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Abstract

Software systemsmust evolve during their lifetime in responseto changing expectations

and environments. As the software evolves,the systembecomesharder to understandand

maintain without the proper knowledgeabout how the systemhad changedin the past and

the context of thosechanges.Studying software evolution hasbeenextraordinarily costly

and time consuming,as it lacks a sound theory, e�ectiv e research approaches,as well as

an integrated research environment.

In this thesis, we present a research approach for studying software evolution, which

incorporates evolution metrics, visualization of system changehistory, and a method of

relating similar program entities between di�eren t releasesin spite of changedname or

location. To validate our approach, wehaveimplemented a prototyperesearch environment

called BEAGLE to aid the software maintainer to understandhow large software systems

have evolved overtime. BEAGLE integratesdata from various statistic tools and metric

tools, and provides a query engine as well as a web-basedvisualization and navigation

interface. BEAGLE aims to provide help in understanding the long-term evolution of

systemsthat have undergonearchitectural and structural changes.

We performeda casestudy on the evolution of GNU Compiler Collection (GCC) using

a prototype implementation of BEAGLE. We were able to discover several interesting

evolution characteristicsof GCC, and to answer speci�c questionsrelated to the evolution

history of GCC, such as the relationship between the experimental EGCS releaseand

traditional GCC release,and the di�eren t evolution patterns shown by GCC releasesat

di�eren t periods of time.
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Chapter 1

Soft ware Evolution: An In tro duction

1.1 Overview of Thesis

Softwaresystemsmust evolveduring their lifetime in responseto changingexpectationsand

environments. The context of a software systemis a dynamic multi-dimensional environ-

ment that includesthe application domain, the developers' experience,aswell assoftware

development processesand technologies[41]. Software systemslive in an environment that

is very complexand dynamic.

While changeis inevitable in softwaresystems,it is alsorisky and expensive, ascareless

changescan easily bring down the whole system. It is a challenging task for developers

and maintainers to keepthe software evolving, while still maintaining the overall stabilit y

and coherenceof the system. To achieve this goal, software engineershave to learn from

history. By studying how successfullymaintained softwaresystemshasevolved in the past,

researcherscan �nd answersto questionssuch as\wh y and whenchangesaremade", \how

changesshouldbe managed",and \what the consequencesand implications of changesare

to continue software development". Software Evolution, oneof the emergingdisciplinesof

softwareengineering,studiesthe history of softwaresystems,exploresthe underlying mech-

anismsthat a�ect software changes,and provides guidelinesfor better software evolution

processes.

Lehman suggestedthat the software evolution is a feedback system where complex

interaction and feedback control existsamongsoftwaresystems,development processesand

1



2 On Navigation and Analysis of Software Architecture Evolution

the application environment [32]. To understandthis complexmechanism,we can start by

studying the evolution patterns of software systemsfrom artifacts such asprogram source

code, comments, and designdocumentation. Then we can relate the \evolution patterns"

discovered in software systemswith those discovered in the development processand the

surrounding environment. Eventually, we can discover the underlying mechanisms that

decidethe evolution of software systems.

To discover the evolution pattern of past software systems,we needpractical browsing

and analysistools that can guide usersin navigating through software evolutionary histo-

ries. Browsingtoolshelp us to visualizewhat changeshad happenedto the softwaresystem

in the past. Analysis tools can aid in discovering \undocumented" changes,assistingus to

�nd out why such changeshappened.

In this thesis,wewill describean approach towardse�cien t navigation andvisualization

of evolution historiesof software architectures. Furthermore, we will alsointroduceseveral

methods to track and analyzethe software structural changesfrom past releases.Finally,

the evolution history of a real-world software system,the GCC compiler suite, will be used

as a casestudy to demonstratethe e�ectiv enessof our approach.

1.2 Biological Evolution and Soft ware Evolution

1.2.1 Biological Evolution

In the natural world, living organismsmay alter their characteristics over time, and the

traits that record the changesare passedfrom one generationto the next. The study of

biological evolution attempts to understandthe forcesthat have causedancient organisms

to evolve into the great variety of life forms that existstoday. It alsoaddresseshow species

branch o� into entirely new species,and how di�eren t speciesmay be related through

family trees.

Similar to living organisms,a softwaresystemalsoevolvesto adapt to its changingenvi-

ronment by releasingnew versions,with enhancedfeaturesand improved quality. Robert-

son [45] distinguished the similarities and di�erences betweenbiological evolution theory

and the conceptsof software evolution. In that study, he summarizedthe following char-
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acteristics that dominate biological evolution:

� In a population of given species,every individual exhibits a unique set of attributes.

A variety of attributes are carried by all the individuals in the population.

� Speci�c attributes may bene�t individuals, to allow them to live longerand stronger

under a given environment. Thus the individual that carriessuch attributes will be

in favor for reproduction.

� The o�spring of successfulindividuals will inherit a signi�cant portion of the at-

tributes from their ancestors.

� Speciessurvive by continuing evolution to keepup with the changesof their environ-

ment.

Robertson then discussedtwo commonmisunderstandingsabout biological evolution.

The �rst misunderstanding is that changesare consideredsameas evolution. Changes

of individuals that are directly causedby the environment are not evolution: evolution is

drivenby the newpermutations of DNA sequencein the specie'sgene,and thesenewDNA

permutations are prorogated to future generationsvia reproduction; on the other hand,

individual changesdo not causethe entire speciesto change their DNA sequence,thus

they cannot be prorogated as individuals of future generationcannot inherit them. For

example,there are frogs found to have three legsas the result of pesticideoveruse. This

type of changeis limited to a small group of individuals and not inheritable by the whole

species,thus it is not an evolutionary phenomenon.Evolutionary changesare thosecanbe

inherited by o�spring via genes.The wholespeciesevolves,asnature selectsspeci�c groups

of individuals that carry critical genesto survive and reproduce. Thesecritical genesmake

them better adaptedto the environment. For example,germsthat causehuman to develop


u all start to carry special genesthat mademany anti-biotic drugs lesse�ectiv e towards

them.

The secondmisunderstandingis that biological evolution is all about organismschang-

ing their formsfrom simpleto complex,and the more\complex" they become,the \b etter"

evolution it is. Speciesareonly considered\success"in biologicalevolution term if they can

adapt to the current environment and reproduceenougho�spring. Successfulspeciesmust
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continuously evolve and quickly enoughto keepup with the changesof the surrounding

environment.

1.2.2 Soft ware Evolution

It was suggestedby Lehman that software systemsevolve in a manner similar to that

of living organisms[31]. Software systemshave to keep evolving in order to adapt to

the changing environment, i.e., di�eren t requirement, businessprocess,and supporting

technologies.

The study of softwareevolution coversall aspectsrelated to long-term softwarechange,

especially systemicchangesthat exhibit repetitiv e patterns. Software evolution study also

tries to discover the relationship between the changesof software development process,

program code, and software maintainabilit y. The purposeof studying software evolution

is to understand the underlying mechanismsthat decidehow software systemevolves,so

that softwaredeveloperscanadopt moree�ectiv edevelopment practicesandguidelinesthat

make software systemsevolve quickly enoughto keepup with the changing environment,

while maintaining systemstabilit y and low maintenancecost.

There are two major research directions in the software evolution study. One direction

is to extend sourcecontrol systemsto support fast and safecode changes.Research work

on con�guration management systemsthat havebuilt-in supports for softwareevolution in-

clude[29] [35] [55]. Code featuresthat assistsoftwareevolution include program invariants

and function clones. For example,Ernst et al. [14] developed a technique to dynamically

discover invariants of program properties, so that software developerswho are working on

the new releasewill not break the system by accidentally violating exiting assumptions

that have to be preserved. Lag•ue et al. [30] introducedfunction clonedetection techniques

into the software development processwith Datrix tools. When software developersapply

quick changesto the program sourcecode, they tend to copy chunks of code from existing

code baseto implement similar functionality. However, improper code cloning will degrade

systemmaintainabilit y as it introducesimplicit dependenciesbetweencode sectionsfrom

di�eren t modules. If the original segment of the code needto be modi�ed later, without

explicit documentation, maintainers usually forget to apply similar changesthat areneces-

sary to all the clonesscatteredthroughout the system. By applying clonedetection in the
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development process,such undesirablecloneswill be found and removed from the system,

or replacedby moreappropriate techniquessuch astemplate in C++ and interfacein Java.

A seconddirection focuseson the relationship betweensoftware development process,

sourcecode metrics, and software maintainabilit y. Somestudiesanalyzethe growth pat-

terns exhibited by the software system, and then associate these growth patterns with

causingfactors found in the development process[32, 31, 20, 17, 56, 36, 33]. Other studies

try to build predictive modelsthat usethe metrics measuredfrom development processor

sourcecode to predict the future software maintainabilit y and defects[43, 40, 10, 21, 27,

37, 13, 49, 5, 38].

Someresearchers attempt to build a theoretical foundation for software evolution re-

search. Lehman believes the evolution of software systemis driven by multiple feedback

loops between software development and usageof the system [32]. Perry examined the

surrounding environment of software system,and list three dimensionsthat will in
uence

the way software evolves [41]. The three dimensionsof software context are the applica-

tion domains,developers' experiencewith the system,and the development techniquesand

process.Any changesin thesedimensionswill a�ect the evolution of software system.

1.2.3 Soft ware Evolution and Soft ware Main tenance

When researchers discusssoftware evolution, they sometimesunintentionally equate the

term with \software maintenance". Thesetwo conceptsare very closelyrelated, and there

are not yet standard de�nitions that can clearly distinguish them. However, from our

research experiences,we believe there are subtle di�erences betweenthem, and we needto

clarify them at the beginningof this thesis.

Software maintenancedealswith correcting program defects,adapting to new require-

ments, and enhancingsoftware functionalities. It mainly consistsof plannedchangesmade

to the software systemas the results of explicit maintenancerequirements. The software

maintenanceprocessis usually carefully plannedand closelymonitored.

Software evolution, on the other hand, concernsabout what actually has happened

to the software system over a long period of time, especially change patterns exhibited

by the whole system,as well as its software architecture. It also emphasizethe dynamic

interaction, including mutual selection, betweensoftware systemand its environment.
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In summary, software maintenance tries to plan aheadand take control of the change

process.On the other hand, software evolution examinesthe actual changesmade to the

system in the history, both planned and unexpected, and studies the relations between

observed history events and environmental factors.

1.3 Description of Research Problems

The surprisingtruth about legacysoftwaresystemsis that their lifespanis commonlymuch

longer than the developers had originally imagined. Many systemsthat had to be �xed

for Year 2000problemswere written in COBOL or FORTRAN, and someare even older

than the peoplewho are tying to �x them. Usersare reluctant to replaceexisting software

systemsthat are proven to be reliable with completenew systemsthat are yet thoroughly

tested. The alternative is to develop new versionsof the system that are basedon the

existing infrastructure and proven technologies.New featuresand bug �xes are introduced

into the systemgradually without disturbing normal businessoperation. Software tends

to evolve gradually, rather than by revolution.

