
DOI 10.2298/CSIS100929039E

A Decision Support Method for Evaluating

Database Designs

Erki Eessaar1 and Marek Soobik1

1 Department of Informatics, Tallinn University of Technology,
Raja 15, 12618 Tallinn, Estonia

Erki.Eessaar@ttu.ee, mareksoobik@gmail.com

Abstract. It is possible to produce different database designs based on
the same set of requirements to a database. In this paper, we present a
decision support method for comparing different database designs and
for selecting one of them as the best design. Each data model is an
abstract language that can be used to create many different databases.
The proposed method is flexible in the sense that it can be used in case
of different data models, criteria, and designs. The method is based on
the Analytic Hierarchy Process and uses pairwise comparisons. We also
present a case study about comparing four designs of SQL databases in
case of PostgreSQL™ database management system. The results
depend on the context where the designs will be used. Hence, we
evaluate the designs in case of two different contexts – management of
measurements data and an online transaction processing system.

Keywords: database design, decision support, Analytic Hierarchy
Process, object-relational database, SQL.

1. Introduction

Database design process consists of conceptual design, logical design, and
physical design according to a well-known methodology [25]. During
conceptual database design, one has to capture an accurate representation of
reality. During logical design, one has to describe the design of a database in
terms of a data model (for instance, the underlying model of SQL database
language) but without taking into account the database management system
(DBMS), based on which the database will be implemented. During physical
design, one has to design a database by taking into account the DBMS where
the database will be implemented.

Date [8, p. 287] is in position that "Database design is still largely subjective
in nature". Normalization theory [6] and the principle of orthogonal database
design [10] are the main examples of the use of scientific principles in the
context of relational database design.

The goal of the paper is to present a systematic and structured method for
the evaluation of database designs and for the selection of the best database

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 82

design from a set of designs. The designs, which one can evaluate, are the
results of logical or physical design. The method is a multi-criteria decision
support method that helps database developers to make more informed
decisions during database development and hence improve the quality of
databases.

Simsion [22, p. 301] reports the results of a constrained exercise, according
to which different data modelers produce "a wide range of different workable
logical data models in response to a common 'conceptual' data model".
Therefore, we need a method, based on which to compare the logical data
models and select or reject them. Teorey, Yang, and Fry [25] suggest a
relation refinement step before physical design, the goal of which is to find
more efficient and adaptable database schemas without the loss of data
integrity. The result of this step would be a set of alternative logical structures
that should be considered during the physical design. We need a method that
would help us to select the best design from this set during physical design.

In addition, this kind of method is necessary because new data models (in
the sense of abstract language) provide more and more features. For
instance, Soutou [23] writes that if one uses the underlying data model of the
SQL-92 standard, then it is possible to use two different designs to represent
one-to-many relationships. On the other hand, if one uses the underlying
object-relational data model of the SQL:1999 standard, then it is possible to
use twelve different designs to represent one to many relationships [23]. It
complicates the work of database designers because the number of
alternative designs increases and designers have to select the best design
from this set. Feuerlicht, Pokorný, and Richta [12] discuss the use of
object-relational features that are specified in the SQL:2003 standard. They
conclude that "numerous design options exist that need to be evaluated in the
context of specific application requirements" [12, p. 986]. They also note that
there is a lack of database design methodologies that help designers to make
informed decisions about design choices.

In our previous work [11], we proposed a set of criteria that one could use
to evaluate database designs and evaluated two SQL database designs (the
regular design and the universal design) in terms of different criteria. In this
paper, we extend the work by proposing a generalized evaluation method and
present the results of an evaluation of four different SQL database designs.

The rest of the paper is organized as follows. Firstly, we describe related
work in the field of decision support in case of database design. Secondly, we
present an evaluation method of database designs. We also present a
metamodel of the method that can be used as a basis to create a software
system that assists users of the method or can be used to record the results
of existing evaluations. Thirdly, we use the method to evaluate four SQL
database designs in case of PostgreSQL™ 8.3.6 DBMS. Finally, we draw
conclusions and point to the future work.

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 83

2. Related Works

The idea of using decision support methods during database design is not
new. March [16] explains the techniques of mathematical clustering, iterative
grouping refinement, mathematical programming, and hierarchic aggregation,
which can be used to determine efficient physical organization of data for a
database. The method is usable in case of hierarchical or network data
models. On the other hand, in this paper, we propose a method, which can be
used in case of any data model and can be used to select the best physical as
well as logical organization of data in a database.

There exist selection methods for specific types of database objects. For
instance, Theodoratos and Bouzeghoub [26] propose a general algorithm for
selecting a set of materialized views (snapshots) for a data warehouse so that
the selected set satisfies all the given constraints and minimizes the
operational cost. They use "AND/OR dag representation for multiple queries
and views". [26, p. 7] On the other hand, our proposed method is not limited
with a specific type of database objects (like materialized views) or specific
type of databases (like data warehouses).

Svahnberg et al. [24] describe a decision support method that is based on
the Analytic Hierarchy Process (AHP) [21] and can be used to compare
software architecture candidates. In this paper, we apply an AHP-based
method to compare database designs. Svahnberg et al. [24] use only
subjective judgments of a set of professional software developers to compare
alternatives in terms of criteria. On the other hand, our method proposes the
use of measurements to compare alternatives in terms of criteria. The goal is
to increase the objectivity of evaluation results. Park and Lim [18] present an
AHP-based method for comparing user interface designs. It is similar to our
method because they use the results of usability measurements to compare
designs pairwise in terms of usability criteria.

Vaidya and Kumar [29] describe application of AHP in the field of selection,
evaluation, benefit cost analysis, allocation, planning and development,
priority and ranking, decision making, and forecasting. Some applications (like
software selection or evaluation of quality of software systems) are from the
field of software engineering. None of the applications is used in the context of
database design. However, the research of Vaidya and Kumar [29]
demonstrates that AHP is suitable and widely used decision support method
that could be used to evaluate database designs as well.

