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Abstract
In this study, we developed a land-cover classification
methodology using Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) visible near-infrared
(VNIR), shortwave infrared (SWIR), and thermal infrared (TIR)
band combinations based on wavelet fusion and the self-
organizing map (SOM) neural network methods, and com-
pared the classification accuracies of different combinations
of ASTER multi-band data. A wavelet fusion concept named
ARSIS (Amélioration de la Résolution Spatiale par Injection
de Structures) was used to fuse ASTER data in the preprocess-
ing stage. In order to apply the wavelet fusion method to
ASTER data, the principal components of ASTER VNIR data
were computed. The first principal component was used as
the base image for wavelet fusion. In our experiments, the
spatial resolution of ASTER VNIR, SWIR, and TIR data was
adjusted to the same 15 m. SOM classification accuracy was
increased from 83 percent to 93 percent by this fusion, and
classification accuracy increased along with the increase of
band numbers. Classification accuracy reaches the highest
value when all 14 bands are used, but classification accuracy
closely approached the highest value when three VNIR bands,
three SWIR bands, and two TIR bands were used. A similar
tendency was also obtained by the maximum likelihood
classification (MLC) method, but the classification accuracies
of MLC over all band combinations were considerably
obviously lower than those obtained by the SOM method.

Introduction
The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) on board the NASA Terra satellite has three

visible near-infrared (VNIR) spectral bands in the 0.52 �m
to 0.86 �m wavelength region, six shortwave infrared (SWIR)
bands in the 1.6 �m to 2.43 �m region, and five thermal
infrared (TIR) bands in the 8 �m to 11.65 �m region, with
spatial resolutions of 15, 30, and 90 m, respectively. Because
ASTER data have wide spectral coverage and relatively high
spatial resolution, they can discriminate a variety of surface
materials and reduce problems with some lower resolution
data resulting from mixed pixels (Yamaguchi et al., 1998).
Thus, ASTER data are suitable for land-cover/ land-use
classification.

Land-cover classification systems using only the VNIR
and SWIR bands of ASTER data has been discussed in some
recent papers. The most frequently used method is dividing
ASTER data into two groups of images of 15 m and 30 m
resolution, each having three and six bands, respectively. For
each group, support vector machine (SVM)-based algorithms
(Zhu and Blumberg, 2002) or segmentation algorithms
(Marcal et al., 2005) are used for classification processing.
Other studies using principal component analysis (PCA) were
applied to the nine VNIR and SWIR bands. From the previ-
ously obtained principal components, a supervised MLC
approach was implemented (Gomez et al., 2005). In addition,
an approach based on the wavelet fusion method has been
proposed (Hasi et al., 2004). However, most of the methods
mentioned above have not adopted the TIR band data in
classification processing.

ASTER data can be used to perform land-cover classifica-
tion effectively and accurately, but three problems need to be
solved. The first is the difference in spatial resolutions;
namely, the different spatial resolutions of VNIR, SWIR, and TIR
bands must be converted to the same spatial resolution.
Wavelet fusion has proved to be a highly efficient method to
deal with data with different spatial resolutions. Ranchin and
Wald (2000) launched the ARSIS (Ame’lioration de la Re’solu-
tion Spatiale par Injection de Structures) wavelet fusion
concept for image fusion applications, and showed that the
ARSIS concept achieved the best fusion result when compared
with the Brovey transform, Intensity-Hue-Saturation (IHS)
method, and principal component analysis (PCA) method.
This concept has recently been successfully used for remote
sensing image fusion applications (Mertens et al., 2004;
Pajares and Cruz, 2004).
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Secondly, a highly accurate classification approach is
necessary to classify the multi-dimensional ASTER data.
A successful approach to multi-spectral data classification
based on artificial neural networks has been addressed in
many studies (e.g., multilayer perception (MLP) (Foody,
1999), ARTMAP (Carpenter et al., 1997), radial basis function
(Bruzzone and Fernandez-Prieto, 1999), and the SOM algo-
rithm with learning vector quantization (LVQ) (Ito and
Omatu, 1999; Ji, 2000). Compared with other classification
methods, artificial neural networks have several advantages.
They are error-tolerant and relatively insensitive to back-
ground noise. They can learn relationships from examples,
without making assumptions about data distribution or the
nature of the relationship between inputs and outputs (Paola
and Showengerdt, 1995). The self-organizing map (SOM)
neural network developed by Kohonen (1982) is a prominent
unsupervised neural network model that projects a topology-
preserving mapping of a high-dimensional input space
onto converts a topology-preserving mapping of a high-
dimensional input space to a low-dimensional map space. It
has been reported that a SOM neural network achieves higher
classification accuracy when classifying remote sensing data
than the maximum likelihood classification (MLC) method
and back-propagation neural network (Ji, 2000).

