 10 µg CBP peptide alone was incubated overnight with 50 µl human 
MD-2 supernatant (precleared with calmodulin beads) at 4°C with gentle 
shaking. Human MD-2 supernatant was obtained from sf9 insect cells trans-
fected with human MD-2 (Teghanemt et al., 2008). Both HMGB1 and MD-2 
supernatant contained nondetectable amounts of LPS as measured by Limu-
lus amebocyte lysate assay. The mixture of CBP-HMGB1 or CBP and MD-2 
was then incubated with calmodulin beads (30 µl drained beads) for 1 h at 
4°C. After extensive washing with PBS containing 0.1% Triton X-100, pro-
teins bound to the beads were analyzed by Western blot probed with anti–
human MD-2 or anti-CBP antibodies.

Cytokine and NF-B measurements. Levels of TNF and IL-6 released 
in the cell culture or from mice serum were measured by ELISA kits (R&D 
Systems). Serum HMGB1 levels were measured by ELISA kit (IBL Interna-
tional). Cytokine expression profile from thioglycollate-elicited peritoneal 
macrophages of mice or primary human macrophages was determined by 
mouse or human cytokine array C1 (Raybiotech) according to the manufac-
turer’s instructions. 22 cytokines or chemokines were determined simultane-
ously. NF-B activation was analyzed by detecting p50 and p65 expression in 
the nuclear fraction by Western blot. -Actin expression was also measured as 
control for equal loading of samples. Western blots were scanned with a silver 
image scanner (Silver-scanner II; Lacie Limited), and the relative band in-
tensity was quantified using ImageJ software (v1.59; National Institutes of 
Health) and expressed as a ratio to the amount of -actin.

SPR analysis. The Biacore T200 instrument was used for real-time binding 
interaction experiments. For HMGB1–MD-2 binding analyses, human MD-2 
was immobilized onto a CM5 series chip (GE Healthcare). One flow cell was 
used as a reference and thus immediately blocked upon activation by 1 M etha-
nolamine, pH 8.5. The sample flow cell was injected with disulfide HMGB1 
(or isoforms; in 10 mM acetate buffer, pH 5.2) at a flow rate of 10 µl/min for 
7 min at 25°C. Increasing concentrations of disulfide HMGB1 or isoforms of 
HMGB1 (C106A, sulfonyl, fully reduced, Hg, or H2S-modified HMGB1 at  
1 µM) were flowed over immobilized MD-2. In reverse fashion, HMGB1 was 
coated on the chip and various amounts of MD-2 were added as analyte. Find-
ings were confirmed by using two additional human MD-2 proteins from D.
T. Golenbock and T.R. Billiar. For TLR4-HMGB1 binding experiments, 
human TLR4 was coated on the chip, and 100 nM disulfide HMGB1 was 
added as analyte. For peptide screening experiments, human MD-2 was coated 
on the sensor chip, trimer, or 100 nM tetramer peptides (FSSE, FSSEY, FEEE, 
FEED, SSE, and SFSE) were added as analytes. The dissociation time was set 
for 2 min, followed by a 1-min regeneration using a 10 mM NaOH solution. 
The Kd was evaluated using the Biacore evaluation software. For experiments 
using HMGB1 antibody to block MD-2–HMGB1 interaction, human MD-2 
was coated on the chip, HMGB1 was added as analyte (100 nM) plus increasing 
amounts of HMGB1 mAb or control IgG, and response units were recorded.

Molecular docking of MD-2 with peptides. The crystal structure of the 
MD-2–TLR4 was obtained from the Protein Data Bank (PDB code: 3VQ2), 
and molecular docking was performed by using the MOE software as previ-
ously described (Zan et al., 2012). A molecular visualization system, the 
PyMOL 0.99, was used to construct the three-dimensional figures.