Chaudhuri and Narasayya [4] review the state of the art in the field of
self-tuning DBMSs. Similarity with our method is that both of them are used to
find the best design. In case of our method, the evaluators are database
designers who must take into account the results of evaluation while
designing a database. On the other hand, self-tuning DBMSs have
system-defined capabilities that take into account rules, external cost models,
or the database statistics and automatically make modification in the internal
schema of the database. The systems use performance of database
operations and data size as the main criteria. Our proposed method can be

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 84

used in case of logical design as well as physical design and permits the use
of wider range of criteria.

3. An Evaluation Method of Database Designs

3.1. The Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) [21] allows us to make decisions by
modeling a complex problem as a hierarchical structure. The levels of this
model are from top to bottom goal, objectives, and alternatives. The goal is
the overall objective. Objectives correspond to criteria that one has to take
into account by comparing alternatives. There can be multiple levels of
criteria. Alternatives are objects, between which the choice will be made. The
process consists of comparing objectives pairwise to find the relative
importance of the criteria in terms of the goal. In addition, one has to compare
alternatives pairwise in terms of each criterion. For the pairwise comparisons
one has to use a nine-point scale [21]. Comparison of elements i and j
answers a question, which of them is more important and how much more
important it is [24]. The results are combined to calculate the final score of
each alternative. The alternative with the highest final score is the best in
terms of the goal. For instance, the goal might be to select the most suitable
software architecture for a particular context [24].

3.2. Description of the Method

In this paper, we propose an AHP-based method for evaluating database
designs. It consists of the following consecutive steps.
1. Description of the goal of the evaluation.
2. Description of the context where the designs will be used.
3. Selection of alternatives (database designs or pairs of database designs

and platforms). A platform is a version of a DBMS that is used to implement
a database.

4. Selection of criteria, based on which the alternatives will be evaluated.
5. Selection of software measures, based on which the measurements will be

made. If a criterion c is associated with a software measure, then the
results of measurements of alternatives will be used to make pairwise
comparisons of the alternatives in terms of c. If a criterion c does not have
a suitable software measure, then it is possible to use subjective opinions
of one or more evaluators to make pairwise comparisons of alternatives in
terms of c. We prefer criteria with associated software measures because
the results of measurements help us to increase the objectivity of
comparison results.

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 85

6. Specification of tasks in a database, based on which the measurements will
be made. In this context each task is a problem that has to be solved in a
test database to measure the alternatives. Tasks may have subtasks.
Tasks have different solutions in case of different alternatives. Let e be an
evaluation and A is the set of alternatives that are evaluated during e. All
the measurements for evaluating alternatives in A in terms of a criterion c
must be based on the same task. Otherwise the measurement results are
not comparable. In addition, all the measurements for evaluating
alternatives in A in terms of a criterion c must use the same protocol to
perform measurements. For instance, if we count the number of physical
lines of code in case of a criterion c, then we must use the same rules to
format the code in case of all the alternatives in A.

7. If there are one or more tasks that are specified as the result of the
previous step, then it is necessary to implement the designs in a test
database (or in more than one test database if the alternatives are pairs of
designs and platforms) and generate test data. If possible, one should use
a public and well-known specification that contains requirements to the test
data as a basis of implementing the test database. If the specification is
public, then it is easier to repeat the experiments. If the specification is
well-known, then it has probably been carefully evaluated.

8. Performing the tasks and measuring the results based on the test database
(or databases).

9. Pairwise comparison of the criteria and calculation of the relative
importance of the criteria. This step is still subjective in nature but explicitly
defined context should simplify it. If a criterion c at the level N has one or
more sub-criteria c1',...,cn' at the level N+1, then it is also necessary to
calculate the relative importance of the sub-criteria in terms of c.

10.Pairwise comparison of the alternatives based on each criterion that is on
the lowest level of the hierarchy of criteria.

11.Calculation of the final scores of the alternatives in terms of the goal by
using AHP.
Fig. 1 and Fig. 2 present a metamodel of the method. We use UML class

diagrams to present the metamodel. The method does not produce absolute
judgments of the alternatives. Instead, it produces judgments that depend on
a particular context, criteria, measures, tasks, solutions, and alternatives.

Each database and database management system (DBMS) consists of
external, conceptual, and internal levels according to the ANSI/SPARC
architecture of DBMSs [6]. External and internal levels are closest to the users
and physical storage, respectively. Conceptual level is between these two and
represents the entire information content of the database [6]. Each level has
one or more corresponding schemas in a database. We use the concept
"database design" quite loosely to denote a specification of a set of elements
that belong to the external schemas, the conceptual schema, or the internal
schema of a database. We do not prescribe the size (the number of elements)
of designs that one can evaluate by using the method.

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 86

Fig. 1. A fragment of a metamodel of an evaluation method of database designs

Each database design is usable in case of one or more data models and
platforms (versions of a DBMS). An example of data model is the underlying
object-relational data model of the SQL:2003 standard [17]. We denote it as
the ORSQL data model. Each platform has one or more associated data
models, based on which the database languages of the platform have been
created.

Each evaluation has the goal (for instance, find the best design from the set
of given designs). Each evaluation must take into account the context where
the database, and hence the designs, will be used. Each context is a set of
requirements to the database. For instance, a context could specify that up to
1000 users use the database at the same time, queries should be answered
within one second, and there are at least 10 different roles of database users.
Based on these requirements one can conclude that in this context the best
design 1) must facilitate implementation of concurrency control, 2) must
support high performance of database operations, and 3) must allow
administrators to grant/revoke permissions in the database as easily as
possible.

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 87

Fig. 2. A fragment of a metamodel of an evaluation method of database designs

Each evaluation has one or more associated criteria and at least two
associated alternatives. The number of alternatives is limited by the amount of
time and effort that is needed to develop them. According to Forman and Selly
[13, p. 38], "humans are not capable of dealing accurately with more than
about seven to nine things at a time" and therefore the number of alternatives
and the number of highest-level criteria should not be bigger than nine.
Criteria form a hierarchical structure. For instance, criterion "Performance of
data manipulation operations" can have a sub-criterion "Performance of data
manipulation operations that search data about one entity". The number of
immediate sub-criteria of a criterion should also not be bigger than nine. Sets
of alternatives, criteria, and measures that are actually used during an
evaluation are subsets of possible alternatives (database designs or pairs of
database designs and platforms), criteria, and measures.