To understand how software systemsevolve, empirical study on large systemswith

long historical releaseshasbeenproven to be an e�ectiv e research method. Observingthe

evolution patterns and dynamic behaviors exhibited by softwaresystemsover a long period

of time helps researchers to discover the fundamental mechanismsthe in
uence or shape

the way software evolves.

Related research works on software evolution have developed many metrics, empirical

study methodologies,and assistingtools with data interpretation and visualization capac-

ities to aid the understanding of the vast amount of empirical data archives. However,

despite this progress,software evolution remains a challenging research area for several

reasons:

� The complexity involvedin collectingand analyzingthe history data that recordshow

software systemshad changedin the past is enormous. Many commercialsoftware

systemshave lived for decades,with many versions releasedduring their life. It

requiresmore resourcesand di�eren t methodologiesto understandthe entire change
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history of a software system, whereastraditional software comprehensionusually

focusesonly on onerelease.

� There are few empirical studies that meet the depth and breadth requirements to

makegeneralizedconclusionson the underlying mechanismsof how a softwaresystem

evolvesand why. Somestudiesemphasizedon the evolution of operating systemsand

systemsoftware[20, 10], othersfocusedon applicationsin telecommunication domain

[17, 36, 37]. However, much moreempirical study is neededto cover other application

domainsbeforewe can generalizethe existing �ndings.

� Empirical data on software evolution is currently interpreted heuristically, without

soundtheoretical support. After the proposal of \la w of software evolution" almost

two decadesago [31], little progresshas beenmadeon the theory of software evolu-

tion.

As Integrated Development Environment (IDE) and CASE tools have approved, to

increasethe productivit y of developers to designand implement software systems,fully

automated tools and powerful supporting environment are essential to overcomethe com-

plexity and high cost associated with collecting and analyzing empirical data on software

evolution.

Herewelist someof the generalrequirements for such supporting toolsand environment

that we felt would improve the productivit y and lower the cost to conduct empirical study

on software evolution:

1. Similar to the fact that softwarearchitecture hasmultiple views,researchersstudy the

empirical data of software evolution history from di�eren t perspectives, depending

on their individual interest. The supporting tools and environments must be 
exible

and extensiblein functionality to satisfy the diversity of needs.

2. Software evolution analysistools shouldbe able to \zoom-in" to the low-level details

such as the changehistory of individual function de�nitions or data referencesbe-

tweenmodules,while also be able to \zoom-out" to the higher level to get the \big

picture" of the software evolution history. For example,the distribution of changes
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amongdi�eren t subsystemstells us which parts of the software systemhave shown

the most changes,and which parts have the most stable structure.

3. The supporting environment for software evolution research shouldprovide powerful

navigation and visualization capabilities so that usercan �nd interesting patterns or

phenomenafrom the vast amount of history data quickly.

4. Tools that automatically collect, analyze,and present software evolution metrics are

essential to help us quantify changesmade to the software system in the history.

Then we can usemany numerical methods to analyzethe quanti�ed changesand to

discover evolution patterns.

5. When software evolves, its architecture must also changesto re
ect changedfunc-

tional and non-functional requirements. Architectural evolution study focuseson the

changecharacteristics of software architecture, and its relations with other aspects

of software evolution. We needtools and supporting environments that can assistus

to collect and analyzearchitectural changeinformation.

1.4 Our Approac h To the Problems

In this thesis,we will introduceour approachesto theseproblemsassociated with software

evolution research. Our solution involvesan integrated environment, which incorporatesa

data repository, several automated tools and a web-baseduser interface into one system.

Its featuresinclude collecting and storing archived software history information, detecting

changepatterns by applying evolution analysisalgorithms, providing navigation and com-

parison facility for researcher to study software architecture changes,and also sharing all

the information with other researchersor automatic tools over the Internet.

Our software evolution study environment is namedBEAGLE, after the British naval

vesselon which Charles Darwin served as a naturalist for an around-the-world voyage.

During that historical voyage,Darwin collectedmany specimensand madesomevaluable

observations, which eventually provided him the essential materials to develop the theory

of evolution by natural selection. We expect our tools and the BEAGLE environment

could help researchers conduct more e�cien t empirical study on software evolution with
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lower cost, so that more valuable observations about software evolution could be made

towards the creation of software evolution theory. The BEAGLE environment includes

three major components: architecture comparison,history visualization and navigation,

and origin analysis. Each of them provides a valuable functionality to assist researchers

observe and analyzethe software changehistory. We will discussfurther details of these

three components in the following sections.

1.4.1 Soft ware Evolution Bro wser

Studying software evolution requiresquick and convenient accessto the enormousamount

of archived data that recordsall the adjustments made to the software systemduring its

entire life. In addition to quick accessto history information, researchers also need to

be able to jump between releasesto compare the characteristics of particular program

component at the di�eren t times during the program's life. This requiresthe supporting

tools to provide a 
exible navigation interface,and to be able to comparemany aspectsof

the software systemsacrossmany releases.

In BEAGLE, archivedevolution information is storedin a central repository. There are

three types of history data stored in BEAGLE: architecture information extracted from

sourcecode, program code metrics, and development activit y information collected from

other sources,such as releasenotes, revision control systemdata, and designdocuments.

The sametypes of information are collectedand stored for every version of the software

systemthat waspreviously released.The BEAGLE repository providesvaluable�rst-hand

research material, from which we can observe interesting evolution patterns and make

conclusionsfor software evolution theory. The repository is alsoequipped with a standard

accessand query interface. Evolution navigation and analysis tools can easily retrieve

relevant information from the repository through this interface,as shown in �gure 1.1.

Wehavedesigneda browser-basednavigation interfacefor BEAGLE sothat researchers

can easilyexploreand comparethe di�eren t characteristicsexhibited by di�eren t software

releases.Primarily, the user needsto select the past releasesthat he is interested, and

choosea referencereleaseon which all the comparisonsare based. BEAGLE will then

processthe queryrequestsby executingrelatedengineto completethe softwarecomparison.

During the processing,original evolution data is retrieved from the repository for analysis
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Figure 1.1: Data Repository and Query Interfaceof BEAGLE
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through the access/queryinterfaceprovided by the repository.

The result returned from the BEAGLE comparisonenginehasthreeparts. The software

structure of the referencereleaseis displayed as an expandabletree. The branches and

leafsof this structure tree represent programentities at di�eren t levels,such assubsystems,

�les, and functions. A color schemais usedto represent the changestatus of each program

entit y. For example,red color meansthe program entit y is new to system,with respect to

the other releasesin the comparison.

If the useris interestedto investigateevolution history of individual programentities in

greater detail, he can click on the corresponding branch or leaf in the structure tree. The

�rst part is a text table that displays the changehistory of the selectprogram entit y in

termsof codemetrics. For functions,welist sevenof its codemetric valuesin all the releases

that participate in the comparison,including lines of code, lines of comment, cyclomatic

metrics, s-complexity, d-complexity, Albrecht and Kafura metric [28]. For program �les,

we collect six metric values,including lines of code, lines of comment, number of functions

de�ned, averagecyclomatic metric value, averagefan-out and maintenance index. This

table tells us the evolution history of a particular program entit y from a numerical aspect.

The last component of the result is a visualization diagram that displays the software

architecture landscape for the selectedprogram entit y. This landscape diagram shows the

contained modules (�les) within a program subsystem,along with the relations between

these �les, \supplier" subsystems,and \consumer" subsystems. The samecolor schema

is usedto represent the evolution status of �les and relations as in the program structure

tree. Users are provided with a rich set of query tools so that user can \zoom-in" to

a second-level subsystemthat is contained in current subsystem,or \jump" to another

subsystemthat has dependencyrelations with current subsystem. Userscan also select

viewing criteria such aswhat kind of relations will be shown. For example,options can be

set to only display new relations introducedin the referencerelease.

The philosophy behind BEAGLE's evolution browser interface is to display as much

information aswe have collectedabout the selectedprogram entit y under study in a well-

organizedway. The feedback contains text description, numerical tables, and visual rep-

resentation. Userscan study the information from many anglesand aspects. At the same

time, userscan also study relations betweenthe main program entit y and other program
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entities in the systemof the samerelease,or the sameentit y from other releases,through

the \h yper link" style of navigation interfaceprovided by BEAGLE.

1.4.2 Analysis of Arc hitectural Evolution

Software architecture of a software systemis the structure of the system,which comprises

software components, the externally visible properties of thosecomponents, and the rela-

tionships amongthem [4]. Software architecture hasmultiple views. In this thesis,we will

discussmainly about the code view, which focus the structures and relationshipsbetween

sourcecode components, including subsystems,modulesor �les, and functions.

Softwarearchitecture concernsthe behaviors and interactionsof high-level components,

and is developedasthe �rst stepof the softwaredevelopment processto achievea collection

of desiredfunctional and non-functional properties. As the environment of softwaresystem

changes,the desiredfunctional and non-functional properties of the system also change.

As the result, the software architecture has to continue evolving as well.

The code view of software architecture can be treated as a �nite, directed graph that

allows multiple edgesbetweena pair of vertexeswith di�eren t semantics [8]. For example,

there should be two di�eren t paths betweentwo subsystems,onefor call dependency, and

the other for data referencedependency. When software architecture evolvesfrom release

to release,its graph topologyalsochangesto re
ect the structural and dependencychanges

of code components. Becausesoftware architecture could be abstractedasa graph, we can

also model the evolution of software architecture as the morphing of its graph, as shown

in �gure 1.2. In thesegraphs, nodes represent program modules, and edgesbetween a

pari of nodes model the various dependenciesbetween program modules. The topology

of G2, which models the software architecture of a more recent release,is di�eren t from

that of G1. However, sincethe vertex namesin both graphshave very similar scheme,it

is very easyto tell that vertex v2 is no longer in the graph, and there is a new vertex v6

introducedin G2.

When a graphG1 morphsinto G2, if all the vertexesarelabelledunder the samenaming

scheme,we can easily identify thosevertexesin G2 that were originally in G1, and those

that are newly introduced into the graph by G2. We can use this technique to identify

new sourcecomponents introduced in the newer software architecture. However, if a new
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Figure 1.2: Software Structural Changeswith Similar Naming Scheme

naming schemeis usedin the newer release,we losethe tracesbetweenthe vertexesin the

new graph and those in the old graph. This situation usually happenswhen the software

architecture of a new releasehasto be modi�ed to addressmajor changesin requirements

or implementing technologies. Other activities such as the re-architecting of the older

software architecture for easiermaintenancecould alsocausethis type of changes.Figure

1.3 shows two graphs,one models the software architecture found in original release,and

the other with totally di�eren t vertex namesmodels the software architecture of the later

releasesafter a major re-architect e�ort. From the newgraphG2, wecanobserve that some

vertexesare clustered into subsystemsss1and ss2,and all the vertexesare now named

after letters, instead of numbers in G1.