Knockdown MD-2 in RAW 264.7 and THP-1 cells using siRNA. For 
MD-2 knockdown in RAW 264.7 cells, cells were transfected with mouse 
MD-2 or 50 nM control siRNA (on-target plus smart pool; GE Healthcare) 
using DharmaFect1 transfection reagent. To knock down MD-2 in THP-1 
cells, transfection with MD-2–specific siRNA was performed by using an 
Amaxa Nucleofector kit (Lonza). The efficiency of knockdown was confirmed 
by Western blot probed with anti–MD-2 antibody at 48 h after transfection. 

through TLR4, and selective deletion of TLR4 on myeloid cells 
impairs bacterial clearance in the CLP model (Deng et al., 
2013). These findings emphasize the importance of generating 
therapeutic approaches to selectively target damage-mediated 
inflammation while preserving physiological protective im-
mune responses. The discovery of P5779 as an MD-2–targeting 
selective inhibitor for the DAMP- but not the PAMP-elicited 
inflammatory responses provides such a novel therapeutic tool.

MATERIALS AND METHODS
Reagents. Human TLR4–MD-2 complex, human MD-2, TLR2, and solu-
ble RAGE were obtained from R&D Systems. LPS (Escherichia coli; 0111:B4), 
APAP, Triton X-114, PGN from Bacillus subtilis, blasticidin S, NaSH, mouse 
IgG, and human macrophage-CSF (M-CSF) were purchased from Sigma-
Aldrich. Protein A/G agarose and isopropyl-d-thiogalactopyranoside (IPTG) 
were from Thermo Fisher Scientific. NHS-activated Sepharose 4 fast flow 
beads were obtained from GE Healthcare. Thioglycollate medium was pur-
chased from BD. Ultrapure LPS, Poly I:C, and type B CpG oligonucleotide 
were obtained from InvivoGen. Human S100 A12 was from Circulex Co. 
Anti–human and –mouse MD-2 antibodies were obtained from Imgenex. 
Anti-CBP tag antibody was from GenScript. Anti-p50 antibody (E381) and anti-
p65 antibody were obtained from Epitomics and Santa Cruz Biotechnology, 
Inc., respectively. Serum ALT and AST levels were determined by color end-
point assay kits from BIOO Scientific.

Preparations of HMGB1 proteins, antibodies, and peptides. Recom-
binant HMGB1 was expressed in E. coli and purified to homogeneity as de-
scribed previously (Wang et al., 1999; Li et al., 2004). This cytokine-stimulating 
HMGB1 contains a disulfide bond between cysteines 23 and 45 and reduced 
thiol on cysteine 106, characterized by liquid chromatography tandem mass 
spectrometric analysis (LC-MS/MS; Yang et al., 2012). HMGB1 with redox 
modifications was created chemically by a synthetic formation of mercury 
thiolate on cysteine at position 106 (Hg-HMGB1), by S-sulfhydration (H2S) 
to convert cysteine thiol (-SH) group to -SSH or by mutation of cysteine 
106 to alanine (C106A HMGB1) as described previously (Yang et al., 2010, 
2012). HMGB1 with cysteine modified by H2S was generated by incubating 
HMGB1 with 5 mM NaSH for 3 h at room temperature. Oxidized or DTT-
reduced HMGB1 was prepared as previously described (Yang et al., 2012). 
The LPS content in HMGB1 was measured by the Chromogenic Limulus 
Amebocyte Lysate Assay (Lonza). HMGB1 was extracted with Triton X-114 
to remove any contaminating LPS as described previously (Li et al., 2004). 
The purity and integrity of all recombinant proteins were verified by Coo-
massie blue staining after SDS-PAGE, with a purity predominantly >85%. 
The LPS content in all HMGB1 protein preparations is undetectable or  
<10 pg/mg protein as measured by Limulus assay. Anti-HMGB1 mAb (2g7) 
was generated as reported previously (Qin et al., 2006). Trimer or tetramer 
peptides (FSSE, FSSEY, FEEE, FEED, SSE, and SFSE) and CBP (MKRRWK-
KNFIAVSAANRFKKISSSGAL) were all custom-made from GeneMed Inc. 
The peptides were purified to 90% purity as determined by HPLC. Endo-
toxin was not detectable in the synthetic peptide preparations as measured by 
Limulus assay. The peptides were first dissolved in DMSO and further diluted 
in PBS as instructed by the manufacturer and prepared freshly before use. 
Pre-casted mini-protean Tris-Tricine gels were from Bio-Rad Laboratories.