If one evaluates logical designs and does not use criteria that require the
creation of a test database, then it is not necessary to determine the platform,
based on which the database will be created. On the other hand, if one has to
perform tasks (for instance, measure performance of database operations)
based on a test database, then one must bear in mind that different platforms
provide different means to implement the designs and it influences the results

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 88

of evaluation. It is possible that all the designs, which are considered during
an evaluation, will be implemented by using the same platform. In this case,
the information about the platform is a part of the context. It is also possible
that the alternatives are pairs of platforms and database designs.

Some measurements do not require the creation of a test database. For
instance, one can calculate the schema size of a SQL database without
actually implementing the schema in a database.

 Behkamal, Kahani, and Akbari [2] propose to find criteria for evaluating
software systems based on quality models, like the one defined in the
ISO 9126 standard. It is also possible in case of the proposed method. For
instance, criteria "Access control", "Integrity constraints", and "Performance of
data manipulation operations" correspond to the ISO 9126 quality model
sub-characteristics "Security", "Changeability", and "Timebased efficiency",
respectively. In addition, we suggest the use of database levels as a basis to
systematically search and select the criteria. Each criterion corresponds to
zero or more database levels, which are defined by the ANSI/SPARC
architecture of DBMSs. For instance, criterion "Performance of data
manipulation operations" corresponds to the internal level because it depends
on the stored record types and their physical sequence, indexes etc. All these
elements are described by the internal schema of a database.

During each evaluation one has to compare criteria pairwise to find their
relative importance (weights) in terms of the goal. The requirements, which
are associated with the context of an evaluation, determine the relative
importance of the criteria in case of the evaluation. In addition, one has to
perform measurements to find values of software measures in case of
different alternatives. Each software measure is usable in case of zero or
more data models. For instance, Piattini et al. [19] present a set of measures
that are usable in case of the ORSQL data model. Let us assume that a
software measure m is associated with a criterion c. The results of the
measurements based on m will be used during the pairwise comparison of
alternatives in terms of c. If a possible criterion has more than one associated
software measure, then evaluator uses one the measures for the evaluation.

4. Application of the Evaluation Method

In this paper, we demonstrate the use of the method by comparing four
database designs, the underlying data model of which is the ORSQL data
model. We implement all the designs based on open source PostgreSQL™
8.3.6 DBMS [20]. The goal of the evaluation is to find the best design in case
of two different contexts.

In this study, we use a subset of the database that is proposed in the TPC
Benchmark™ C [28] to create the test database. The entire database is for
the wholesale supplier company that has a number of geographically
distributed sales districts and warehouses. The conceptual model of the
subset of the database specifies entity types Customer, Order, Order_line,

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 89

and Stock. The semantics of data does not affect the measurements that we
plan to use during this evaluation.

4.1. Contexts

The relative importance of criteria depends on the context in which the
database will be used. In this study, we evaluate designs in terms of two
hypothetical contexts.

Context 1. It describes a system that deals with the management of
measurement data. The system has a small number of users – up to two
users register data and up to five users perform complex statistical queries.
Publication of its data may cause material or moral harm. The system must
answer queries within minutes. However, if the system does not answer
queries, then it does not cause remarkable consequences. All the
unauthorized modifications of data must be detectable. In the future there may
be additional types of measurements, the resulting data of which the system
has to manage. The system must prohibit registration of seemingly incorrect
data and therefore it must be as easy as possible to enforce integrity
constraints at the database level.

Context 2. It describes a customer management system of a big retail
company, which is an example of an online transaction processing system.
The system has thousands of users. Most of the queries, which are executed
in the database, help users to find information about a particular customer.
Performance of data modification operations is less important. Publication of
the data in the database disrupts functioning of the company or violates the
privacy of people. The system must answer queries within seconds. If it does
not answer queries, then it causes disruption of the functioning of the
company. It must be possible to identify the source of all the data in the
database. The requirements to the database are fixed for the next three
years. There are relatively few business rules, based on which one has to
create integrity constraints in the database.

4.2. Alternatives

Next, we explain the four database designs, which are the alternatives in our
evaluation.

The regular design. According to this design one has to create a separate
base table (table in short) based on each entity type (Customer, Order,
Order_line, and Stock in our case) that is specified in the conceptual data
model. We call the design regular because it is widely used and seems
natural. Fig. 3 describes tables that are created according to the regular
design.

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 90

Fig. 3. An example of the use of the regular design (adapted from [28])

The universal design. This is a highly generic database design, according
to which all the data in a database is represented in terms of Object_types,
Objects, Attributes, Attribute_values, and Relationships. For instance,
Hay [14] and Blaha [3] refer to this kind of design as "Universal Data Model"
and "Softcoded Values", respectively. Data about Object_types and Attributes
defines legal Attribute_values that can be associated with Objects. Table
Attribute_value has a set of columns, the specification of which has the
general form: <<data_type_name>>_ data_type_name. These columns allow
us to record values that have different types. The number of these columns
and their data types depend on a platform (version of a DBMS) where this
database is created. Fig. 4 describes tables that are created according to the
universal design. We consider this design because it gives an impression of
great flexibility.

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 91

Fig. 4. The universal design

The entity-attribute-value with classes and relationships (EAV/CR) design.
It is a variation of the universal design. Each supported data type should have
exactly one corresponding table for recording attribute values with this type
according to the EAV/CR design [5]. This is different from the universal design
where is one generic table Attribute_value that has a column for each
supported data type. Fig. 5 describes some tables that are created according
to the EAV/CR design. We do not present all the tables that we have created
based on different data types on Fig. 5. We consider the EAV/CR design
because it gives an impression of great flexibility and is a widely used
variation of the universal design.

The sixth normal form (6NF) design. Table T is in 6NF if and only if it
cannot be nonloss decomposed at all (other than the identity projection
of T)[7]. Date [7] also notes that the identity projection of a table T is the
projection over all of its columns. Let us assume that a conceptual data model
of a database specifies entity type E with attributes a1, ...,an. There is one
table for each attribute a1, ...,an in the database, which is created according
to the 6NF design. All tables, which are created according to this design,
consist of columns that form the key plus at most one additional column that is
not part of the key.