We needmore sophisticatedtechniquesother than straightforward name comparison

to relate vertexes in the newer graph with those in the old graphs. In this thesis, we

will introduce two algorithms that relate vertexesin one graph with vertexesin another

graph. We call this technique \Origin Analysis", as it help us to �nd out the \origin"

of new source components in the new software architecture. One algorithm compares

the feature set of a vertex, which represents a function or �le in the modelled software

architecture, with all the vertexesin another graph, and attempts to �nd the most similar
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Figure 1.3: Software Structural Changeswith Di�eren t Naming Scheme

one. Another algorithm relates vertexesfrom di�eren t graphs using the changepatterns

of paths (relations in software architecture) betweenthem and their neighboring vertexes.

Our casestudies demonstrate that both algorithms, especially when used together, are

very e�ectiv e in tracking the evolution of sourcecomponents in software architecture.

1.5 Ma jor Con tributions

This thesismakesthe following contributions to the research of software evolution:

� We introducesan approach to studying software evolution that integratesthe useof

metrics, software visualization, and structural analysistechniques.

� We presenteesa prototype implementation of the proposedintegrated environment

called BEAGLE. It incorporatesdata from various statistical and metrics tools, and

providesa query engineaswell asa web-basedvisualization and navigation interface.

� We developed "origin analysis", set of techniquesfor reasoningabout structural and

architectural changeacrossmultiple releases.
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� We usesthe various functionalities of BEAGLE to analyzethe structural evolution

of GNU Compiler Collection (GCC).

1.6 Organization of Thesis

The remainder of this thesis is organizedas follows. In the next chapter we review the

state of art in software evolution research, with emphasison works related to this research,

such as evolution metrics and empirical studies. Chapter 3 we discussour approach to

designan integrated research environment to browseand navigate software evolution. We

alsoproposetwo algorithms for tracking software architectural changes.In Chapter 4, we

present a casestudy we have conductedthat demonstrateshow to useBEAGLE to study

the architecture evolution of GCC software system. Several �ndings about the evolution

history of GCC are shown in this chapter to illustrate the e�ectiv enessof our approaches.

Finally, Chapter 5 summarizesour work, and indicates future research directions.



Chapter 2

Related Research On Soft ware

Evolution

There hasbeena great amount of research in softwareengineeringconcerningthe evolution

of software systems.In this chapter, we discussresearch that is related to our approach to

provide an integrated software evolution study environment. We will include discussions

on the theory of software evolution, evolution metrics, visualization of program structural

changes,and empirical casestudies.

2.1 Soft ware Evolution: A Discipline of Soft ware En-

gineering

In this section,wereviewLehman'slaw of softwareevolution [31] and Perry's dimensionsof

softwareevolution environment [42]. Theseworksaresimilar in the way that they aretrying

to build a theoretical foundation for software evolution research. Lehman proposedeight

laws of software evolution basedon his observations on the evolution of several industrial

softwaresystemsover a long period of time. Perry focusedon the context in which software

systemevolves. Factors in this context usually a�ect the way software evolvesdirectly or

indirectly.

16
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2.1.1 Lehman: Laws of Soft ware Evolution

Lehman has observed the evolution history of IBM OS/360 since 1968, and he has for-

mulated eight generalizedrules and hypothesesbasedon this systemand others. He has

called theserules the \la ws of software evolution". They include:

� Law1: a softwaresystemthat solvesreal-world problemsmust continually beadapted,

otherwiseit will becomeprogressively lesssatisfactory.

� Law 2: as a program evolves, its complexity increasesunlesswork is done to main-

tain or reduce it. As the need for adaptation arisesand changesare successively

implemented, interactionsand dependenciesbetweenthe systemelements increasein

an unstructured pattern and thereforeled to an increasein maintenancecosts.

� Law 3: the program evolution processis self regulating with closeto a normalized

distribution of measuresof product and processattributes. This implies that after

the system has stabilized through its early ages,software systemsexhibit regular

trends that we can measureand predict.

� Law 4: the averagee�ectiv e global activit y rate on an evolving systemis invariant

over the product lifetime. Factors such as management, users,developers, support

team, and the communication betweenthem contribute to the stabilization of soft-

ware size. As Brooks noted, simply adding more developers to the project will not

improve the productivit y proportionally [24].

� Law 5: during the active life of an evolving program, the content of successive release

is statistically invariant. The rate of changesfrom releaseto releaseis constant.

� Law 6: functional content of a program must continually be increasedto maintain

usersatisfaction over its life.

� Law 7: the quality of softwareprogramwill declineunlessit is constantly maintained

to adapt to the changingenvironment. Programsourcecodedecays over time. Mean-

while, users'expectation on the systemkeepsgrowing. Without proper maintenance,

the quality of software systemsperceived by userswill declineover time.
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� Law 8: software programming processis a multi-lo op, multi-level feedback system

that will self-stabilizeover time. Lehman claims that this hypothesishas beenval-

idated on several commercial software systems[34]. However, di�eren t evolution

characteristicshave alsobeenobserved on applications from other domainsand with

alternative development processes[20].

Lehman's laws of software evolution are mainly derived from studiesof software appli-

cations that are developed in commercialenvironment using a closeddevelopment model.

The �rst two laws state the generalevolution characteristics of many software systems,

irrelevant to the speci�c application domains. The rest laws are more speci�c to the

particular application domains that were investigated by their empirical study, and the

software processadoptedby the developingorganizations.Observations madeby Godfrey

and Tu indicate that theselaws do not apply to many Open SourceSoftware systems[20].

2.1.2 Perry: Dimensions of Soft ware Evolution Environmen t

Perry introducedthe conceptof three dimensionsof softwareevolution, and explainedhow

the changesin thesedimensionsa�ect how a software system changesover time. These

three dimensionsare domain, experience, and process.

� Domains include the \real world" that encompassour application model, and theo-

retical sub-domainsthat provide infrastructure support for application systems.Any

changesto the domain require corresponding changesto the software system. Do-

main changesarethe fundamental and direct sourceof systemevolution. As the \real

world" and its model evolve, the speci�cation of the software systemmust evolve as

well, asdoesthe actual implementation. On the other hand, softwaresystemsthat do

not solve \real world" problemsdirectly, such as operating systemsor programming

languagecompilers, are in
uenced by the advancesin computer sciencetheories.

Improvements in the areassuch as algorithms or protocols bring new designsand

implementations to thesesoftware systems.

� Experience is anotherdimensionthat a�ects softwareevolution. It doessoby helping

usbetter understandthe softwareapplicationsthemselves,aswell asthe domain that
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we are trying to model. Feedback from customersand developers provides insights

into domain modelling, speci�cation, and implementation of the software system.

Experimentation is a systematic way of gaining experience. Scienti�c, statistical,

and engineeringexperiments provide essential knowledgeabout aspects of software

systemand development process.The lessonswe learnedfrom experimentations help

us to enhancethe software systemby improving the software development method

and process.The evolution of our understandingand judgment causedby continued

feedback, experimentation and learning is also one of the major reasonsof software

evolution.

� Software process includesmythologies, techniques,and tools that we useto develop

and maintain software systems. When these technologiesand processesevolve, it

a�ects the ways we develop software systems,as well as the �nal software products

that we create. New software development techniquessuch as modulation, abstract

data type, object oriented analysisand design,designpatterns and rapid prototyping

had greatly in
uenced how software systemsevolved over the past decades.Software

processde�nes the way we developand maintain software systems.Innovative devel-

opment model such as \op en source"development model and extremeprogramming

model create software systemsthat are quite di�eren t from those developed with

traditional process.Organizationsde�ne the culture and structure for software de-

velopment process,as well as the �nal software products. Conway's famous law

hypothesizesthe interesting relationship between organization structure and soft-

ware systems.Bowman exploredthe ideal of using the organization of developers to

recover software architecture [6].

2.2 Soft ware Evolution Metrics

Evolution metrics measurehow each version of systemdi�ers from its ancestors,descen-

dants, and its many \cousins" in the evolution tree. Analyzing the trends of evolution

metric valuesover time helps developers to managethe maintenanceand continuous de-

velopment of the systemmore e�ectiv ely. Basedon the past pattern of evolution metric

values,several evolution modelsmight be built to predict the fault rate of components in
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future releases,to budget maintenancecostsfor variousmaintenancetasks, to discover un-

desiredlogical dependenciesbetweencomponents, or to scheduleredesignsfor components

that are showing signsof decay.

There are many software artifacts from which we can collect evolution metrics. Re-

searchers usually usethree typesof them to analyzesoftware evolutionary histories: pro-

gram sourceinformation, version control system database,and defect history database.

History of sourceinformation provides the �rsthand data on how the implementation of

the software systemhaschanged.Versioncontrol systemsrecord the reasonsfor each code

change,details of the change,components a�ected by the change,and sometimeresources

spent to implement the change. Defect databasecontains the description for each defects,

causesof the defect, details of the �x and test casesof the veri�cation for the �x. Re-

searchers have built several evolution models that are basedon evolution metric values

collected from theseprogram artifacts. We will introduce somerepresenting models and

the evolution metrics they usedin the following sections.

2.2.1 Evolution Metrics From Program Source Information

Evolution metrics are divided into complexity metrics and change metrics. Complexity

metrics include line of code (LOC), cyclomatic metric, fan-in, fan-out, etc. Changemetrics

measurehow much code hasbeenchangedbetweentwo consecutive releases.They include

number of lines of code added, deleted, or altered, the number of functions changed. In

this section, we introduce someevolution models basedon sourcemetrics. Models are

introducedtogether if they have similar purpose.

Understanding System Gro wth Patterns

Lehman et al. tracked the systemgrowth history of IBM OS/360 and Logica FW system

by measuringthe number of modules in the systemsfor every release[32]. The purpose

was to identify patterns in the systemgrowth trend and to verify the \feedback system"

mechanism as proposedin his laws of software evolution.

They developed an \in versesquaregrowth" model to explain similar patterns found in

the systemgrowth curvesof several industrial software systems. In this model, Si is the
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actual systemsizeof releaseI measuredasthe number of modules, bSi is the predicted size,

n is the total number of consecutive releasesin the data set, and E is a model parameter.

E is the averageof individual E i calculatedas follows:

E i = (Si � Si � 1)S2
i � 1

The model suggeststhat the rate of system growth tends to stabilize over releases.

Lehmanhasuseda \p ositive feedback" hypothesisto explain the fast growth rate towards

the maximized \p eak" of the curve, and \negative feedback" hypothesis to explain the

declinesof growth rate in more recent releases.
bS1 = S1

bSi = dSi � 1 + E=( dSi � 1)2(i = 2:::n)

Godfrey and Tu examinedthe systemgrowth and other evolution patterns of 96releases

of Linux kernel [20]. To measurethe systemsize, they primarily usedthe uncommented

lines of code for each releaseinstead of the number of modules in the systemas Lehman

did, becausethey found modules in Linux kernel have great variation in LOC, and LOC

tends to grow at the samepacewith the number of modules. Other metrics usedto reveal

systemgrowth patterns include the number of global functions, variables,and macros.