Finally, the contributions of multiple bands of VNIR,
SWIR, and TIR data to classification accuracy need to be
analyzed. In this study, in order to solve these problems,
we chose the Hetao Irrigation District, Inner Mongolia
Autonomous Region, China, and an ASTER scene acquired
on 23 August 2003 was employed. The Hetao Irrigation
District is located in an arid and semi-arid area, where
inappropriate irrigation has caused severe soil salinization,
and the soil salinization is likely to result in desertification
in future. In order to solve these problems, land-cover
types, including soil salinization and desert, need to be
identified.

Our procedures in this study were as follows. First, the
ARSIS wavelet fusion concept was applied. To solve the
problem of spatial resolution, PCA was carried out on the
data of three VNIR bands, and the first principal component
(PC1) was used as a base image in the wavelet fusion of SWIR
and TIR band data. Then, the SOM classification method was
carried out on various combinations of the 14 fused bands
with a 15 m spatial resolution to show changes of classifica-
tion accuracy along with the variation of band combinations.
At the same time, a traditional MLC method was applied for
comparison. Finally, the classification results were analyzed
and discussed through statistics, SOM topology preservation
maps, and classification result maps.

Methods
Principal Component Analysis
PCA is a traditional method for analyzing multi-spectral
remote sensing data, especially for image enhancement and
data compression. It conducts a linear transformation of the
multi-spectral space of the data to eigen vector space. The
result of the principal component is a set of uncorrelated
images whose energy variances are ordered by amplitude.
The PC1 image contains information that is highly correlated
to the three VNIR bands used as the input to PCA (Chavez
and Kwarteng, 1989). Then, we normalized the PC1 to float
data (0 to 255) for use as a base image in the wavelet fusion
step.

Wavelet Fusion
The wavelet fusion approach is appropriate for performing
fusion tasks because the multi-resolution analysis approach

is well suited to management of different image resolutions
(Pajares and Cruz, 2004). The wavelet transform decomposes
a signal into a set of basic functions. The base is generated
by dilations and translations of single function � called the
wavelet: i.e.,

(1)

where a is the scaling parameter, b is the shifting parameter,
a, b � R, and a � 0.

In the one-dimensional (1D) case, the 1D continuous
wavelet transform of a function f is defined as:

(2)

where is the complex conjugate of �. If � is such

that

(3)

f can be reconstructed by an inverse wavelet transform:

(4)

The binary partition discrete wavelets given by a � 2j, and
b � 2jk are:

(5)

The multi-resolution formulation needs two closely
related basic functions. In addition to the wavelet �(x), we
will need another basic function, called the scaling function
�(x). �(x) can be expressed in terms of a weighted sum of
shifted �(2x) as, for example, such as Daubechies four-tap
filter (Daubechies, 1992) (Table 1):

(6)

The corresponding wavelet can be generated by the follow-
ing equation:

(7)

In general, we consider h(n) as a low-pass filter (scaling
coefficients) and g(n) as a high-pass filter (wavelet coeffi-
cients) where:

(8)

and N is the wavelet index.
The mother wavelet �(x) is good at representing

the detail and high-frequency parts of a signal. The scal-
ing function �(x) is good at representing the smooth and
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TABLE 1. COEFFICIENTS OF H (LOW-PASS)
FILTER USED TO GENERATE FOUR-TAP

DAUBECHIES WAVELET (DAUBECHIES, 1992)

H(0) H(1) H(2) H(3)

1 � w3
4w23 � w3

4w23 
 w3
4w21 
 w3

4w2
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low-frequency parts of the signal. In forward wavelet
analysis, a J-level discrete decomposition can be written as:

(9)

where and coefficients and

at resolution j are related to the coefficients at level

j � 1 by the following recursive equations:

(10)

for j � 1, 2, . . . , J.
In an inverse wavelet transform, a reconstruction of the

original fine scale coefficients of the signal can be made
from a combination of the scaling coefficients and wavelet
coefficients at a coarse resolution. Because all of these
functions are orthonormal, we have

(11)

The analysis and synthesis procedures lead to the
pyramid-structured wavelet decomposition (Mallat, 1989).
The 1D multi-resolution wavelet decomposition can be easily
extended to two-dimensional (2D) by introducing separable
2D scaling and wavelet functions as the tensor products of
their 1D complements.