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 92

Fig. 5. The EAV/CR design

Fig. 6. An example of the use of the 6NF design

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 93

Date, Darwen, and Lorentzos [9] propose to use a similar design to record
temporal data. The design also allows us to prevent the use of NULLs to
present missing information [8]. If an attribute does not have a value, then
there is no corresponding row in the table that is created according to the
attribute. Fig. 6 describes some tables that are created according to the 6NF
design.

4.3. Criteria

We wanted to evaluate the designs from different perspectives and to use
measurements for that purpose. Therefore, we selected the criteria in a way
that each level of the ANSI/SPARC database architecture has at least one
corresponding criterion and each criterion has at least one associated
software measure. Next, we present the names of the selected criteria
together with their corresponding level.
1. External level: Complexity of queries, Access control.
2. Conceptual level: Schema size, Integrity constraints.
3. Internal level: Performance of data manipulation operations, Data size,

Concurrency control.
We stress that the proposed criteria are not the only possible criteria to

evaluate ORSQL database designs.
Next, we describe for each level its associated criteria and introduce the

software measures that we will use to evaluate database designs in terms of
these criteria. In case of each selected measure m – the smaller is the
measurement result in case of an alternative a, the better is a in the context of
the criterion that is associated with m.

In this paper “small number of entities” means between two and five
(endpoints included) and “large number of entities” means more than five.

External level. Complexity of queries. At the external level different views
on a database are specified. One has to form queries to create views and
hence the complexity of these queries is very important criterion at the
external level. It is possible to represent queries as graphs where nodes are
table aliases and arcs represent join and semijoin operations [27]. We
evaluate the complexity of queries by calculating Coefficient of Network
Complexity CNC=(A×A)/N where N is the number of nodes and A is the
number of arcs [15]. We decided to find the total complexity of three different
types of queries: 1) query that finds data about one entity, 2) query that
aggregates data about small number of entities, and 3) query that aggregates
data about large number of entities. The total complexity of a set of queries Q
is the sum of complexities of queries that belong to Q. We decided to
calculate the total complexity to avoid the distortion of the results that is
caused by the selection of queries that favor one or another design.

Access control. We decided to count the physical lines of source code that
are needed to grant SELECT (read) privileges to roles in order to evaluate
designs in terms of access control. The criterion "Access control" has two
sub-criteria in our evaluation.

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 94

1. Complexity of granting SELECT privileges to all the columns that
correspond to attributes of one entity type in a conceptual data model.

2. Complexity of granting SELECT privileges to the columns that correspond
to a proper subset of attributes of one entity type in a conceptual data
model.
The style of writing code influences the count of physical lines. Therefore,

we have to follow rules to format the code. For instance, we follow the rules
that FROM and WHERE clauses start from a new line in case of a SELECT
statement and the lines of code cannot be longer than 60 symbols.

Conceptual level. Schema size. We use software measure Schema Size to
evaluate the designs in terms of schema size criterion. We assume that
smaller Schema Size value means simpler database structure and hence
better maintainability of the database. Piattini et al. [19] define Schema Size
measure "as the sum of the tables size (TS) in the schema" [19, p. 7] and
Table Size measure "as the sum of the total size of the simple columns
(TSSC) and the total size of the complex columns" [19, p. 6]. The size of each
simple column is one. All the columns are simple columns in case of the
designs in this evaluation. Therefore, in this case Table Size of a base table T
is equal to the total number of columns in T.

Integrity constraints. Each type of integrity constraints in SQL databases
has a corresponding sub-criterion of criterion "Integrity constraints" in our
hierarchical decision model. Some of these sub-criteria have additional
sub-criteria.
1. Complexity of enforcing CHECK constraints. The sub-criteria:

1) Complexity of enforcing constraints that involve one attribute of one
entity type and 2) Complexity of enforcing constraints that involve more
than one attribute of one entity type.

2. Complexity of enforcing UNIQUE constraints.
3. Complexity of enforcing NOT NULL constraints.
4. Complexity of enforcing FOREIGN KEY constraints. The sub-criteria:

1) Number of Foreign Keys (NFK), 2) Referential Degree (RD), and
3) Depth of Referential Tree (DRT).
In case of CHECK, UNIQUE, and NOT NULL constraints, we count the

physical lines of source code that are needed to implement these constraints.
In case of foreign key constraints, we use three schema level measures for
evaluating object-relational database designs. Measure NFK is the number of
foreign keys in the database schema [1]. Measure RD is the average
referential degree over all the base tables. Baroni et al. [1, p. 34] define RD
measure of a single table as "number of foreign keys in a table divided by the
number of attributes of the same table". Measure DRT is defined as the
longest referential path between tables in the database schema [19].

Internal level. Performance of data manipulation operations (Performance
of operations in short). Criterion "Performance of data manipulation
operations" has five sub-criteria in our evaluation. They correspond to
different types of operations that one could perform in a database.
1. Performance of a query that finds data about one entity.

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 95

2. Performance of a query that aggregates data about a small number of
entities.

3. Performance of a query that aggregates data about a large number of
entities.

4. Performance of an operation for inserting data about one entity to a
database.

5. Performance of an operation for modifying data about a small number of
entities.
We measure performance in milliseconds. In case of each pair of a design

and a sub-criterion, we perform the same task repeatedly and calculate
median of the results.

Data size. The criterion "Data size" has two sub-criteria in our evaluation.
1. Size of base tables.
2. Size of indexes.

We measure the size by using PostgreSQL™ system-defined function
pg_relation_size. The function has one parameter, the expected value of
which is the name of a base table or an index. The function returns the size of
the base table or index in bytes.

Concurrency control. Criterion "Concurrency control" allows us to evaluate
how much effort is needed for locking data in a database to prevent
concurrent data changes that cause inconsistency of data. We perform the
task of changing attribute values of one entity to evaluate designs in terms of
"Concurrency control". We count the physical lines of source code that are
needed to implement the locking of data of one entity.