They observed that for Linux kernel, the growth rate of uncommented LOC �ts well

into a quadratic model, which doesnot agreewith Lehman's\in versesquare"model. They

thereforediscussedthe possiblereasonsfor this disagreement. One of the most important

reasonsis the di�eren t development and maintenanceprocessusedby commercialsoftware

systemsand open sourcesoftware system.

They also found that the stable releasestream of Linux kernel has di�eren t growth

patterns from thoseexhibited by development releasestream. When the growth pattern of

each major subsystemof Linux kernel is analyzed,they noticed that unusually large size

and high growth rate of the driver subsystem,and many instancesof code cloning in this

subsystem.They concludethat particular development processes,and unique application

domainscan greatly a�ect the growth rate and pattern of each software system.

Iden tifying Fault-Prone Program Comp onents

Ohlssonand Wohlin developed a model basedon structural complexity metrics to detect

ageingand possiblefault-prone program components [40]. The purposeof this model is to
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help developersidentify thosecomponents asearly aspossible,sothat they canimprovethe

quality of thesecomponents in the next releaseby usingrefactoringtechniqueor redesigning

the softwarearchitecture, beforetheseagingcomponents start to degradethe overall system

maintainabilit y. In this model, program components are labeledasgreen,yellow, and red,

dependon their degreeof decay. This classi�cation is calledG(reen)Y(ellow)R(ed) analysis.

Green Comp onents - Components showing healthy maintainabilit y and tractabilit y.

Yellow Comp onents - Decayed code that requiresspecialattention to prevent possible

defectsin the future.

Red Comp onents - Code that is hard to understandor contains potential defects.Red

components need to be �xed immediately or risk disastrous consequencesto the

project.

Ohlssonet al. built the model by correlating the trendsof a groupof sourcecodemetrics

with defecthistory of program components during past releases.They found that metrics

that reveal program structural complexity such as cyclomatic metric, fan-in, and fan-out

havethe strongestcorrelationwith the component defectiverate. They alsodiscoveredthat

by incorporating \program state" metric and cyclomatic metric, this model producedthe

best prediction results, while using code sizemetrics alone produce the worst prediction.

Using accumulated ranking, their predicting model shows strong correlation betweenthe

defect rates and components' decay rankings.

Similar to the Ohlsson's GYR model, Elbaum and Munson used a composite code

measurement called \code churn" to predict program components' future defects[27]. Be-

sidescomplexity metrics, someresearchers also suggestedthe use of coupling metrics as

runtime-failure predictor [5].

Predicting Program Main tainabilit y

Burd and Munro use\dominancetree" to model the systemstructure and call dependencies

betweenprogram modules. They measurethe speci�c characteristics of this \dominance

tree" to predict the maintainabilit y of program system[10].



Related Research On Software Evolution 23

Their \dominance tree" model is a static calling dependencygraph of the program.

Nodes in the tree are identi�ed as either \direct dominated" or \strongly directly domi-

nated": if all the outgoing calls are made from one node to other nodeswithin the same

branch of a subtree, we identify this node as a \directly dominated" node; on the other

hand, if someoutgoing calls are madeto nodesoutside its own branch, it is identi�ed asa

\strongly directly dominated" node.

The prediction model works in the following way. First, the portions of directly domi-

natednodesand strongly dominatednodesover the total number of nodesin the dominance

tree are calculated. Their hypothesis is the larger the proportion of directly dominated

nodes,the harder to maintain the systemsourcecode. On the other hand, the larger the

proportion of strongly dominated nodes,the easierit is for maintenance. This is because

when changesare madeto directly dominated nodes,this will causeripple e�ects to other

call relations in the branch, and therefore it is much lessdesirablefrom the maintenance

perspective. They applied this method to analyzethe changeof GCC from v2.7 to v2.8,

and concludedthat v2.8 is better maintained than v2.7.

2.2.2 Metrics From Version Con trol Managemen t Information

Versioncontrol system(VCS) providesanother valuable resourcefor the study of the evo-

lution history of software systems.Comparedto other artifacts generatedduring software

development and maintenance, VCS information is more consistent becausea software

project usually sticks with oneVCSsystemthroughout its life. All the code-relatedhistory

information is available from its database.The VCS databaseprovides not only informa-

tion about the text changesmade to the project's sourcecode depot, it also recordsthe

date of the change,the number of linesa�ected by the change,developer who is responsible

for the change,and a short description about the purposeand the nature of the change.

Many researchers have extracted valuable information from VCS databaseto bene�t

their understandingof software evolution. In this section,we review someof this work.
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Determine The Readiness For Release

IEEE Standard 982.2de�nes a Software Maturit y Index (SMI). It is usedto determinethe

readinessfor releaseof a software system,when changes,additions, or deletionsare made

to the software systemscomparing to previous releases.The history record of this index

can alsobe usedto study the impact of code changes.It is calculatedas follows:

SMI = Mt - ( Fa + Fc + Fd) / Mt)

In this equation,Mt is the number of software functions/modulesin the current release,

Fc is the number of functions/modulesthat contain changesfrom the previousrelease,Fa

is the number of functions/modules that contain addions to the previous release,and Fd

is the number of functions/modules that are deletedfrom the previousrelease[1].

Predicting Future Fault Incidence

In the previoussection,we have introducedsomedefectprediction modelsbasedon source

code metrics. Many researchers discovered that change history extracted from version

control systemdatabaseis alsoe�ectiv e in predicting future defects.

Graveset al. createda model that can predict the defect probability of a module by

aggregatingfactors from the past changes(\deltas") madeto the modules[21]. The larger

and morerecent a \deltas" occurred,the more likely the component will have defectslater.

Their research is signi�cant in that they reveal the closerelations betweenpast software

development activities and future software quality.

They claimed that metrics basedon changehistory information that is extracted from

versioncontrol systemdatabaseis more e�ectiv e in predicting future defect than metrics

basedon program sourcecode. Their statistic data shows that LOC is a weak indicator of

defect rate. Sincemany complexity metrics are correlatedwith LOC, it implies that code

metrics in generalarenot very e�ectiv epredictors. Surprisingly, they alsofound there is no

strong correlation betweenthe number of developers involved in a changeand the future

defect rate of the module that is a�ected by the change.

In this model, two metrics are calculatedfrom versioncontrol systemdatabasefor each

component of the system:

1. The number of deltasmadeto a module over the releasehistory. History data shows
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that this measureis proportional to the overall defect rate.

2. The averageageof the module. This measureis calculatedas a weighted averageof

the datesof the changesmadeto the module, weighted by the scope of the change.

A linear model that incorporatesthesetwo metricsprovidesthe bestprediction accuracy

for future defects. An intuitiv e explanation is that components that have a long history

and are seldoma�ected by changesare usually thoroughly tested and have fewer defects

hidden inside.

They alsointroduceda more�nely tuned, non-linearmodel called\w eighted time damp

model" that producesevenbetter results. It summarizescontributions from all the \deltas"

madeto the component in the past, whereold \delta" measuresaredown weighted by �ft y

percent per year. This improved model provides very satisfying results when they usedit

to analysisthe error-pronecomponents in the examinedsystem.

The morerecent study by Eick et al. useda similar methodology [13]. His purposeis to

detect \decayed code" in legacysystem. A sectionof program code is said to be \decayed"

if it is much more di�cult to changethan it should be, that is, the cost and time required

for the changeincreases,while code quality drops.

Onedirect reasonfor decayed code is past changesmadeto the software system. Other

reasonsinclude inappropriate architecture, violations of original designprinciples, impre-

ciserequirements, time pressure,inadequateprogramming tools, etc. The main symptom

of decayed code is quality degradation,which includesexcessive code complexity, history

of frequent changes,history of defects, widely dispersedchanges,kludges in code, and

excessive number of interfaces.

Eick et al. proposedseveral code decay indicators. These indicators are calculated

from metrics basedon version control management formation. Basic metrics include the

number of deltas, the number of lines that are added or deleted in each delta, the date

when a delta is complete,the interval to implement a delta, and the number of developers

involved in a delta. Their model has six decay indicators: history of frequencychanges

(CHNG), spanof changes(FILES), size(NCSL), age(AGE), fault potential (FPwtd, the

weighted time model in [21] and FPglm, the linear model), and e�ort (EFF). Using these

decay indicators, developers can easily identify decayed code in legacy system, so that



26 On Navigation and Analysis of Software Architecture Evolution

prevention can be taken beforethey becomebottlenecks for the project. The e�ectiv eness

of these decay indicated is veri�ed and proved work well on the changehistory data of

Lucent Technologies'telephoneswitch system.

Revealing Hidden Dep endencies Bet ween Mo dules

Software maintainers often face a di�cult task to identify hidden dependenciesbetween

modules in the software system. When one module is being changed, the ripple e�ect

causedby hidden dependencieswill impact someother modules. Such impacts are usually

undocumented, and often causeexpectedproblems.

Gall et al. investigatedsomechangepatterns exhibited by the changehistory of Prod-

uct ReleaseDatabase,and found that these patterns can help to reveal hidden \logical

coupling" amongprogram modules [16]. Their approach has two steps. The �rst is called

changesequence analysis and the other is called changereport analysis:

� Changesequence analysis identi�es similar changesequenceshown by program mod-

ules. Every past changemadeto a module in the systemis labeledwith the system

releasenumber. When these system releasenumber are put together, it createsa

\change sequence"for the module that records at which releasesthat this mod-

ule was modi�ed. Then they try to identify modules that show similar pattern in

their changesequences.Thesecommonsequencesreveal \logical coupling" between

matched modules.

� Changereport analysis veri�es the logical coupling identi�ed from changesequence

analysisby examiningarchived\changereport". A changereport recordsthe reasons,

defect class,amount, and type of every change. This step of analysiscomparesthe

\changereport" of modules that are found to have similar changesequence.If the

samechange reasoncan be found in the change report for two \logical coupled"

modules,for example,they both respondedto the samebug report, then the \logical

coupling" betweenthesetwo modulesare veri�ed.

Similar work by von Mayrhauser et al. also attempts to detect hidden dependencies

betweenmodulesin the systemby exploiting information from history defectdatabase[54].
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Their approach is to build a defect architecture by identifying relationshipsbetweensystem

components basedon whether they are involved in the samedefect report, and for how

many times this situation happenedin the past. The stepsto build a defect architecture

is described as follows:

1. First, they apply GYR analysis[40] to every components of the software systemfor

all the history releases.All the decayed components (yellow and red) are identi�ed

and labelled. The sourcedirectory structure is usedto as the framework for defect

architecture, and thosedecayed components are attached as leaves.