When an M � N discrete image F(m, n) is observed, that
is, the 2D function is sampled. The 2D discrete wavelet
transform (DWT) maps the image F(m, n) to an M � N matrix
of wavelet coefficients. For computer implementation, it is
desirable that the dimensions M and N be a power of 2.

The 2D DWT wavelet analysis operation consists of filtering
and down-sampling using 1D low- and high-pass filters L
(with impulse responses h(i)) and H (with impulse responses
g(i)), first horizontally (by rows) and then vertically (by
columns). So, applying the 2D DWT to the original image 
F(m, n) once, we get four lower resolution sub-images consist-
ing of wavelet coefficients: ,
and for m � 1, . . . , M/2, n � 1, . . . , N/2.
The second transform is just to split in the same
way, which produces the decomposition at the second
level: , and for 
m � 1, . . . , M/4, n � 1, . . . , N/4. General expressions for
the higher levels can easily be derived.

The ARSIS concept, based on discrete wavelet transform, is
used in this study. The goal of the ARSIS concept is to achieve
high spatial resolution together with high-quality spectral
content from two kinds of remote sensing images: (a) images
with high quality spectral content but low quality spatial
resolution, and (b) images with high quality spatial resolu-
tion but with a unique spectral band. Figure 1 presents the
application of the ARSIS concept to fusion of ASTER SWIR and
TIR imagery. Many filters are possible, but in this study the
Daubechies four-tap filter is applied. Table 1 gives the coeffi-
cients of the four-tap filter designed by Daubechies (1992).

In Figure 1, P indicates the PC1 image at the spatial
resolution of 15 m and S indicates the SWIR band. The
wavelet transform is applied to each SWIR band separately.
Two iterations of the multi-resolution analysis using the
wavelet transform are applied to the original P image, and
one iteration to the original S image.
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ARSIS concepts are computed for the transformation of
each P wavelet coefficient image , and into
each S wavelet coefficient image , and . Then,
these models are applied to the wavelet coefficient images

, and for the computation of the missing wavelet
coefficient images SHL, SLH, and SHH. The superscripts HL,
LH, and HH indicate horizontal, vertical, and diagonal
coefficient images, respectively. Finally, the synthesis step
reconstructs the 15 m spatial resolution S image (S-HR).
The wavelet coefficient images computed between 15 m and
30 m can be expressed as follows:

(12)

for Z � HL, LH, and HH:

(13)

where mZ(S) and mZ(P) are the means of and , respec-
tively, and �Z(S) and �Z(P) are the standard deviation of 
and , respectively.

To meet the demand of the 2D discrete wavelet transform
(Pajares and Cruz, 2004), we used the nearest neighbor
interpolation technique to resample TIR image pixel size from
90 m � 90 m to 60 m � 60 m. T is used to indicate each of
the multi-spectral TIR image bands from 10 to 14 at a spatial
resolution of 60 m. Here, two wavelet coefficients images need
to be synthesized, i.e., between 60 and 30 m and between
30 and 15 m. Then, the equations for the ARSIS model are:

(14)

for Z � HL, LH, or HH:

TZ � aZP2
Z 
 bZ for Z � HL, LH, or HH (15)

FTZ � aZP1
Z 
 bZ for Z � HL, LH, or HH. (16)

Similar to the notations above, mZ(T) and mZ(P) are the
means of and , respectively; the �Z(T) and �Z(P) are the
standard deviation of and , respectively.

