
Designing
Object-Oriented

C++ Applications
Using the Booch Method

Robert Cecil Martin
Object Mentor Associates

Technieche Universftat Dermstadt
FACHBEREUCH INFORMATIK

B 1 B L 1 O T H E K

Sachgebtete:

Stendort

Cliffs, New Jersey 07632



Contents

Forward v

Preface vii

About This Book viii
Goals/Purpose viii
Audience viii
Anatomy and Physiology of Design ix

Software Is Hard ix
OOD Can Make Software "Softer" xi

Acknowledgements xii

Contents xiv

Figures xxv

C++Listings xxx

00

OOverview 1

Introduction l

Part 1: Some Common Questions about OOD 2
What is object-oriented design? 2
Is OOD better than previous software-design disciplines? If so, why? 3
Is OOD a revolution, or has it evolved from "older" design methods? 4
How is OOD different from more traditional software methods? 5
Software is software. Isn't OOD just a new face painted on an old canvas? 6
Will OOD solve all my design problems? 6

xiv



Contents xv

What can I really expect from OOD? 6
Is C++ a "true" object-oriented programming language? 7
Why was the Booch notation chosen for this book?..: 7

Part 2: Tutorial 8
Objects 8
Abstraction 9

Abstraction of State 11
Abstraction of Behavior 12

Collaboration Among Objects 13
Polymorphism 14
Classes 15
Specifying State 15

Instance Variables 15
Class Variables 16

Specifying Behavior 17
Instance Methods 17
Class Methods 18

Class Relationships 18
The "Contains" Relationship 18
The "Uses" Relationship 19
The "Inheritance" Relationship 19
Multiple Inheritance 21

Abstract Classes 22

Summary 23

Exercises 24

Static and Dynamic Design 26

Introduction 27

Connecting Requirements to the Design 28
Static and Dynamic Models in OOD 28
A Bill-of-Materials Case Study, in C++ 29

- A C++ Example of a Static Model 29
Containment by Value 31
Containment by Reference 33
Inheritance '. 35
Containment with Cardinality 36
Polymorphic Containment 37
A C++ Example of a Dynamic Model ~ 38
Iteration Between the Models 41



xvi Contents

Why Is This Better Than Writing Code? 43

XRef: An Example of Object-Oriented Analysis and Design 43
XRef References: A Static Model 45

Dynamic Scenario: Printing the Cross-Reference Report 46
Rethinking the Static Model in Light of the Dynamic Requirements 47

Dynamic Scenario: Finding and Adding References 49
Making the Parser Reusable 51

Depicting Reusability with Class Categories 51
Reuse of the Identifier Class 53
The XRef Application 54

Converting the XRef Design into C++ 55
Summary of the XRef Example 57

The Mark IV Special Coffee Maker 60
Specification of the Mark IV Hardware Interface Functions 61
Designing the Mark IV Software 63

The Control Model: A Finite State Machine for the Coffee Maker 64
Finding the Objects 65
Object-Oriented Analysis: Finding the Underlying Abstractions 66
Assigning Responsibilities to the Abstractions 67
Reusing the Abstractions 71
CojfeeMaker Categories 78

Implementation of the Mark IV Coffee Maker 79
The Design and the Code Aren't a Perfect Match 80

Summary 80

Exercises 81

Mark IV Coffee Maker Implementation 84
The UI Category , 84
The Warmer Category 86
The Sprayer Category 88
the CojfeeMaker Category 90
The MarklV Category 92

Managing Complexity 106

Introduction 107

Managing vs. Reducing Complexity 107

Abstraction: "The Most Powerful Tool" 108

Product Costing Policy: Case Study. 109



Contents xvii

Grouping 109
The Open-Closed Principle 109
Using Grouping Strategies to Close a Function 115

Hiding (Restricting Visibility) 119
The Problem of Too Much Visibility 120
Hiding and Closure 121
Abstraction and Hiding 121

Completing the Product / Policy Design 123
The Cost of Complexity Management 127
The Efficiency of the Diagrams 128
The Product Costing Code 128

Managing Complexity with Abstraction 137
Polymorphism 137

Total Typed Polymorphism 137
Partial, Untyped Polymorphism 138

ISA and the Liskov Substitution Principle 139
Mathematicalys. Polymorphic Relationships 140

Factoring Instead of Deriving 142
'- Managing Complexity with Aggregation 145

Restricting Visibility by the use of Friendship 148

Case Study: The Design of a Container Library 149
Anonymous Containers 160
Summary of the Container Case Study 163

Summary 164

Exercises , 165

Container Class Listings 166

Analysis and Design 189

Introduction 189

Case Study: A Batch Payroll Application 191
Specification 191
Analysis by Noun Lists 192
Analysis by Use-Cases 194
Adding Employees 194