2. Two or more decayed components (leaves)are linked, if they are related to the same

defectreport. This relation canbefound at subsystemlevel aswell, if two subsystems

contain leavesthat are already linked.

3. If a pair of components or subsystemsexhibit persistent fault relations over many

releases,it indicatesthat there are seriousdesign
a ws in the designof thesecompo-

nents or subsystems.

In their casestudy, this method is able to pick three modules that all responseto the

samebug report and have the samechange sequences.Their logical coupling are later

veri�ed in the description sectionsof the changereports.

2.2.3 Comparison of Evolution Metrics

All the models and the evolution metrics introduced here are summarizedin Table 2.1.

We list the nameof the main author, the nameof evolution metrics, the data sourcefrom

wheremetric is measured,the purposeof the model, and somenoteson the model.

2.3 Visualization of Soft ware Evolution

Analyzing evolution metrics can help software managersand developersbetter understand

the software development process,especially the maintenanceand enhancement activities

betweenreleases,and more importantly, to plan and budget future development activities.
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Author Metrics Aritfact Purp ose Signi�cance

Lehman
(1997)

Number of modules in
the system

Code Understand system
growth rate and pattern

Inverse square growth;
feedback system

Godfrey
(2000)

Lines of code, num-
ber of global func-
tions, variables, and
macros

Code Understand system
growth rate and pattern

Super linear growth;
strong growth in partic-
ular subsystemsof Linux
kernel; counter example
of Lehman's model

Ohlsson
(1998)

McCabe and program
states

Code Identify aging and error-
prone components

First to associate struc-
tural complexity with de-
fect rate

Burd
(1999)

Dominance tree Code Measure maintainabilit y
of components

Their case study is not
very pervasive

Graves
(2000)

Number of deltas, and
averageage

VCS log Predict future defectrate Claim to work better
than code metrics

Eick (2001) Various \delta" re-
lated metrics

VCS log Identify decayed code Six decay indictors based
on \delta" metrics; veri-
�ed with very large-scale
and extensive casestud-
ies

Ramil
(2000)

Module or subsystem
changed, added or
deleted

VCS log To estimate evolution ef-
fort

Subsystem level change
metrics are more e�ec-
tiv e than module level

Gall (1998) Change occurred, and
reasonof changes

VCS log Identify hidden depen-
dencies

components change to-
gether tend to have log-
ical dependencies; very
novel apporach

Mayrhauser
(1999)

Defect report VCS log Identify hidden depen-
dencies, and bad archi-
tecture design

Construction of \defect
architecture" and \cu-
mulated defect architec-
ture"

Table 2.1: Research on Software Evolution Metrics
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However, existing evolution metrics are not able to model structural changesmadeto the

software system during its releasehistory becausemany metric-basedevolution models

assumethat the software systemmaintains a static architecture.

Information visualization has beendemonstratedas valuable software comprehension

tool for usersto understand software architecture and its evolution. In this section, we

reviewsomeof the work that appliesvisualization techniquesin softwareevolution research.

A general introduction to software visualization and various visualization techniques

are discussedby Ball and Eick in [3]. When a software project grows large, and has a

complex architecture, it becomesimpossibleto recognizethe high-level systemstructure

and behaviors by analyzing only the sourcecode. Software visualization tools help soft-

ware developers deal with the complexity and increasetheir productivit y for continuous

development of the software system. Software visualization use graphical techniques to

make softwarearchitecture visible by displaying program artifacts and behaviors. Ball and

Eick demonstratedtwo tools that can visualizecode di�erences betweenreleases:

� Visualizing code version history. Data from version control system are visualized

with special views for code age,ageand bug �x, and �x-on-�x information.

� Visualizing code di�erence between releases.This tool displays the di�erences be-

tweensourcedirectories and �le pairs simultaneously. Four colorsare usedto high-

light the changestatus of code: red for deleted code, greenfor added lines, yellow

for changedlines and gray for unchangedtext.

Their tools focus mainly on the changesat sourcecode level. They are not capableto

represent changesat software architecture level.

2.3.1 GASE Tool and KA C System

GASE is a Graphical A nalyzer for Software Evolution tool that takes the architectural

facts of consecutive software releases,and generatevisual diagrams that represent the

architecture evolution[22]. The GASE tool consistsof four components: a fact extractor,

a changeanalyzer, a diagram generator, and a visualizer. The fact extractor parsesthe

sourcecode of select releasesof target system, and extract the \facts" from the source
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codethat contains architecture information, such asthe systemcontainment hierarchy, and

\call" and \include" relations betweenprogram entities. The changeanalyzer compares

the di�erence betweenthe \facts" of two releases.The diagram generator translates the

di�erence of \facts" into coloredbox-and-arrow diagramsready for visualization. Finally

the viewer displays the architecture di�erence betweenselectedreleaseswith a navigation

and query interface.

KAC systemis anotherevolution visualization tool similar to GASE [25]. The di�erence

is that it reusesmany components from popular reverseengineeringtools such as CIA for

fact extraction and Rigi for visualization.

Figure 2.1: Screenshotof KAC System

In KAC, colorsarealsousedto illustrate three di�eren t typesof changesof architecture

entities: preserved,added,and removed. The screenshotof KAC is shown in �gure 2.1. The

window on the left shows the visualization at the subsystemlevel. The window on the right

shows the zoom-in e�ect, asmodulesand dependenciesinside subsystemDEPENDENCY

ENGINE are shown in greater detail.
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2.3.2 Gall: Soft ware Evolution in Color and 3-D

Gall et al. incorporated a three-dimensionmodel and color histogram in the visualization

of software releasehistories [18]. Di�eren t from GASE and KAC, which can only compare

two releasesat a time, this approach consolidatesthe entire changehistory of a software

systeminto single2-D or 3-D diagram. With a specialVRML interfaceand a unique color

scheme,userscan visualize and navigate in the 3-D spaceto search interesting patterns

and hidden relations betweenmodules.

Figure 2.2: Screenshotof 3-D Evolution Diagrams

In the 3-D model, x and y dimensionsshow the software system architecture. The

architecture is modeled as a layered tree with four levels: system, subsystem,module

and program. The z dimensionsrepresent time, labelled by the releasenumber. Color

with di�eren t saturations acts as an additional dimension that illustrates the evolution

attribute of modules: the relative module age measuredby the module releasenumber

(module releasenumber is the systemreleasenumber whenthis module waslast modi�ed).

Figure 2.2 shows a sample3-D evolution model. The diagram on the left visualizesthe

evolution of whole systemwith individual module shown as leavesof the systemhierarchy
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tree. The diagramon the right usespercentagebars to represent the proportion of modules

of di�eren t age.

Figure 2.3: Screenshotof 2-D Evolution Diagrams

The 2-D model is a simpli�ed model that doesnot contain any systemstructural infor-

mation. It is a quick tool to overviewthe evolution history of all the modulesin the system,

as shown in Figure 2.3. On the left is the color scalethat shows which color corresponds

to which system release. The chart in the center shows the percentage of modules with

di�eren t ageat each release. The chart on the right shows the the ageof each program

module.

The advantageof this model is its simplicity. Using3D diagramand 2D colorhistogram,

usercan get an instantaneousview of the system'sevolution history. The disadvantage of

this model is that the evolution information provided for each module is limited to its age.

No furtherer information is provided for each module and its relations with other modules

in the system.

2.3.3 Comparison of Evolution Visualization Techniques

All these visualization technologiesprovide some capabilities to visualize the evolution

of software system structure. GASE and KAC adopt a reverseengineeringapproach to
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compareextracted software architecture facts. The 3D software releasehistory model is

unique in that it provides the quick overview of the entire software revision history, and a

powerful visual cue for identifying certain changepatterns.

There are also limitations sharedby thesetechniques. For example,usersdo not have

much freedomin selectingmultiple releasesfor architecture comparison;the query facil-

ities are very limited and user cannot create arbitrary queries; the comparisonengines

capture limited typesof architectural changes;and the navigation interfaceprovides little

information about individual program module.

2.4 Empirical Studies of Soft ware Evolution

Empirical study helps us to understand how and why things work, and allows us to use

the knowledgeto materially changeour practise and outcome. Empirical study has been

applied widely in many other scienti�c research areas,but with limited successin software

engineering,especially in software evolution [42, 26].

Perry discussedthe di�culties in conductingthe usefulempirical studiesin softwareen-

gineering[42]. It is very hard to de�ne and implement empirical study that could be relied

on to changean organization'slong-practiceddevelopment processes.The empirical study

must be carefully designed,and the conclusionmust be persuasive and general. Kemerer

and Slaughter sited speci�c obstaclesfor software evolution studies such as di�culties in

collecting historical data, and the lack of existing theory [26].

To conducta successfuland credibleempirical study, wemust maximizethe accuracyof

interpretation of data and observation, the relevanceof our result to software engineering

principles, and the impact on the software engineeringpractice. Perry proposeda six-

component structure for a successfulempirical study on software engineering. Thesesix

components are:

� Research context. The problem of focus is de�ned and its terminology is explained.

Also the goal of study is linked to what is currently understood about the problem.

� Hypotheses.Hypothesesare essential to empirical study as they state the research

questionswe are asking. An example hypothesis for software evolution is \Do es
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software systemalways grows its systemsizewhen new releasescomeout?"

� Study Design. It is a detailed plan for creating the data that will be usedto test its

hypotheses.We needto designdependent and independent variables to link causes

and e�ects, a plan to systematically manipulate independent variables to change

predictably the way independent variables change, and the operational context of

the study.

� Threats to Validit y. Theseare in
uences that may limit our abilit y to interpret or

draw conclusionsfrom the study's data and observations. Three types of validates

must be protected in the empirical study:

{ Construct Validit y: independent anddependent variablesmust accuratelymodel

the abstract hypotheses.

{ Internal Validit y: changes in the dependent variables can be attributed to

changesin the independent variables.

{ External Validit y: resultsshouldbegeneralizeto environment outsidethe study

context.

� Data Analysis and Presentation. Quantitativ e analysisand qualitativ e analysisare

two generalapproaches.

{ Quantitativ e analysismeanscomparingthe numericaldata. There are two tools

commonlyused. Hypothesistesting determinesthe con�dencelevel at which the

null hypothesescan be rejected. Power analysisdeterminesthe likelihood that

the null hypothesiswill be rejectedwhen it really should be.

{ Qualitativ e analysisrely subjective data such asobservations and interviews to

understandhuman's perspective of software process.

� Results and Conclusion. This is the weakest part of current empirical studies. In

this section,we must explain the limits of the study, what the data says and how the

data related to our initial problem.
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2.4.1 Review of Soft ware Evolution Empirical Studies

In this section,we review someempirical studieson software evolution. Each of them will

be introducedand evaluated using Perry's empirical study principle.