SOM Neural Network Classification
A SOM is an unsupervised and nonparametric neural network
approach. By assigning each input vector to the neuron with
the nearest weight vector, a SOM is able to divide the input
space into regions with common nearest weight vectors. Also,
because the neighborhood relationship contributes to the
inter-connections among neurons, a SOM exhibits another
important property of topology preservation. That is, if two
weight vectors are near each other in the input space, the
corresponding neurons will also be close in the output space,
and vice versa. Generally, the output neurons are arranged in
a two-dimensional grid of map units.

Because a SOM defines a neighborhood relationship in
the competitive layer, data in the input space with the same
topological characters can be exported to special neurons or
neighborhood neurons in the competitive layer. A cluster
center is expressed as a weight vector. During the clustering
process, not only the weight of the winning neuron is updated,
but also the weights of all the neurons in the neighborhood of
the winning neuron are updated. The update pulls the win-
ning neuron and it neighbors closer to the input vector.

Provided that there are T neurons in the competi-
tive layer, and neuron unit j is represented by a proto-
type vector, wj � [wj1, . . . ,wjn] where n is the input
vector dimension. At each training step t, an input vector
x � [x1, . . . ,xn] is randomly chosen from the training
set. Euclidean distance

(17) ' x � wj  '� ��
n

i�1
(xi � wji)2�

0.5
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Z
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ZT1
Z
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Figure 1. Flowchart of SWIR band fusion (a) and TIR band fusion (b) scheme based on
ARSIS concept. WT denotes wavelet transform, and IWT denotes inverse wavelet
transform.

was chosen as the distance measure to determine the
winning neuron. Pick any input vector x and compute:

(18)

where c is the winning neuron.
The winning neuron and its topological neighbors are

moved closer to the input vector using:

wji(t + 1) � wji(t) 
 �(t)Jxi � wji(t)K if j � Nc(t) (19)

wji(t + 1) � wji(t)    if j Nc(t) (20)�

'x � wc '� min � 'x � wj '�,  j � {1 ...... T}

where Nc(t) is the set of neighborhood nodes of the winning
neuron c at time t, �(t) is the learning rate, and its initial
value is set as 0  �(t)  1.

Afterwards, a supervised learning technique, learning
vector quantization (LVQ), is applied to the results of the
SOM to fine-tune the weight vectors using input vectors x of
known classification. Finally, the distribution of weight
vectors of the neurons in the competitive layer becomes the
best match for vectors of input samples of known classifica-
tion. The details of the process can be described as follows
(Ji, 2000).
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Figure 2. Location of false colored ASTER image (RGB �
bands 3, 2, and 1) of study area in the Hetao Irrigation
District, Inner Mongolia Autonomous Region, China,
acquired on 23 August 2003. The letters A, B, and C
indicate the image sections shown in Plate 2.

At each training step t, initially, a sample data vector x
is randomly chosen from the training set, and the winning
neuron c is calculated according to Equation 18. If x and
neuron c are in the same class, vector wc of neuron c is
updated using Equation 21:

wci (t + 1) � wci(t) 
 �(t)[xi � wci(t)],    i � {1 ......T}. (21)

Otherwise, using Equation 22:

wci (t + 1) � wci (t) � �(t)[xi � wci(t)],    i � {1 ......T}. (22)

Study Area and Data Used
The study area is located in the Hetao Irrigation District,
Inner Mongolia Autonomous Region, China. The cloud-free
ASTER scene used in this study was acquired on 23 August
2003 (Figure 2). The coordinates are in the WGS84 UTM Zone
49. The size of study area is 4,096 pixels � 4,096 pixels
(15 m spatial resolution), which was clipped from the ASTER
Level 1B data. All 14 bands of images of the VNIR, SWIR, and
TIR instruments were used. Because the atmospheric effects
are nearly homogeneous in an arid region at the scale of an
ASTER scene, we used the ASTER Level 1B data instead of the
Level 2 product in this study.

The major part of the study area is the Hetao Irrigation
District, which covers the Wuliangsuhai Lake (very shallow;
areas of water 0.8 to 1.0 m deep occupy 80 percent of
the total lake area), a part of the Kubuqi Desert, and the
Wulashan Mountains, where forest and shrubs are very
sparse. Because this area is located in the middle of dry
grassland on the edge of the Gobi Desert in Inner Mongolia,
agriculture is impossible without irrigation. However, due 
to high evapotranspiration, the alkalinity of the soil has
become a serious problem. Especially in the area around
the Wuliangsuhai Lake, soil is rapidly alkalized, and those
lands are nearly bare of vegetation.