4.4. Implementation of Databases and Generation of Test Data

We implemented all the designs in different schemas of a PostgreSQL™ 8.3.6
database to prevent name conflicts of schema objects. Firstly, we created
user-defined functions for generating test data to the tables of the regular
design: Customer (30000), Order_ (30000), Order_line (300008), and Stock
(10000). In the brackets is the number of generated rows for a particular table.
For all the tables, except Stock, we generated the same amount of test data
as required in the TPC BENCHMARK™ C document [28]. For table Stock, we
generated 10 times less data than was required in the document. TPC
BENCHMARK™ C document also presents additional requirements to data
that we took into account. Each warehouse must provide services to 10
districts and each district must have 3000 customers. If there is one
warehouse, then there must be 1×10×3000 customers. Each customer must
have one or more orders and each order must have between 5 and 15
(endpoints included) order lines. For each order, we randomly found the
number of order lines by taking into account the constraint.

After we finalized the generation of test data for the regular design, we
copied the same data to the tables that were created based on three other
designs.

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 96

One can download the files with the statements that can be used to create
the test database and generate test data from the following address:

http://staff.ttu.ee/~eessaar/files/Db_designs.zip
The computer, where we performed the experiments, had the following

characteristics: Intel Core 2, T5600 1.83GHz, 2GB RAM, Windows XP
Professional.

4.5. Relative Importance of Criteria

One can make some assumptions about the relative importance of the criteria
by considering the contexts.

Find the best

design

Schema

size:

0.039

Complexity

of queries:

0.140

Integrity

constraints:

0.255

Access

control:

0.071

Performance

of operations:

0.372

Data size:

0.038

Concurrency

control:

0.084

Goal

Criteria

Unique

constraint:

0.313

Not null

constraint:

0.313

Foreign key

constraint:

0.063

Check

constraint:

0.313

Sub-criteria SELECT

privilege

for all

attributes

of one

entity type:

0.500

SELECT

privilege

for a

proper

subset of

attributes

of one

entity type:

0.500 INSERT:

0.189

SELECT –

one entity:

0.100

SELECT –

large

number of

entities:

0.261

SELECT –

small

number of

entities:

0.261

UPDATE:

0.189

Size of

base

tables:

0.500

Size of

indexes:

0.500

Sub-criteria

RD:

0.333

NFK:

0.333

DRT:

0.333

Involves

more than

one

attribute:

0.500

Involves

one

attribute:

0.500

Fig. 7. Relative importance of the criteria in case of context 1

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 97

1. Access control is more important in case of context 2 due to the
requirements to confidentiality.

2. Statistical queries are more important in case of context 1. On the other
hand, queries that help users to find information about a particular entity
are more important in case of context 2.

3. Integrity constraints are more important in case of context 1 due to the
need to prevent registration of seemingly incorrect data.

4. Performance of data manipulation operations is more important in case of
context 2 due to the requirements to availability.

5. Concurrency control is more important in case of context 2 due to the large
number of concurrent users.
We calculated the relative importance (weights) of the criteria in case of

context 1 (see Fig. 7) and context 2 (see Fig. 8) by comparing criteria pairwise
in terms of the context.

Find the best

design

Schema

size:

0.028

Complexity

of queries:

0.070

Integrity

constraints:

0.141

Access

control:

0.157

Performance

of operations:

0.400

Data size:

0.031

Concurrency

control:

0.173

Goal

Criteria

Unique

constraint:

0.250

Not null

constraint:

0.250

Foreign key

constraint:

0.250

Check

constraint:

0.250

Sub-criteria SELECT

privilege

for all

attributes

of one

entity type:

0.500

SELECT

privilege

for a

proper

subset of

attributes

of one

entity type:

0.500
INSERT:

0.064

SELECT –

one entity:

0.553

SELECT –

large

number of

entities:

0.160

SELECT –

small

number of

entities:

0.160

UPDATE:

0.064

Size of

base

tables:

0.500

Size of

indexes:

0.500

Sub-criteria

RD:

0.333

NFK:

0.333

DRT:

0.333

Involves

more than

one

attribute:

0.500

Involves

one

attribute:

0.500

Fig. 8. Relative importance of the criteria in case of context 2

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 98

The pairwise comparison of criteria was performed by one expert.
However, the proposed method does no rule out the use of more than one
expert.

4.6. Evaluation of Alternatives in Terms of Criteria

In this section, we present the results of measurements that we performed to
compare database designs. We present the results of measurements for all
the criteria because they are needed to fully understand the final results of the
study and they give detailed numerical information about the properties of the
selected designs. We also explain the tasks, based on which we performed
the measurements. In case of access control criterion, we present AHP
comparison matrices that we created based on the measurement results. The
proposed method requires the creation of such matrices in case of all the
criteria but we present only some to illustrate their use.

We also performed consistency analysis of all the comparison matrices by
calculating their consistency ratio. The ratio was always less than 0.10 that is
positive evidence for informed judgment [21].

Access control. Table 1 presents the results of measurements in case of
access control. We performed two tasks to evaluate the access control.
1. SELECT privilege for all attributes of one entity type. The task was to grant

to role role1 a SELECT privilege for reading data that corresponds to entity
type Stock.

2. SELECT privilege for a proper subset of attributes of one entity type. The
task was to grant to role role1 a SELECT privilege for reading data that
corresponds to attributes C_LAST, C_ID, C_W_ID, and C_D_ID of entity
type Stock.
We counted the physical lines of code that were needed to implement the

access control based on the requirements that were specified in the tasks.

Table 1. Measurement results in case of access control criterion (physical lines of
code)

Sub-criterion

Regular
design

Universal
design

EAV/CR
design

6NF
design

SELECT privilege
for all attributes of
one entity type

1 9 40 16

SELECT privilege
for a proper subset
of attributes of
one entity type

4 10 17 2

Table 2 and Table 3 present pairwise comparison matrices in case of the
sub-criteria of access control. We used the results from Table 1 as the basis
to perform the comparisons. For instance, the regular design is strongly better
than the universal design in terms of sub-criterion "SELECT privilege for all

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 99

attributes of one entity type" according to Table 2. The higher is the score
(column Score), the better is the design in terms of this criterion. The regular
design is the best in case of sub-criterion "SELECT privilege for all attributes
of one entity type" because it is possible to grant access by using one GRANT
statement. In case of the 6NF design one has to use multiple grant
statements and in case of the universal design and the EAV/CR design one
firstly has to create views and then to grant SELECT privileges based on the
views. The 6NF design is the best in case of sub-criterion "SELECT privilege
for a proper subset of attributes of one entity type" because each attribute has
a corresponding table. Therefore, one has to use as many GRANT
statements as there are attributes in the subset. In case of other designs it is
necessary to create views and to grant SELECT privileges based on the
views.