Patterns of System Gro wth

As introduced in the sectionon code-basedevolution metrics, Lehman and Godfrey have

conductedstudieson the systemgrowth of long-lived software systems,as summarizedin

[33] and [19]. Lehman'searly work was conductedon IBM OS/360 operating systemand

contributed to his \la ws of software evolution". More recently, empirical data of industrial

systemsfrom ICL, Logica, BAE and Ministry of Defensehave beenstudied. The result

shows that many systemgrowth curves�t into a \single parameterinversesquaremodel".

Godfrey and Tu have examined the growth patterns of someemergingOpen Source

Systems.They studied the systemgrowth of Linux kernel for over ninety releases,as well

as many past releasesof VIM and GNU C Compiler system. Both the overall system

growth and the evolution patterns of individual subsystemsare studied. They found that

the system size of Linux kernel grows at a geometric rate (super linear). The authors

attributed this result to the development characteristics of open source projects, such

as the large number of developers contribute to the project in parallel, the distributed

debuggingprocess,and the centralized control over systemarchitecture. They moreover

found that commoncoding practicesin opensourceproject such ascodecloningcontribute

to the unique growth patterns of many subsystems.

Evolution of Lucen t PBX System

Mockus, Eick, and other researchers at Lucent Technologiesconducted the large-scale

empirical study on the changehistory of Lucent's main telephoneswitch systemfor over

�fteen years[13]. The systemis huge, consistingof 100 million line of code, another 100

million lines of headerand Make �les, organizedinto 50 subsystems,and 5000modules,

with 10 thousanddevelopers involved.

They have extracted useful information from the databaseof changemanagement sys-

tems, including SourceCode Control System,Extended Con�guration Management Sys-
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tem, and Fault and FeatureTracking System. Their methodologiesand analyzingtools are

discussedin [37]. The goal of their research is to identify evidenceof \code decay" in the

system(\co de decay" has beendiscussedpreviously in the sectionon evolution metrics).

They collect several code decay indicators (CDI), and usethem to diagnosethe well being

of the system. The analysis result shows someevidencesof \code decay", such as the

increaseover time in the number of �les a�ected per changeto the code and the decline

in modularit y of subsystems.The results also correlate factors such as the frequencyand

ageof the changeto the fault rate in modules, and the span and size of changesto the

e�ort required to implement a change. Finally, the researchersconcludedthat there is no

evidenceof dramatic, widespreaddecay found in the system.

Evolution of Main tainabilit y

Burd et al. performed an empirical study that comparesthe evolution history of four

software systems[9]: a retail system over eight releaseswith a size of 10 KLOC, GNU

C Computer systemover thirteen releasessizedat 300 KLOC, an operating systemover

four releasessizedat 20 KLOC, and another retailed systemover four releasessizedat 40

KLOC. Their approach is to identify the increaseof data complexity in the applications.

Modules that had rapid increaseof data complexity, but with relatively fewer changesto

their call structures, are likely error-proneand may require maintenance.

They observed in oneof the retailer system,there had beena signi�cant increasein the

data complexity in earlier releases.However, the increasehad stopped when preventativ e

maintenancehad been performed in later releases.In the other retailer system and the

operation system,a convergenceof cumulative changesin call and data dependencieswas

identi�ed, which suggestedthat a consistent preventativ e maintenancestrategy has been

applied. Finally, the GCC system exhibits a chaotic change history. They interviewed

somedevelopers of GCC, and they were told that a preventativ e maintenanceapproach

was only attempted when time was permitted.

Di�eren t Change Characteristics Bet ween System and Its Comp onents

Gall et al. studied the product releasehistory of a telecommunication application for

twenty releases[17]. They comparedthe sizegrowth of the whole systemwith individual
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subsystems.In addition, they measuredthe changesof functionality in terms of modules

added,removed or changedin the whole systemand each major subsystem.

They observedsomeinterestinggrowth characteristicsat the systemlevel. For example,

the sizeof the systemis growing linearly, which is very high for industrial system. In the

beginning, the number of modules added into each new releaseis very large, and then it

signi�cantly decreasesand becomesalmost constant. Eventually the entire systemevolved

into a stabilized stage,whereboth the growth and changerates are decreasing.

Then they examinedthe evolution of oneparticular subsystem,becausethis subsystem

has the highest growth rate and changerate. They found one module of this subsystem

hasmany functions with similar nameswith slightly di�eren t endings.This indicatesthat

many new functions are only slightly modi�ed from existing ones. In fact, this module

contains all the con�guration information for the system. New con�gurations are often

copiedfrom existing functions with little modi�cations, and old con�gurations are seldom

changedin new release.This explainsthe high growth rate, and low changing rate of this

module. The other two modules of the subsystemsboth have a high growth and change

rate, which meansalmost every other changein the systemwill a�ect thesetwo modules.

Their conclusionof this empirical study is that there are signi�cant di�erences in the

evolution characteristicsbetweenthe whole system,and individual subsystemor module.

2.4.2 Conclusion of Related Work

Many studieson softwareevolution emphasizethe statistical changesof the softwaresystem

by analyzing its evolution metrics. Besidesomevisualization tools, very little work has

beendoneto help understandingthe nature of the evolution of software architecture.

Another limitation of many empirical studies is the number of releasesexaminedand

the history of many archived data that is not long enoughto generalizethe results of the

study as an evolution theory. However, the enormousamount of work required by large-

scale empirical study makes it almost impossible without the application of dedicated

tools and integrated environment, like the SoftwareChangeenvironment createdby Lucent

Technologieswhen they conductedthe imperial study discussedin [13]. Strong tool and

environment support has been proven a key factor in conducting a successfulempirical

study on software evolution.
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Our approach to study software evolution incorporates someof the research methods

coveredin this chapter, such asapplying popular evolution metricsto measurethe historical

changesof system components, and using graphical diagrams to visualize the software

changehistory. The main di�erence betweenour approach and existing methods is that

we created an integrated environment that allow researchers to investigate the software

changehistory from many aspects including evolution metrics, visualization graphs, and

other analytical tools. Wealsointroducean analysismethod that could track the structural

changesof the software systemwhen its sourcedirectory structural or �le naming scheme

waschanged. In the next chapter, we will describe our integrated approach and structural

analysismethods in detail.



Chapter 3

BEA GLE: An In tegrated Platform

for Studying Soft ware Evolution

In chapter 2, we reviewed the two popular research approachesfor studying softwareevolu-

tion. The �rst approach is to collect and analyzethe historical trends of evolution metrics.

The secondapproach visualizesthe evolution of software organizationswith graphical rep-

resentations. We discussedthe advantagesand limitations of each of thesetwo approaches,

and then raisedthe issuethat there hasbeenlimited research e�ort in studying evolution

at the architectural level. Furthermore, we reviewed several empirical casestudieson soft-

ware evolution, and �nally proposedan integrated environment with automated tools to

assistthe empirical study in this area.

To overcome the limitations in current research, we have proposed a new research

method, which integrates evolution metrics as well as visualization techniques into one

web-basedresearch platform. In this environment, researcherscan query the history data

of the software system,comparethe di�erences betweenreleases,and investigateinterest-

ing evolution patterns from di�eren t perspectives. We also developed a technique called

\origin analysis" to examinethe structural changeof softwaresystems.The purposeof this

technique is to �nd possiblematchesbetweenrenamedor relocated software components

in the later releaseswith their \origins" from an earlier release.

In this chapter, we �rst introduce the research problemswe are trying to solve, then

we discussthe methodologiesfollowed by the discussionof our methodologies,and �nally

39
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we describe a prototype implementation, an integrated environment called BEAGLE that

we have developed to help researchersstudy software evolution.

3.1 Challenges to Soft ware Evolution Research

We believe there are three major challengesthat we must overcomein software evolution

research. Theseobstacleslimit our abilit y to understand the history of software systems

using e�ectiv e empirical study, thus prevent us from generalizingour observations into

software evolution theory.

The �rst challengeis how to organizethe enormousamount of historical data in a way

that allow researchers to accessthem quickly and easily. Software systemswith a long

development history would generatemany typesof artifacts. We needto determinewhich

artifacts should be collectedas the data sourcefor software evolution analysis.

The secondchallenge is how to incorporate di�eren t research techniques of software

evolution into one integrated platform. We have reviewed several models that are based

on software evolution metrics, and visualization techniques that display software history

in graphical diagrams. Evolution metrics are precise,extendable, and can be used for

numerical analysis. Visualization diagramsprovide the overview of the evolution history

and have visual appear to the users. When used together, they are valuable tools for

software evolution study.

The third challengeis how to analyzethe structural changesof software systems.We

have discussedin the previous chapter the needsfor this analysis, and why traditional

name-basedcomparisontechniquesare not e�ectiv e to solve this problem. New research

methods must be exploredto solve this challengingproblem.

3.2 Discussion of Metho dologies

In this section, we introduce our answers to the three challengeslisted above. Our ap-

proach includesa web-basedresearch platform that integratesseveral essential techniques

in studying software evolution, and a novel approach for analyzing software structural

changesthat is included in our research platform.
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We �rst discusshow the data are selectedand stored in the platform, followed by the

discussionof the various analysismethods integrated in the platform, and how to apply

them to solve problemsin evolution research.

3.2.1 History Data Rep ository

Data Source

As a software systemevolves,the various activities related to its evolution producemany

new and changedartifacts. Theseartifacts include:

� Program sourcecode, Makefile s, compiledbinary libraries, and executables.These

artifacts are the main products of software development activities.

� Artifacts related to the requirement speci�cation and architecture design. They in-

clude feasibility study, functional and non-functional requirement speci�cation, user

manual, architecture designdocuments, userinterfacemockup, and prototype imple-

mentation.

� Artifacts related to testing and maintenanceactivities. They include defect reports,

changelogs,newfeaturerequests,test suites,and automatedquality assurance(QA)

tools.

The archivesof each of theseartifacts reveal one or more aspects of the software evo-

lution. Collecting and organizing these artifact archives are usually the �rst step in an

empirical study.

In this thesis,our primary focusis the evolution characteristicsof OpenSourceSoftware

(OSS) systems. The reason is that most OSS projects maintain complete archives of

program sourcecode and versioncontrol databasefor history releaseson their FTP sites,

and free of change. With the full accessto program source code and version control

database, we have been able to discover many details of the history of these software

systems. We also have more freedom in our research without getting into complicated

copyright or con�dential issuesas the casewith commercialsystems.
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One characteristic of OSSdevelopment processis that developersoften do not system-

atically achieve initial speci�cation and designdocuments. Much of the documentation

consistsof sketcheson scratch paper or drawing board, private emailsbetweendevelopers,

or newsgroupdiscussions.This \bazaar" development style contributes to many factors

that make OSSsuccessful,such asshort releasecycle,quick adoption of new features,and

prompt responsesto bug reports [44]. However, the lack of well-archived documents make

it di�cult to investigate the evolution of OSSsystems. For someOSSprojects, the key

documents that recordoriginal designdecisionsor reasonsfor important changesareeither

lost or di�cult to retrieve.