In order to understand the actual ground situation, we
conducted field surveys several times in 2000, 2002, and
2003, when we took photos for actual ground data collection
and field validation of sites located by GPS facilities. Accord-
ing to the results of field surveys, we realized that our study
area is mainly covered by nine land-cover types. Table 2
shows the description of the land-cover classes.

Except for the field surveys, two land-cover digital maps
were also referenced: one is the National Land-use/Land-
cover Datasets (NLCD-2000) of China which was generated
from extensive field surveys, Landsat TM/ETM data in 2000
(Liu et al., 2003), and another is the land-use/land-cover
vector digital map of Wulateqianqi County that was generated
from ground surveys and interpretation of aerial photos taken

in 2002 (done by Inner Mongolia Normal University, unpub-
lished data, 2003). The same classification system of 25 land-
cover types was used for classification in these two maps,
with a mapping scale of 1:100 000. Our study area was fully
covered by NLCD-2000, and the major part of our study area
was covered by the Wulateqianqi County-level map. Besides
these, 1:10 000-scale aerial photographs acquired in June 2004
in Wulateqianqi County were also referenced.

Finally, based on the above-mentioned actual ground
collection and digital maps, we selected both training and

TABLE 2. DESCRIPTION OF LAND-COVER CLASSIFICATION SYSTEM AND PIXEL COUNTS BY LAND-COVER CLASSES

Training Pixel Test Pixel
Land-cover Class Class Description Count Count

1. Water Water bodies 2,523 411
2. Reed (water) Mixture of water and herbaceous 2,315 416

(mainly reeds, etc.) or woody vegetation
3. Grasslands Dominated by grass, occasional tree and shrub 2,447 402
4. Cropland Land dedicated to the production of crops 2,181 402
5. Desert Exposed sand 2,095 413
6. Urban/Built-up Buildings and other human-made structures 2,057 406
7. Open area Exposed soil and stone 2,108 410
8. Tidal flat Muddy, sandy or mixed sediment land 2,345 413
9. Saline soil Alkalized/Stalinized soils without recognizable 1,185 413

plant life
Total 19,256 3,686
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Figure 4. Comparison of false-color composite ASTER
images indicated in Figure 3: (a) Image indicated by
A, RGB � bands 3, 2, and 1, (b) Image indicated by A,
RGB � bands 2, 7, and 14, (c) Image indicated by B,
RGB � bands 3, 2, and 1, and (d) Image indicated by
B, RGB � bands 2, 7, and 14.

testing data (Congalton and Green, 1999; Lillesand et al.,
2004). Here, the testing data were chosen independent of
training data and could represent the various land-cover
types. Table 2 shows the counts of both training and testing
samples.

Methodology
Data Fusion and Preprocessing
The ARSIS concept of the ASTER data wavelet fusion method
was performed using a C/C

 program (Microsoft® Visual
C

 6.0). After fusion, the 14 bands of ASTER data have a
common spatial resolution of 15 m. Under the same spatial
resolution, the number of possible false-color composite
image band combinations is increased from (�1) to 
(�728) through this process. Thus, through various arbitrary
combinations of VNIR, SWIR, and TIR bands, images can be
conveniently interpreted, and ambiguous ground objects can
be easily detected and characterized. Figure 3 illustrates the
R (2, VNIR) G (7, SWIR), B (14, TIR) false-color composite
image. In Figure 3, the polluted water in the Yellow River
and the alkaline lands distributed among croplands are more
obvious than in Figure 2. Four false-color composite sub-
images of R (3) G (2) B (1) and R (2) G (7) B (14) in Posi-
tions A and B of Figure 3 are illustrated in Figure 4, the
before-fusion images on the left, and the after-fusion images
on the right. The alkaline land on the left of Figure 4c is not
too obviously different from either of its surroundings or the
desert on the left of Figure 4a and the Kubuqi Desert in the
lower left corner in Figure 2, which is the combination of
R(3), G(2), B(1), while in Figure 4d, the alkaline land is
yellow. The differences between its surroundings and the
Kubuqi Desert in Figure 3 are both enhanced.