Table 2. The results of pairwise comparison of designs in terms of granting SELECT
privilege for all attributes of one entity type

Design Regular
design

Universal
design

EAV/CR
design

6NF
design

Score

Regular design 1 5 8 6 0.636
Universal design 0.20 1 5 3 0.213
EAV/CR design 0.13 0.20 1 0.33 0.049
6NF design 0.17 0.33 3 1 0.103

Table 3. The results of pairwise comparison of designs in terms of granting SELECT
privilege for a proper subset of attributes of one entity type

Design Regular
design

Universal
design

EAV/CR
design

6NF
design

Score

Regular design 1 4 6 0.33 0.290
Universal design 0.25 1 3 0.20 0.107
EAV/CR design 0.17 0.33 1 0.14 0.051
6NF design 3 5 7 1 0.552

Complexity of queries. Table 4 presents the results of measurements in

case of complexity of queries. We found the total complexity of three queries.
The task has three subtasks.
1. SELECT – one entity. The task was to create query "Find all the data about

an order, the identifier of which is 4, the associated warehouse of which
has identifier 1, and the associated district of which has identifier 5".

2. SELECT – small number of entities. The task was to create query "Find the
number of customers who have the last name BARCALLYESE, who use
warehouse, the identifier of which is 1, and who are in district, the identifier
of which is 7".

3. SELECT – large number of entities. The task was to create query "Find the
number of stocks, the quantity of which in a warehouse is less than 15. The
query must only consider stocks that have been ordered with orders, the

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 100

identifiers of which are between 2981 and 3001. In addition, the query must
only consider stocks that 1) are associated with warehouse, the identifier of
which is 1 and 2) that are associated with district, the identifier of which is
5".

Table 4. Measurement results in case of complexity of queries criterion (Coefficient of
Network Complexity)

Task Regular
design

Universal
design

EAV/CR
design

6NF
design

SELECT – one entity 0 21 21 3.2
SELECT – small number of
entities

0 7.1 7.1 0

SELECT – large number of
entities

0.5 11 11 1.3

Total complexity 0.5 39.1 39.1 4.5

In case of the regular design, we have to perform the smallest number of

join and semijoin operations and therefore this design is the best in terms of
this criterion.

Schema size. Table 5 presents the results of measurements in case of
schema size. The schema size depends strongly on the context in case of the
regular design and the 6NF design. On the other hand, the schema size of the
universal design and the EAV/CR design changes only if database developers
decide to change the set of data types, the corresponding values of which can
be recorded in the database as attribute values. One has to note that this
decision may depend on the context too.

Table 5. Measurement results in case of schema size criterion

Regular design Universal design EAV/CR design 6NF design

56 24 60 174

Integrity constraints. Table 6 presents the results of measurements in case

of integrity constraints. Firstly, we calculated the number of foreign keys
(NFK), referential degree (RD), and depth of referential tree (DRT). We
performed two tasks to evaluate designs in terms of CHECK constraints.
1. CHECK (involves one attribute). The task was to implement constraint

"Credit check of each customer must be GC or BC".
2. CHECK (involves more than one attribute). The task was to implement

constraint "Each order must satisfy the condition S_REMOTE_CNT <=
S_ORDER_CNT".
To evaluate designs in terms of UNIQUE constraint, the task was to

implement constraint "In case of each Stock the value of attribute S_DATA
must be unique". To evaluate designs in terms of NOT NULL constraint the
task was to implement constrain "Each customer must have a last name". In
case of CHECK, UNIQUE, and NOT NULL constraints, we counted the

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 101

physical lines of code that were needed to implement the constraints that
were specified in the tasks.

For instance, in case of NOT NULL constraint the best design is the regular
design because one can implement the integrity constraint by creating a
declarative NOT NULL constraint. In case of other designs one has to use
complex trigger procedures.

Table 6. Measurement results in case of integrity constraints criterion

Sub-criterion Regular
design

Universal
design

EAV/CR
design

6NF
design

NFK 3 6 24 45
RD 0.08 0.30 0.39 0.26
DRT 3 3 3 3
CHECK (involves
one attribute)

3 27 27 3

CHECK (involves more than
one attribute)

3 71 65 42

UNIQUE 2 9 9 2
NOT NULL 2 102 101 73

Performance of data manipulation operations. Table 7 presents the results

of measurements of performance of data manipulation operations (in
milliseconds). We performed five tasks to evaluate the performance. The first
three tasks were the same as in case of complexity of queries. In addition, we
performed two tasks to measure the performance of database operations that
modify data in a database: 1) insert a new order to the database (a new
Order_ entity) and 2) update the quantity of a stock, the identifier of which
is 1, and that is in a warehouse, the identifier of which is 1.

Data size. Table 8 presents the results of measurements of data size. We
found the size of base tables and indexes (in megabytes) in a test database.
PostgreSQL™ creates automatically an index based on each primary key. We
also created additional indexes on foreign keys if the corresponding columns
where not indexed due to the primary key constraint. The regular design is the
best in case of both sub-criterion.

Table 7. Measurement results in case of performance of data manipulation operations
criterion (in milliseconds)

Sub-criterion Regular
design

Universal
design

EAV/CR
design

6NF
design

SELECT – one entity 0.137 15046.219 14877.789 0.395
SELECT – small
number of entities

79.474 3751.741 974.636 11.843

SELECT – large
number of entities

213.064 4286.012 4086.631 339.235

INSERT 26.828 460.726 160.427 95.409
UPDATE 25.649 17339.214 8057.793 9.495

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 102

Table 8. Measurement results in case of data size criterion (in megabytes)

Sub-criterion Regular
design

Universal
design

EAV/CR
design

6NF
design

Size of base tables 53 296 264 148
Size of indexes 18 288 288 87

Concurrency control. Table 9 presents the results of measurements in case

of concurrency control. The task was to lock all the data that corresponds to
one entity that has type Stock to modify the data and to prevent concurrent
modification of the data. We counted the physical lines of code that were
needed to implement the concurrency control task. The best design is the
regular design because all the data about an entity is in one row and UPDATE
statement automatically locks the entire row. In case of other designs, we had
to lock data in more than one row by using explicit SELECT ... FOR UPDATE
statements for that purpose. The 6NF design got the worst result due to the
number of different tables that contain data about one entity.