On the other hand, OSS project usually has a complete archive of version control

information, becausethe code \di� " is often distributed as patch to update the program

sourcecode from the earlier releaseto the current, wherethe endusercanbuild the newest

program binaries. The version control databasealso has a web interface for distributed

development and debugging.However, typically versioncontrol information describesthe

text changesmadeto the sourcecode at line-level, and sometimewith a short description

of the changes.It doesnot explain the context of the code change,such as the high-level

modi�cation to the software architecture, and its relations with other code changes.If the

softwaredeveloper did not document them explicitly, it is very hard for us to realizeexactly

what had beenchanges,and for what reasons.This makesversioncontrol database,when

usedalone,an ine�ectiv e resourceof data for investigatingsoftware architecture evolution.

The ad hoc nature of OSSdevelopment processmakesit very di�cult to �nd archived

documentation that describesin detail all the major changesmadeto the softwarearchitec-

ture in the past. Fortunately, OSSprojects usually maintain a completesourcecode base

for every past releases.Furthermore, there are many software reverseengineeringtech-

niquesthat canextract and rebuild someof the software architecture information from the

sourcecode. As the result, we selectedsourcecode as the primary data sourcefor study-

ing the evolution of software architecture, and other program artifacts including version

control databaseare usedas complementary.

Many OSSprojects publish the sourcecode of past releaseon FTP sites. Table 3.1 lists

three popular OSSsystems,the archived releases,and their FTP addresses.
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Pro ject Arc hiv ed Releases FTP Site

Linux Kernel Linux 0.0.1 (9/17/1991) To Linux 2.4.9
(present)

ftp://ftp.k ernel.org/pub/lin ux/

GCC GCC 1.37.1 (2/21/1990) To GCC
2.95.2(10/24/1999)

ftp://ftp.gn u.org/gnu/gcc/

VIM Vim 3.0 (3/5/1996) To Vim 5.8
(5/31/2001)

ftp://ftp.vim.org/pub/vim/

Table 3.1: Releasearchivesof three open sourceprojects

Soft ware Arc hitecture Mo del

In this thesis, software architecture refers to the structure of system, emphasizingthe

organization of its components that make up the system and the relationships between

thesecomponents. We apply reverseengineeringtechniqueson the program sourcecode

to extract the most basicarchitecture facts including program components and their rela-

tionships, and then recreatethe high-level software architecture using fact abstractorsand

relational calculators.

Depending on the abstraction level, we have four architecture models that describe

the structure of the software systemsusing components and their relationships[51]. Each

model describes the system structure with a di�eren t level of abstraction. By modeling

the softwaresystemat several abstraction levels,researcherscannot only study the overall

organization of the system,but also be able to \drill down" the high-level component to

further examineits internal structure. The four architecture modelsare:

1. Entity-L evel Model This model describes the data and control 
o w dependencies

between basic program entities, such as functions, non-local variables, types, and

macros. It alsodescribesthe containment relations betweentheselow-level program

entities and their containing entities, which are program �les.

2. File-Level Model This model describes the control 
o w and data 
o w dependencies

betweenprogram�les or modules. Thesehigher-level entities and relationsare\lifted

up" from those in the function-level model using relational calculus.
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3. High-LevelModel This model alsodescribesthe dependenciesbetweenprogram �les

or modules. However, the dependenciesare the abstractionsof thosepresented in the

�le-level model. Related dependenciesare grouped into three basic relation group:

function call, data reference,and implementation relations betweenheader�les and

implementation �les. Instead of having more then ten di�eren t dependencytypesas

in the �le-level model, high-level model hasonly three basicdependencytypes.

4. Architecture-LevelModel This model describesthe software architecture at the high-

est abstraction level. Program entitles models at this level are mainly subsystems

and �les. A subsystemis a group of related �les or lower level subsystemsthat im-

plements a major functionality of the system. The processof creating subsystems

for a software systemis mainly performedmanually with assistancesfrom the source

directory structure, �lename convention, and automatic module clusteringtools. The

relations betweensubsystemsare described by the samethree basicrelation typesas

in the higher-level model.

Evolution Metrics

Code-basedevolution metrics are valuable information to study the evolution attributes of

individual program entities. Our integrated platform provides accessto several evolution

metrics in addition to the capability to comparesoftwarearchitecturesof di�eren t releases.

The metrics we selectedinclude basic metrics and composite metrics. Basic metrics

include lines of code, lines of comments, cyclomatic complexity, code nesting, fan-in, fan-

out, global variable accessand update, number of function parameters,number of local

variables, and the number of input/output statements. Composite metrics include S-

complexity, D-complexity, Albrecht metric, and Kafura metric [28].

In addition to architecture facts extracted from program sourcecode and evolution

metrics that are also measuredfrom sourcecode, we needdata that provides extra infor-

mation about each past release.This information includesthe releasedate, the full version

number, the new feature list, and the bug �x list.
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3.2.2 Navigation of Evolution Information

Incorp orating Evolution Metrics with Soft ware Visualization

Previousworks in incorporating software metrics with visualization techniquesin program

comprehensionhave beendiscussedby Demeyer et al. [12] and Systaet al. [48]. Demeyer

et al. proposeda hybrid reverseengineeringmodel basedon the combination of graph vi-

sualizationand metrics. In their model, every node in a two-dimensionalgraph is rendered

with several metrics at the sametime. The valuesof selectedmetrics are represented by

the size, position, and color of the node. Possiblegraph type includes tree, correlation,

histogram, checker, and stapled graph. They also implemented a platform called Code-

Crawler to experiment with various combinations of metrics and program visualization

techniques. Systa et al. have developed a reverseengineeringenvironment called Shimba

for understandingJava programs. Shimba usesreverseengineeringtoolsRigi and SCED to

analyzeand then visualizethe static structure and dynamic behavior of a software system.

The nodesin each of thesediagramsare annotated with metric attributes. Thesemetrics

measurethe properties of the classesthat are represented by the nodes, the inheritance

hierarchy of the Java program, and di�eren t relations betweenclasses.

Both approachesassistprogram comprehensionby combining the immediate appeal of

software visualization with the scalability and precisionof metrics. We are proposing to

adopt a similar approach in softwareevolution research, by creatingan integratedplatform

that integratesevolution metrics, program visualization, software structural analysis,and

sourcenavigation capability into oneenvironment.

The platform shouldprovide at least two windowswhenshowing the evolution informa-

tion of softwaresystems.The �rst window shows a visualization that modelsthe history of

the whole software system,or selectedprogram entitles or relations. When the userneeds

more detail about particular program entit y, he can click on the graphical element that

models the entit y and the secondwindows will be shown. This window contains a table

showing the history of the evolution metric measurements of interestedprogram entities.
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Comparing Di�erences between Releases

As we have discussedin the previouschapter, there are two commonapproachesto visu-

alizing software evolution. The �rst approach attempts to show the evolution information

with one graph for all the history releases.The example is Gall's colored 3D evolution

graph. The other approach shows the architectural di�erences between two releases,as

seenin GASE and KAC systems.

Our method is to display the two types of evolution visualization graph at the same

time. First, we provide a tree-like diagram that shows the system structure of one of

the releasethat is included in the comparison,usually the most recent one. We call it

the structure diagram. The structure diagram models the systemhierarchy as a tree with

branches and leaves. The \branches" or internal nodes of the tree represent subsystems

and program modules. The \leaves" of the tree represent functions de�ned in the program

modules. User can click on a \branch" (a subsystem)to expand it to show the lower-

level \branches" (modules), and further to \leaves" (functions). We also use colors and

saturations to model the evolution status of each entit y in the \tree". Red, green,blue,

and white are used to represent \new", \changed", \deleted", and \unchanged" status

respectively. To di�eren tiate program entitles that are all \new" (added to the system

later than the �rst versionin the comparisonwasreleased),di�eren t levelsof red are used

to represent their relative \ages". Entit y in vivid red cameinto the systemmost recently,

and the darker red meansthe entit y has beenin the systemfor many releases.With the

help of the tree diagram and a novel color schema, we can model the evolution of the

systemover several releasesin a singlegraph.

The other kind of diagram is shown next to the tree diagram: it is designedto display

and navigate the di�erencesbetweentwo releases.We call it the dependencydiagram. The

dependencydiagram is basedon the landscape viewer usedin PBS tools, and extendsthe

schemaby adding evolution related entities and relations.

If a userselectsa group of releasesand wants to visualize the changehistory, the tree

graph usually shows the program structure of the most recent releasein the group, with

di�eren t colorsto represent the di�eren t evolution status of its programentities inside. The

software landscape graph will show the di�erences betweenthe architecture of the earliest

releaseand the most recent release,especially the structural di�erence of the program
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entit y that is selectedin the tree diagram betweenthe two releases.By showing the two

typesof visualization graphstogether, usercan examinethe evolution from many di�eren t

perspectives, and navigate from one diagram directly into another diagram. Figure 3.8

shows a prototype implementation of the idealsdiscussedabove.

3.2.3 Analysis of Soft ware Structural Changes

The method we have developed to analyze software structural change is called \Origin

Analysis". We use it to �nd the possibleorigin of a function or �le that appears to be

new to a later releaseof the software system,if it existedpreviously within the systemin

another location. Many re-architecting (high-level changesto the software architecture)

and refactoring (low-level modi�cation to the program structure) activities involve reor-

ganizing the program sourcecode by relocating functions or �les to other locations, with

little changeactually made to the program entit y. Meanwhile, their name may also be

changedto re
ect a new naming schema. As a result, many new entities that appear to

be addedto the newer releaseof the systemare actually old entitles in the new locations

and/or with a new names.

We de�ne \origin analysis" as the practice to relate program entities from the earlier

releasewith the apparent new entities in the later releases.With \origin analysis', the

transition processfrom the previous program sourcestructure to the new one could be

better understood becausewe are able to unveils many hidden dependenciesbetweenthe

two architectures.

Wh y Origin Analysis?

Imagine we are given a task to analyzethe software evolution of SystemX. SystemX has

two releasesso far, releasev1.0 and releasev2.0. Figure 3.1 shows the systemstructures

of both v1.0 and v2.0.

After we comparedthe two architectures basedon the namesof program entities from

both releases,we createa graph that shows all the new entitles and relations in v2.0, and

another graph that displays all the entities and relations that will be missingin v2.0. Pro-

vided with thesetwo diagrams,questionssuch as\Where does�le D.c in subsystemS2go
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Figure 3.1: Example of Origin Analysis
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in v2.0 and why?" or \Where does�le lib.c in subsystemS3comefrom in v2.0?" remains

unanswered. We needmore sophisticatedanalysismethods to answer thesequestions,or

at least provide somecluesif no conclusive answerscan be provided.

In the next section, we will introduce two techniques that we have developed to im-

plement origin analysis. The �rst technique is called Bertil lonageAnalysis. It usescode

featuresto match similar program entities from di�eren t releases.The other technique is

calledDependencyAnalysis. It examsthe changesof relationshipbetweenselectedprogram

entit y and thosewho are dependedon it to �nd the possiblematch.