Classification and Performance Evaluation
The SOM neural network structure used for the ASTER image
classification was set as follows: the input layer node

C14
3C3

3

number is equal to the number of ASTER bands used. The
neurons in the competitive layer are in two dimensions of
20 � 20. Based on testing, the parameters of the network
were set as the maximum iteration time T � 3000, the
initial learning rate �(0) � 0.9, and the descending learning
rate � � 0.0015; the radius of N(0), the initial neighbor-
hood (rectangular lattice), was set to 12; the initial weight
vector value (wi(0)) of neuron i in the competitive layer
was set randomly. The radius of the neighborhood, N(t),
decreased according to Equation 23 until the neighborhood
N(t) � 0 meets:

N (t) � N(0) � [A � (t 
 A � t)], where A � N(0)/T (23)

where t is the training time, N(t) is the neighborhood of the
array points around the winning neuron, and [v] denotes a
maximum integer that does not exceed v. The learning rate
is defined as decreasing along with the increasing number of
iterations (Equation 24) until learning rate �(t) � 0.0025
meets:

(24)

Neurons in the competitive layer were assigned to
corresponding classes according to a majority voting princi-
ple while the coarse tuning process was finished.

A fine-tuning process was applied to the training results
using the LVQ supervised method when the SOM learning
process was finished. The maximum number of iterations
was set to 1,000. The initial value of the learning rate was

a(t � 1) � b/10, 0 < t < T/4
a(t) ��  a(t � 1) � b/5, T/4 � t < T/2.

a(t � 1) � b, t �  T/2

Figure 3. RGB � band 2 (VNIR), band 7 (SWIR), and band
14 (TIR) false-color composite ASTER image of the study
area. The letters A and B indicate the image sections
shown in Figure 4.
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0.25, and the descending learning rate was 0.000275. The
learning rate decreased along with the increasing number of
iteration times until learning rate 0.00025 was met. All these
parameters were predefined for the LVQ adjustment.

Table 3 shows the different band combinations that
vary from very simply three VNIR bands to all 14 bands
including VNIR, SWIR, and TIR bands. The each-band combi-
nations listed in Table 3 is classified by the SOM method on
the same training data. The test data is used to evaluate the
significance of differences in classification accuracy by
different band combinations.

To compare the effects of different methods, images of
the different band combinations listed in Table 3 were also
classified by the MLC method on the same training and
testing data. SOM classification methods were performed
using the C/C

 program (Microsoft® Visual C

 6.0),
and MLC classifications were performed by ENVITM soft-
ware, version 4.0. Table 4 shows the classification accura-
cies and Kappa coefficients achieved by both SOM and MLC
methods for each band combination in Table 3.

Results and Discussion
Table 4 shows the classification accuracies and Kappa
coefficients of both SOM and MLC, along with the increase
in band numbers. With both SOM and MLC methods, the
classification accuracy increases as the number of bands
increases. But, in SOM classifications, when all VNIR bands
and a part of the SWIR and TIR bands are used, the accuracy
is higher than that using all VNIR and SWIR bands. For
example, the classification accuracy of the band combina-
tion of three VNIR, three SWIR, and two TIR bands was
higher than that of use all VNIR and SWIR bands and close
to the accuracy of all 14 bands. Moreover, in all the band
combinations, the classification accuracies and Kappa
coefficients of the SOM are generally higher than those of
the corresponding MLC classification.

The land-cover classification results using the SOM and
MLC methods on 14 bands are presented in Plate 1a and
Plate 1b, respectively.

Comparison between all classifications identified by the
two kinds of classification methods are described as follows
(Table 5):

A confusion matrix was computed to evaluate the
ability of the SOM method to identify land-cover and to
assess its accuracy compared with the MLC classifier. The
confusion matrix is a commonly used tool for assessment
of accuracy of land-cover classification. The matrix scores
how the classification process has labeled a series of test
sites or test pixels of which the correct land-cover label is
known (Foody, 2004; Wilkinson, 2005). Tables 6 and 7 show
the confusion matrixes for classifications by the SOM and
MLC methods on 14 bands, respectively. The true class
labels are displayed across rows, while the actual mapped
classes are displayed in columns. The diagonal of the
confusion matrix displays the number of pixels at which the
true class and the mapped class agree with each other.