Table 9. Measurement results in case of concurrency control criterion (physical lines of
code)

Regular design Universal design EAV/CR design 6NF design

0 23 23 49

4.7. The Results of the Comparison

Table 10 and Table 11 summarize the results of evaluation of four designs.

Table 10. The results of evaluation of designs in case of context 1

Design/
Criterion

Regular
design

Universal
design

EAV/CR
design

6NF
design

Complexity of queries 0.0879 0.0087 0.0087 0.0348
Access control 0.0330 0.0114 0.0036 0.0234
Schema size 0.0086 0.0223 0.0061 0.0019
Integrity constraints 0.1411 0.0228 0.0215 0.0700
Performance of operations 0.1584 0.0173 0.0312 0.1654
Data size 0.0241 0.0026 0.0032 0.0080
Concurrency control 0.0490 0.0146 0.0146 0.0058
Relative goodness of a
design

0.5021 0.0998 0.0889 0.3092

For instance, in case of context 1 the relative importance of access control
criterion is 0.071 (see Fig. 7). It has two sub-criteria, both of which have the
relative importance 0.500 in terms of the main criterion. The score of the
regular design is 0.636 and 0.290 in case of these sub-criteria (see Table 2

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 103

and Table 3, respectively). Therefore, the score of the regular design in case
of access control in context 1 is (0.636×0.500 + 0.290×0.500)×0.071= 0.0330.

Table 11. The results of evaluation of designs in case of context 2

Design/
Criterion

Regular
design

Universal
design

EAV/CR
design

6NF
design

Complexity of queries 0.0440 0.0044 0.0044 0.0174
Access control 0.0725 0.0251 0.0079 0.0513
Schema size 0.0061 0.0158 0.0043 0.0013
Integrity constraints 0.0751 0.0166 0.0136 0.0359
Performance of operations 0.1893 0.0177 0.0280 0.1652
Data size 0.0200 0.0022 0.0026 0.0067
Concurrency control 0.1008 0.0300 0.0300 0.0119
Relative goodness of a
design

0.5078 0.1117 0.0908 0.2897

Last rows of Table 10 and Table 11 present the final scores of designs in

case of different contexts (row Relative goodness of a design). We found
them by summarizing the scores of alternatives in case of each design. The
bigger is the final score, the better is the design in terms of the goal.

The best design, from the set of given designs, in case of both contexts is
the regular design. It has the highest scores in case of almost all the criteria,
except performance of data manipulation operations in case of context 1 and
schema size. In many cases, this design has much higher scores than other
designs. The second best design in case of both contexts is the 6NF design.
In case of context 1 it is the best in terms of performance of data manipulation
operations. The 6NF design has the worst results among the alternatives in
case of schema size and concurrency control. The third and fourth best
design in case of both contexts is the universal design and the EAV/CR
design, respectively. The results are a surprise in case of context 1 because
some systems for managing data of clinical measurements use the universal
design or the EAV/CR design [5]. We do not claim that the regular design is
always the best and the EAV/CR design is always the worst because it
depends on the context, criteria, relative importance of the criteria, measures,
tasks, and alternatives with which the designs will be compared. For instance,
Chen et al. [5] consider performance criterion in case of the EAV/CR design
and mention also database and query maintainability as the advantages of
using the EAV/CR design. In this paper, we used more criteria to evaluate
database designs. We think that a wider range of criteria gives a better
overview of advantages and disadvantages of a particular database design.

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 104

5. Conclusions

Often it is possible to use more than one database design to solve the same
problem. Therefore, there should be a way to evaluate the suitability of
designs.

In this work, we proposed a systematic and structured decision support
method, which is based on the Analytic Hierarchy Process. It enables us to
compare different database designs against each other while taking into
account the requirements for the database. The comparison is based on the
results of measurements.

We presented a case study of evaluating four designs of SQL databases to
prove the usefulness of the proposed method. We compared the regular
design, the universal design, the entity-attribute-value with classes and
relationships (EAV/CR) design, and the sixth normal form (6NF) design in
case of PostgreSQL™ DBMS 8.3.6 based on two quite different contexts.
One of the contexts describes a scientific information system for managing
the results of measurements. Another context describes a typical online
transaction processing system. We found the relative goodness of each
database design for both contexts. The goal of the case study was to
demonstrate the use of the method and not to make absolute conclusions
about the goodness of the designs. Although in case of both contexts the best
was the regular design it is possible that the results could be different in case
of different contexts, criteria, measures, tasks, solutions, or alternatives.

An important property of the proposed method is its flexibility – it can be
used in case of different data models, criteria, and alternatives.

Additional results of our work are a set of possible criteria that one can use
to evaluate the designs of SQL databases. We also found software measures
that correspond to the criteria. It is possible to reuse all of that during the
future evaluations of SQL database designs.

On the basis of the results it is concluded that the proposed method can be
effectively used to evaluate database designs.

Future work must include more empirical studies about the use of the
proposed method. It is necessary to use it in case of various data models and
database designs. For example, one could create some designs that are like
the first and most probable regular design, but with some common design
mistakes. After that one could evaluate the method by comparing the regular
design with the set of newly created designs.

In addition, it is crucial to further investigate criteria that can be used to
evaluate database designs. There should also be a software system that
supports and partially automates the use of the method.