Cell isolation and culture. Thioglycollate-elicited peritoneal macrophages 
were obtained from mice (C57BL/6 or gene knockout, male, 10–12 wk old) 
injected with 2 ml of sterile 4% thioglycollate broth i.p. as previously de-
scribed (Yang et al., 2010). Murine macrophage-like RAW 264.7 and human 
leukemia monocytes THP-1 were obtained from ATCC. Human primary 
monocytes were purified by density gradient centrifugation through Ficoll 
from blood donated by normal individuals as reported previously (Yang et al., 
2010). Human primary macrophages in 96-well plates were stimulated with 
HMGB1 at 1 µg/ml, TLR4 agonist LPS at 4 ng/ml, TLR3 agonist Poly I:C 
at 50 µg/ml, TLR2 agonist PGN at 5 µg/ml, RAGE agonist S100A12 at 
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t test and one-way ANOVA followed by the least significant difference test. 
Differences between groups in animal survival experiments were determined 
using two-tailed Fisher’s exact test. Cytokine array experiments were analy
zed using the software UN-Scan-it from Silk Scientific Inc. P-values <0.05 
were considered statistically significant.

We would like to thank Patricia Loughran (University of Pittsburgh, Pittsburgh, PA) 
for liver histology and acknowledge The Radiation Medicine Institute of Chinese 
Academy of Medical Sciences and Peking Union Medical College (Tianjin, China) for 
allowing us to use the molecular docking simulation software.

This work was supported by grants from The Feinstein Institute for Medical 
Research, General Clinical Research Center (M01RR018535 to K.J. Tracey) and from 
the National Institutes of Health (RO1GM62508 to K.J. Tracey, RO1GM098446 to  
H. Yang, 5P50GM053789 to T.R. Billiar, RO1GM107876 to C. Szabo, and 
R01AT005076 to H. Wang).

The authors declare no competing financial interests.

Author contributions: H. Yang, Z. Ju, P. Lundbäck, J.P. Pribis, S.I. Valdes-Ferrer, 
and D.J. Antoine performed the experiments. A.A. Ragab, M. He, and Y. Al-Abed 
conducted SPR analysis. J. Li, J. Meng, and D.T. Golenbock provided HMGB1 or MD-2 
reagents. W. Long performed the molecular docking experiments. H. Yang, Y. Al-Abed, 
B. Lu, S.S. Chavan, D. Gero, C. Szabo, S.I. Valdes-Ferrer, H.E. Harris, T.R. Billiar,  
U. Andersson, K.J. Tracey, and H. Wang analyzed data. H. Yang, T.R. Billiar, Y. Al-Abed, 
J. Roth, H. Wang, U. Andersson, and K.J. Tracey wrote the paper.

Submitted: 14 July 2014
Accepted: 11 December 2014

REFERENCES
Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for ster-

ile inflammation and infection. Annu. Rev. Immunol. 29:139–162. http://
dx.doi.org/10.1146/annurev-immunol-030409-101323

Antoine, D.J., R.E. Jenkins, J.W. Dear, D.P. Williams, M.R. McGill, M.R. Sharpe, 
D.G. Craig, K.J. Simpson, H. Jaeschke, and B.K. Park. 2012. Molecular 
forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of 
cell death and prognosis during clinical acetaminophen hepatotoxicity. J. 
Hepatol. 56:1070–1079. http://dx.doi.org/10.1016/j.jhep.2011.12.019

Antoine, D.J., J.W. Dear, P.S. Lewis, V. Platt, J. Coyle, M. Masson, R.H. 
Thanacoody, A.J. Gray, D.J. Webb, J.G. Moggs, et al. 2013. Mechanistic 
biomarkers provide early and sensitive detection of acetaminophen-
induced acute liver injury at first presentation to hospital. Hepatology. 
58:777–787. http://dx.doi.org/10.1002/hep.26294