Table 6 shows the accuracies of land-cover classification
using 14 bands of data with the SOM. Aside from grassland
and open areas, the accuracies of the SOM are higher than
those of the MLC. One possible explanation is that the MLC
approach assumes that the probability distributions of the
classes are in the form of multivariate normal models. This
is an assumption rather than a demonstrable property of
natural spectral or information classes, while the SOM does
not need the assumption. For instance, the large spectral
variance within the cropland land-cover classes makes
accurate classification difficult. Nonetheless, the SOM is able
to classify cropland territory with an accuracy of 98.01
percent. MLC, however, has an accuracy of only 80.1 percent
for this class.

From Figure 2, Table 5, and Plate 1, we can see that the
MLC magnified grassland area and reduced cropland, while
the SOM correctly revealed these local conditions. Sub-
images of ASTER combination R(3), G(2), B(1) at Positions
A, B, and C in Figure 2, respectively, and sub-images of the
SOM and MLC classification results at corresponding positions
were extracted to evaluate partial classification effects in
Plate 2. In Sub-image A of Plate 2, the SOM extracted the
saline soil class correctly, while MLC magnified the saline
soil area. In Sub-image B, the SOM extracted cropland class
correctly, while MLC reduced the cropland region and
magnified the grassland area. In Sub-image C, the SOM
sketched the tidal flat range correctly, while the MLC had a
relatively large classification error.

On the other hand, the SOM did not correctly identify
the open area class in the Wulashan mountainous area
(lower right in Figure 2), and it tended to assign exposed
rock to the urban/built-up class, while the MLC performed
better than the SOM. However, for small towns and villages,
the classifications by both the SOM and MLC were not
adequate. The MLC magnified open areas and reduced
housing estates, while the SOM did just the opposite.
One reason is probably because the roofs of the houses

TABLE 3. LAND-COVER CLASSIFICATION ANALYSIS FOR

VARIOUS BAND COMBINATIONS OF ASTER

Number of Bands Band Combination

3 1 2 3
6 1 2 3 4 5 8
7 1 2 3 4 5 8 13
8 1 2 3 4 5 8 10 13
9 1 2 3 4 5 6 7 8 9

10 1 2 3 4 5 6 7 8 9 13
12 1 2 3 4 5 6 7 8 9 10 12 14
14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TABLE 4. CLASSIFICATION ACCURACY AND KAPPA COEFFICIENTS FOR THE VARIOUS BAND COMBINATIONS

Overall Accuracy

3 Band 6 Band 7 Band 8 Band 9 Band 10 Band 12 Band 14 Band

MLC 78.0521 82.3114 82.7998 84.0477 83.5865 84.5632 87.0863 87.3576
SOM 83.1796 89.2566 91.834 92.2952 90.9387 92.3766 92.675 93.1362

Kappa Coefficient

3 Band 6 Band 7 Band 8 Band 9 Band 10 Band 12 Band 14 Band

MLC 0.7531 0.801 0.8065 0.8206 0.8154 0.8264 0.8547 0.8578
SOM 0.8108 0.8791 0.9081 0.9133 0.8981 0.9142 0.9176 0.9228
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Plate 1. Classification results with ASTER 14-band data: (a) SOM neural network method, and (b) MLC
method. The overall accuracies of test data using the SOM and MLC methods were 93 percent and
87 percent, respectively.

TABLE 5. COMPARISON OF SOM AND MLC CLASSIFIED LAND-COVER MAPS SUMMARIZED USING CLASS PERCENTAGES

Class 1. 2. 3. 4. 5. 6. 7. 8. 9.

MLC 6.34% 3.30% 32.48% 30.66% 7.06% 5.75% 5.53% 7.17% 1.70%
SOM 7.31% 4.97% 15.26% 37.48% 7.20% 9.27% 3.96% 14.12% 0.43%

TABLE 6. CONFUSION MATRIX FOR THE CLASSIFICATION PERFORMED BY THE SOM NEURAL NETWORK RESULTS WITH TEST DATA

Class 1. 2. 3. 4. 5. 6. 7. 8. 9. ∑ User Acc.