We Are Already Making Design Decisions 196
Deleting Employees 196
Posting Time Cards 197



xviii Contents

Posting Sales Receipts 197
Posting a Union Service Charge 198
Changing Employee Details 199
Payday 200
Reflection: What Have We Learned? 201
The Viability of Real-World Models 203
Finding the Underlying Abstractions 204
The Schedule Abstraction 204
Payment Methods 206
Affiliations 206
Transactions 206
Adding Employees 208
Deleting Employees 208
Time Cards, Sales Receipts, and Service Charges 209
Changing Employees 214
Paying Employees 220
Main Program 222
Application Framework 223
The Database 224

Summary of Payroll Design 225

High-Level Closure Using Categories 226
Class Categories 226

Category Structure and Notation 228
) Circularity in the Category Structure 229

Resolving Issues of Circularity 230
The Category Structure Is Always Flexible 231

Cohesion, Closure, and Reusability 231
The Cohesion of Common Closure '. 232
Creating a Hierarchy of.Closed Categories 233
The Main Sequence: Plotting Stability vs. Generality 235

The Abstraction vs. Stability Characteristics of Traditional Software Methods 236
The Impact of Abstract Classes on the Main Sequence 238
Categories That Deviate from the Main Sequence 238

The Category Is the Granule of Reuse 239
Cohesion of Policy and Function 240
Reflections on Cohesion 241
Reflections Upon the Payroll Application 241
Coupling and Encapsulation 243

Afferent and Efferent Coupling 243
Controlling Coupling with Encapsulation 244

Metrics 246
Applying the Metrics to the Payroll Application 247



Contents xix

Object Factories 250
Rethinking the Cohesion Boundaries 251
The Object Factory for Transactionlmplementation 252
Initializing the Factories 252

The Final Category Structure 254

Reflections upon Object Factories 257

Exercises 257

A Partial C++ Implementation of Payroll 258
Categories and Namespaces 258
The Header Files 259

The PayrollDomain Category 259
The PayrollFactory Category 262
The Payrolllmplementation Category 263

Paradigm Crossings 271

Introduction 271

The Object-Oriented Paradigm 272
The C++ Interpretation of the 0 0 Paradigm 273

Crossing the Procedural-Paradigm Boundary 273
Wrapping Procedural Programs in OO Classes 274
Wrapping Procedural Servers within Classes./. 274
"Objectifying" Procedural Clients 279
Managing the PP-to-00 Transition 281

The Representational Paradigm 283
Representational Modeling Is Not Object-Oriented Modeling 284

The 00 / Representational Difference 285
The Need for Pure Representations 285
Representational Models and Run-Time Type Identification 286
When Is a Representational Model More Appropriate Than an OO Model? 287
The Representational Model of a State Machine Compiler 287

. The SMC Representational Model in C++ 291
Crossing the OO/Representational Boundary (Interpreting the Model) 296
Categories and Representational Models 298
Representational Reflections 299

The Relational Paradigm 299
Tuples and Tables 300

The Normal Forms of a Relation 301



xx Contents

The Relational Representation of the Payroll Application 302
Using a Relational Database 302

A Wide Chasm 305
Crossing the Chasm 305
Surrogation 306

Relational Reflections 307

The Multiprocessing Paradigm 309
Lightweight Processes in an OO Environment 309

Multiprocessing Pollution 313
Heavy weight Processes 313

Surrogation between Heavyweight Processes 314

Summary 319

Exercises 319

High-Level OOAD:
A Case Study 321

Introduction 322

Case Study: The Requirements Document 323

Analyzing the Requirements 324
Requirement 1: Doors, Locks, and Security Card Readers 324

Reflections 336
Requirement 2: Break-in Detection 337

Reflections .' ." 340
Requirement 3: Fire and Smoke Detectors 341

Reflections 344
Requirement 4: Security-Guard Patrol Tracking 345

Reflections 355
Requirement 5: Multiple Levels of Security 355

Reflections 361
Requirement 6: Lockdown 361

Reflections 368
Requirement 7: Emergency Evacuation 368

Reflections 370
Requirement 8: Security Control Centers 372

Reflections 380
Requirement 9: Events, Violations, and Alarms 380

Summary 383



Contents xxi

Exercises 383

Physical Architecture 385

Introduction 385

Reviewing the Logical Design 386
Breaking Dependency Cycles '. 386
Breaking Unwanted Dependencies 390
Accidental Duplication 390
Cycles Revisited 391
Reflection 393

SecurityZone Category 394
Keeping the Dynamic Scenarios Current 398
Breaking Unwanted Dependencies 399
Metric Analysis 401

Reflection on Metrics 403

Splitting Detectors 403

Timers and Patrols 404

Sensors 409

Security Card Reader 410

GUI Control Center 411

Security System and Clearance-Access Policy - 412

The Final Category Diagram 414
Physical Representation 414
How Reusable Is This 415
Splitting up the O/S-Specific Category 416
The Main Category 417
Metric Analysis 417

Summary 418

Exercises 419