Chen, G.Y., J. Tang, P. Zheng, and Y. Liu. 2009. CD24 and Siglec-10 selectively 
repress tissue damage-induced immune responses. Science. 323:1722–
1725. http://dx.doi.org/10.1126/science.1168988

Deng, M., M.J. Scott, P. Loughran, G. Gibson, C. Sodhi, S. Watkins, D. Hackam, 
and T.R. Billiar. 2013. Lipopolysaccharide clearance, bacterial clearance, 
and systemic inflammatory responses are regulated by cell type-specific 
functions of TLR4 during sepsis. J. Immunol. 190:5152–5160. http://
dx.doi.org/10.4049/jimmunol.1300496

Desmet, V.J. 2003. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, 
Kaplowitz N, Kiernan TW, Wollman J. Formulation and application of 
a numerical scoring system for assessing histological activity in asymp-
tomatic chronic active hepatitis [Hepatology 1981;1:431-435]. J. Hepatol. 
38:382–386. http://dx.doi.org/10.1016/S0168-8278(03)00005-9

Huttunen, H.J., C. Fages, and H. Rauvala. 1999. Receptor for advanced glyca-
tion end products (RAGE)-mediated neurite outgrowth and activation 
of NF-B require the cytoplasmic domain of the receptor but different 
downstream signaling pathways. J. Biol. Chem. 274:19919–19924. http://
dx.doi.org/10.1074/jbc.274.28.19919

Khanolkar, A., S.M. Hartwig, B.A. Haag, D.K. Meyerholz, J.T. Harty, and S.M. 
Varga. 2009. Toll-like receptor 4 deficiency increases disease and mortal-
ity after mouse hepatitis virus type 1 infection of susceptible C3H mice. 
J. Virol. 83:8946–8956. http://dx.doi.org/10.1128/JVI.01857-08

Li, J., H. Wang, J.M. Mason, J. Levine, M. Yu, L. Ulloa, C.J. Czura, K.J. Tracey, 
and H. Yang. 2004. Recombinant HMGB1 with cytokine-stimulating  
activity. J. Immunol. Methods. 289:211–223. http://dx.doi.org/10.1016/ 
j.jim.2004.04.019

At 48 h after transfection, cells were stimulated with 1 µg/ml HMGB1 for 16 h. 
Cell lysate and supernatant were collected and analyzed by Western blot or 
ELISA. NF-B measurements on RAW 264.7, THP-1, or primary mouse 
macrophages from MD-2 KO mice were performed using NE-PER Protein 
Extraction kit (Thermo Fisher Scientific).

Animals. Male C57BL/6 mice were obtained from the Jackson Laboratory. 
MD-2 KO (on C57BL/6 background) mice were purchased from the 
RIKEN Bio-Resource Center. All animals were maintained at The Feinstein 
Institute for Medical Research or University of Pittsburgh under standard 
temperature and light cycles, and all animal procedures were approved by the 
institutional animal care and use committee.

For genotyping of MD-2 KO mice from tail snips, PCR primers were 
designed by the RIKEN Bio-Resource Center and were obtained from 
Invitrogen. The same primers were used to identify WT (PCR product = 
2,000 bp) and MD-2 KO (PCR product = 800 bp) in genotyping.

For murine hepatic warm I/R, a 70% warm liver I/R model was per-
formed as previously described (Tsung et al., 2005). Mice received i.p. injec-
tions of P5779 (500 µg/mouse) or vehicle at the time of surgery and were 
euthanized at 6 h afterward. Whole blood was collected by cardiac puncture, 
and liver was harvested and fixed in 10% formalin for analysis.

For CLP, C57BL/6 mice (male, 8–12 wk of age) were subjected to CLP 
procedure as described previously (Yang et al., 2004). P5779 or scrambled 
control peptide was administered i.p. at 50 or 500 µg/mouse, and treatment 
was given once a day for 4 d starting at 24 h after CLP surgery. Survival was 
monitored for 2 wk.
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