A Decision Support Method for Evaluating Database Designs

ComSIS Vol. 9, No. 1, January 2012 105

References

1. Baroni, A.L., Calero, C., Abreu, F.B., Piattini, M.: Object-Relational Database
Metrics Formalization. In Proceedings of the Sixth International Conference on
Quality Software. IEEE Computer Society, Beijing, China, 30-37. (2006)

2. Behkamal, B., Kahani, M., Akbari, M.K.: Customizing ISO 9126 Quality Model for
Evaluation of B2B Applications. Information and Software Technology, Vol. 51,
No. 3, 599-609. (2009)

3. Blaha, M.: Patterns of Data Modeling. CRC Press, Boca Raton London New York.
(2010)

4. Chaudhuri S., Narasayya, V.: Self-Tuning Database Systems: A Decade of
Progress. In Proceedings of the 33rd International Conference on Very Large Data
Bases. ACM, University of Vienna, Austria, 3-14. (2007)

5. Chen, R.S., Nadkarni, P., Marenco, L., Levin, F., Erdos, J., Miller, P.L.: Exploring
Performance Issues for a Clinical Database Organized Using an Entity-Attribute-
Value Representation. Journal of the American Medical Informatics Association,
Vol. 7, No. 5, 475-487. (2000)

6. Date, C.J.: An Introduction to Database Systems (8th ed.). Pearson/Addison
Wesley, Boston. (2003)

7. Date, C.J.: The Relational Database Dictionary. A comprehensive glossary of
relational terms and concepts, with illustrative examples. O'Reilly, USA. (2006)

8. Date, C.J.: SQL and Relational Theory. How to Write Accurate SQL Code.
O'Reilly, USA. (2009)

9. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model.
Morgan Kaufmann, USA. (2003)

10. Date, C.J., McGoveran, D.: The Principle of Orthogonal Design. Database
Programming & Design, Vol. 7, No. 6. (1994)

11. Eessaar E., Soobik, M.: A Comparison of the Universal and the Regular Database
Design. In: Haav, H.-M., Kalja, A. (eds.): Databases and Information Systems V -
Selected Papers from the Eighth International Baltic Conference, DB&IS 2008.
Frontiers in Artificial Intelligence and Applications, Vol. 187. IOS Press,
Amsterdam Berlin Oxford Tokyo Washington, DC, 289-300. (2009)

12. Feuerlicht, G., Pokorný, J., Richta, K.: Object-Relational Database Design: Can
Your Application Benefit from SQL:2003? In: Barry, C., Conboy, K., Lang, M.,
Wojtkowski, G., Wojtkowski, W. (eds.): Information Systems Development:
Challenges in Practice, Theory, and Education, Vol. 2. Springer US, 975-987.
(2009)

13. Forman, E.H., Selly, M.A.: Decision by Objectives. World Scientific Publishing
Company. (2002)

14. Hay, D.C.: Data Model Patterns: Conventions of Thought. Dorset House Pub, New
York. (1996)

15. Latva-Koivisto, A.M.: Finding a Complexity Measure for Business Process Models.
Research Report. Helsinki University of Technology, Systems Analysis
Laboratory, Finland. (2001)

16. March, S.T.: Techniques for Structuring Database Records. ACM Computing
Surveys, Vol. 15, No. 1, 45-79. (1983)

17. Melton, J.: ISO/IEC 9075-2:2003 (E) Information technology – Database
languages – SQL – Part 2: Foundation (SQL/Foundation), Aug. 2003. [Online].
Available: http://www.wiscorp.com/SQLStandards.html (current December 2004)

18. Park, K.S., Lim, C.H.: A Structured Methodology for Comparative Evaluation of
User Interface Designs Using Usability Criteria and Measures. International
Journal of Industrial Ergonomics, Vol. 23, Issues 5-6, 379-389. (1999)

Erki Eessaar and Marek Soobik

ComSIS Vol. 9, No. 1, January 2012 106

19. Piattini, M., Calero, C., Sahraoui, H., Lounis, H.: Object-Relational Database
Metrics. L'Object, vol. March 2001.

20. PostgreSQL. The world's most advanced open source database. [Online].
Available: http://www.postgresql.com (current September 2010)

21. Saaty, T.L.: How to Make a Decision: The Analytic Hierarchy Process. Interfaces,
Vol. 24, No. 6, 19-43. (1994)

22. Simsion, G.: Data Modeling. Theory and Practice. Technics Publication, LLC, New
Jersey. (2007)

23. Soutou, C.: Modeling Relationships in Object-Relational Databases. Data &
Knowledge Engineering, Vol. 36, No. 1, 79-107. (2001)

24. Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A Quality-Driven Decision
Support Method for Identifying Software Architecture Candidates. International
Journal of Software Engineering and Knowledge Management, Vol. 13, Part 5,
547-573. (2003)

25. Teorey, T.J., Yang, D., Fry, J.P.: A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model. ACM Computing
Survey, Vol. 18, No. 2, 197-222. (1986)

26. Theodoratos, D., Bouzeghoub, M.: A general framework for the view selection
problem for data warehouse design and evolution. In Proceedings of the 3rd ACM
international Workshop on Data Warehousing and OLAP. ACM, New York, NY,
1-8. (2000)

27. Tow, D.: SQL Tuning. O'Reilly, USA. (2003)
28. TPC BENCHMARK™ C – Standard Specification, Revision 5.9, June 2007.

[Online]. Available: http://www.tpc.org/tpcc/spec/tpcc_current.doc (current June
2007)

29. Vaidya O.S., Kumar, S.: Analytic Hierarchy Process: An Overview of Applications.
European Journal of Operational Research, Vol. 169, No. 1, 1-29. (2006)

Erki Eessaar received the BSc and MSc degrees in informatics from Tallinn
University of Techology, Estonia in 1999 and 2001, respectively. He received
PhD in Engineering (in informatics) from Tallinn University of Techology,
Estonia in 2006. He is currently Associate Professor in Department of
Informatics in Tallinn University of Technology. He teaches courses in
database design and programming of databases. His research interests are in
relational- and object-relational data models, metamodeling, metamodeling
systems, metadata, patterns, repositories, database design, information
system design, software measures, and model-driven development.

Marek Soobik received the BS and MS degrees in informatics from Tallinn
University of Techology, Estonia in 2007 and 2009, respectively. He is
currently working as a software developer at itestra GmbH. His research
interests are in relational- and object-relational data models, database design,
and information system design.

Received: September 29, 2010; Accepted: July 20, 2011.