1. 402 0 4 0 0 0 0 1 0 407 98.77
2. 0 416 0 0 0 0 0 0 0 416 100
3. 3 0 321 3 7 11 19 2 0 366 87.70
4. 0 0 5 394 0 0 0 3 0 402 98.01
5. 0 0 2 0 406 0 1 0 4 413 98.31
6. 0 0 22 0 0 357 55 0 3 437 81.69
7. 0 0 28 0 0 14 331 0 7 380 87.11
8. 6 0 20 5 0 23 0 407 0 461 88.29
9. 0 0 0 0 0 1 4 0 399 404 98.76
∑ 411 416 402 402 413 406 410 413 413 3686

Prod. Acc. 97.81 100 79.85 98.01 98.31 87.93 80.73 98.55 96.61

Overall Accuracy: (3433/3686) 93.1362%, Kappa Coefficient � 0.9228

are mainly made of concrete and adobe blocks in the
urban/built-up class of our study area. Thus, urban/built-up
and open areas are difficult to discriminate effectively.
This fact can be proved by the 2D topology preservation
map of 14-band SOM training results shown in Figure 5.
After SOM training, each class was clustered into respective
conjoint topology regions, but the distribution locations of
urban/built-up and open areas were adjacent and partially

intersecting in the 2D plane, which affected the classifica-
tion accuracies of the two classes by the SOM. In addition,
water was distributed into two distinct regions because the
water spectrum of the Yellow River is different from that of
other water bodies. Thus, Yellow River water and other
waters were clustered into different clustering regions,
although this did not affect the water classification accu-
racy by the SOM.
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Plate 2. Three original ASTER image subsets (100 pixels
� 100 pixels, RGB � 3,2,1) for the location indicated in
Figure 2, and the corresponding classification results
from SOM and MLC (top) original ASTER image subsets,
(middle) classification maps obtained by SOM classifica-
tion, and (bottom) classification maps obtained by MLC
classification.

Figure 5. SOM training result shows nine land-cover
types located in a 2D topology preservation map

Conclusions
Wide availability of high-quality multi-spectral and multi-
spatial resolution satellite images such as ASTER data allow
us to update land-cover maps more frequently at lower cost.
To solve the problem of different pixel resolutions of the
image bands, we need to develop algorithms for more
accurate and sophisticated classification methods. In this
study, we combined a SOM neural network classification

method with ARSIS wavelet fusion. The ARSIS wavelet fusion
was used to transform an image into a set of bands with the
same spatial resolution, and the SOM classified the multi-
bands data effectively. The results show that after ARSIS
wavelet fusion, images are easier to interpret and distin-
guish. The SOM classification results indicate that the
classification accuracy increases with the increase in the
number of bands used. In particular, when some SWIR and
TIR bands and all three VNIR bands were used, the accuracy
exceeded that when all VNIR and SWIR bands were used, and
the accuracy was close to that using all 14 bands. MLC
classifications exhibited a similar trend, which confirmed
the SOM result. Moreover, the classification accuracies of the
SOM were generally higher than those of the corresponding
MLC classifications, which was demonstrated by statistical
results and sub-image comparisons. Finally, we concluded
that the SOM neural network combined with the ARSIS
wavelet fusion method improved the accuracy of ASTER data
classification significantly.

TABLE 7. CONFUSION MATRIX FOR THE CLASSIFICATION PERFORMED BY THE MAXIMUM LIKELIHOOD CLASSIFICATION (MLC) RESULTS WITH TEST DATA

Class 1. 2. 3. 4. 5. 6. 7. 8. 9. ∑ User Acc.

1. 337 2 0 0 0 0 0 86 0 425 79.29
2. 0 411 0 0 0 0 0 0 0 411 100
3. 65 1 341 80 8 5 36 22 0 558 61.11
4. 0 2 1 322 0 0 0 0 0 325 99.08
5. 0 0 4 0 405 0 7 0 0 416 97.36
6. 0 0 11 0 0 372 8 1 0 392 94.9
7. 0 0 45 0 0 19 358 0 42 464 77.16
8. 9 0 0 0 0 10 0 303 0 322 94.1
9. 0 0 0 0 0 0 1 1 371 373 99.46
∑ 411 416 402 402 413 406 410 413 413 3686

Prod. Acc. 82 98.8 84.83 80.1 98.06 91.63 87.32 73.37 89.83

Overall Accuracy � 87.3576% (3220/3686), Kappa Coefficient � 0.8578
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