Bertillonage Analysis

Bertillonage analysiswas originally usedby police department in France in the 1800sto

attempt to uniquely identify criminals by taking the measurements on various body parts

likethumb length, arm length, andheadsize. This approach predatesthe useof �ngerprin ts

or DNA analysisas the primary forensictechnique. We borrow this term to describe our

approach to measurethe similarit y betweennew functions identi�ed in a later releasewith

those missing functions from the previous release,hoping to �nd a pair positive matches

so that we can declarethis \new" function has an \origin" in the previous release. We

used the term \Bertillonage" as it is an approximate technique. Unlike more advanced

techniques such as �ngerprin ting and DNA analysis that require more e�ort and take

longer to conduct, \Bertillonage" is able to identit y a small group of \suspects" easilyand

quickly from tens of thousandsof population. We could use other advanced techniques

that requires more computing power, or sometimeeven common sense,to �lter out the

real \suspect" from a much smaller population.

This approach was �rst used in clone detection, where the goal is to discover similar

codesegments within the samesoftware release.We extend its application to softwareevo-

lution, wherewe try to match similar functions from di�eren t releasesto analyzestructural

changes. \Bertillonage" is a group of program metrics that represent the characteristics

of a code segment. Kontogiannis proposesto use �v e standard software metrics to clas-

sify and represent a code fragment: S-Complexity, D-Complexity, Cyclomatic complexity,

Albrecht, and Kafura [28].

We have pre-computedand stored these�v e measurements for every function in every
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releaseof the system under consideration. Any two functions from consecutive releases

with the closestdistancebetweentheir measurement vectors in a 5-D spaceare potential

candidatesfor a match. The rational is that, if a new function de�ned in the later release

is not newly written, but rather an old function relocated from another part of the system

in the previous release,then the \new" function and \old" function should sharesimilar

measuringmetrics, thus they should have the closestEuclidean distance between their

Bertillonage measurements. The matching algorithm is described as follows:

1. As the result of an architectural comparison,a function in the referencereleaseis

identi�ed as \new", which meansa function with the samename in the same�le

doesnot exits in the previousrelease.

2. Compile a \missing" list that contains functions that existed in the immediate pre-

vious release,but do not exist in the current release.

3. Match the Bertillonage measurement vector of the \new" function with that of every

function in the \disappeared"function list. Sort their Euclideandistancein ascending

order.

4. Selectthe �v e best matches.

5. Among the �v e best matches,comparetheir function namewith the \new" function

being matched by matching the commonsubstring in their names. Choosethe one

whosefunction nameis the most similar to the \new" function, which meansit has

the longestcommonsubstring with the function namethat we are matching with.

The last step of comparing function name works as a �lter to discard mismatched

functions, sincethere arechancesthat two irrelevant functions happen to have very similar

Bertillonagemeasurements. Hereis an examplefrom the casestudy of GCC that illustrates

why it is necessary. In GCC 2.0, there is a new function build_binary_op_nodefault

de�ned in �le cp-typeck.c in subsystemSemantic Analyzer . When applying Bertillon-

ageanalysis,we get the following �v e best matches. The distanced is calculated as the

Euclidian distancebetweenthe two �le-element vectorsthat represent the code featuresof

selectedfunctions.
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1. combine from fold-const.c: d=1005745.47

2. recog_4 from insn-recog.c: d=2496769.23

3. insn-recog.c from recog_5: d=7294066.05

4. fprop from hard-params.c: d=8444858.78

5. build_binary_op_nodefault from c-typeck.c: d=8928753.44

The obvious choice should be match number 5, which has the exact �lename as the

\new" function. The only di�erence betweenthesetwo functions is the �les in which they

are de�ned. However, they do not have the closestdistance, as match 1 to 4 are much

closer to the \new" function than the correct \origin" function. The explanation could

be that this function has somewhatchangedits internal structure (control 
o w and data


o w) in v2.0, so it measuredas distant in the 5-D vector space.However, sincethesetwo

functions are expected to implement the samefunctionality in both releases,we can still

pick them up with Bertillonage matching algorithm enhancedwith function name�lter.

Dep endency Analysis

We usethe following analogy to explain the basic idea behind the DependencyAnalysis:

imagine a company that manufactureso�ce furniture has decidedto move from Toronto

to Waterloo. This event will a�ect both its businesssuppliersand customers.Its supplier,

say a factory that provides building material to the company, must update its customer

databaseby deleting the old shippingaddressin Toronto, and then adding a shippingentry

to re
ect the newaddressin Waterloo. The customer,for example,O�ce Depot, alsoneeds

to update their supplier databaseto deletethe old Toronto addressand update it with the

new Waterloo address.If we do not know the fact that the new o�ce furniture company

that just registeredwith City of Waterloo is actually the old company with many yearsof

operation history in Toronto, we can comparethe changesof the customerdatabaseof its

suppliers,and the supplier databaseof its customersto discover this move.
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The sametypeof analysiscanalsobeusedfor analyzingsoftwarearchitectural changes.

In this case,we are trying to identify a particular changepattern on call dependency. Here

is a descriptionof how the dependencyanalysisis performedto track function movements:

1. Identify the \new" function in the referencerelease.

2. Analyze the caller functions:

(a) Find all the caller functions of this \new" function.

(b) For every caller function that also exists in the previous release,comparethe

di�erences of the function lists that it calls in both releases.Selectthose func-

tions that werebeingcalledin the previousrelease,but no more in the reference

release.

(c) Any functions that are selectedmore than onceare candidatesfor the origin of

the \new" function.

3. Analyze the calleefunctions:

(a) Find all the functions that this \new" functions calls in the referencerelease.

(b) For every calleefunction that also appear in the previous release,comparethe

di�erence of the list of functions that call it in both releases. Select those

functions that werecalling it in the previousrelease,but no morein the reference

release.

(c) Any functions that are selectedmore than onceare candidatesfor the origin of

the \new" function.

4. By combining the results from previoustwo steps,we might �nd the \origin" for the

\new" function, if it is not really newly written, but an \old" function being moved

to the current location.

Figure 3.2 shows an examplethat we can verify our dependencyanalysis. Function A

in releasev2.0 is \new" to the system. Now we needto �nd out if there it hasan origin in

the previousreleasev1.0.
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Figure 3.2: Example of Call-Relation ChangeAnalysis
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� Caller Analysis: Function A is calledby Function B and C in v2.0. However, only B

exits in both v2.0 and v1.0. Sowe will seehow the calleelist of B hasbeenchanged:

B usedto call G and F in v1.0,but in v2.0, it callsG and A. The di�erence is function

F in v1.0 and we put this function in the candidate list.

� Callee Analysis: Function A calls function D and E in v2.0. Be-causeD was not in

v1.0, we only needto study E: E usedto be calledby F and N in v1.0, but it is called

by A and N in v2.0. The di�erence is function F again, which agreeswith the result

from caller analysis.

After applying both caller analysisand calleeanalysis,we believe that the \new" func-

tion A in v2.0 has very closetie with an \old" function in v1.0, if they are not the same

function at all.

3.3 BEA GLE: An In tegrated Environmen t

To validate the research techniques we have just discussed,we have built an research

platform called BEAGLE, that integratesseveral research methods for studying software

evolution, including the useof evolution metrics, programvisualization, and origin analysis

for structural changes.

BEAGLE hasa distributed architecture that reassemblesa three-tier web application.

Figure 3.3 illustrates the conceptualarchitecture of BEAGLE. At the backend, the evolu-

tion data repository storeshistory information of the softwaresystem. The data repository,

togetherwith the query-processinginterface,formsthe databasetier. In the logic tier, com-

parison engineretrieves information from the databasetier, and comparethe di�erences

between the selectedreleasesfrom various perspectives. The origin analysis component

performsthe task to reveal the hidden relations betweenthe program structures of di�er-

encereleases.The visualization component generatesthe graphical representation of the

software evolution data. The components in the logic tier receive user queriesand send

back query results through the user interface application running on clients' machines,

which forms the usertier. Userscan alsonavigate the evolution data using tools from this

tier.
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Figure 3.3: ConceptualArchitecture of BEAGLE Environment
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3.3.1 Database Tier

Likemany information retrieval systems,BEAGLE is supported by a data repository that is

implemented asa relational database.In the database,software architectural information

of past releases,as well as metrics that describe the attributes of program entities are

stored in the database,organizedaccordingto a star schema, which are described below.

Functional components in the logic tier accessthe information storedin the data repos-

itory through a query interface. In BEAGLE, the query interfacesare written in SQL, the

standard relational databasequery language.

Data Rep ository Schema

In the repository, relational tables are organizedaccording to a star schema. The star

schemais a popular data model in databasewarehousesystemsand multi-dimensional

databasesystems.It is a query-centric model designedfor static databasesthat store large

amount of historical data, and supports time seriesanalysisto discover historical patterns

presented by the data and to forecastfuture trends.

In star schema, tables are arranged in the following ways. A central \fact" table is

connectedto a set of \dimension" tables,oneper dimension. The name\star" comesfrom

the usualdiagrammatic depiction of this schemawith the fact table in the center and each

dimensiontable shown surrounding it [50].

The BEAGLE data repository has four fact tables. They model the systemstructure

and relations betweenprogram entities at various abstract levels. The four levels of ab-

straction are: entit y, �le, high, and architecture. Each level of architecture fact is stored

in its own table for all the history releases.Besidesthe di�eren t abstraction level, all four

fact-tables have very similar structure.

1. Entity-L evel Facts - A entit y-level fact table storesthe lowest level of architecture

information that we model in BEAGLE: the dependenciesbetweenfunctions, global

variables,and macros. It alsostoresthe containment relationsbetweenbasicprogram

entities and �les. We have used the sourcecode extractor cfx to pull out such

information from the sourcecode in our examples.
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2. File-Level Facts - This table is the abstraction of entit y-level facts: it stores the

relationsbetweensource�les. File-level factsare inducedfrom entit y-level factsusing

relational calculus formulas de�ned in grok scripts in PBS. Ten types of relations

are stored in this table: call body, call ifc , call lifc , call noifc , dep other ,

impl proc, impl var , ref body, ref ifc , and ref lifc .

3. High-Level Facts - Information stored in the table is further abstracted from �le-

level facts. Even thought the main entities modeled in this table are still �les, the

relations between �les are a set of higher-level relations that are mergesfrom the

intermediate relations modeled by �le-level facts. We call these facts high-level to

di�eren tiate them from the �le-level facts. The abstraction of relations between�les

removed cluster of dependenciesby concentrating only on three simple dependency

relations: userproc, usevar and implementby.

4. Architecture-Level Facts- The architecture-level fact table contains not only rela-

tions betweenprogram �les, but alsohigher level architecture facts between�le and

subsystem,subsystemand subsystem,and also containment relations between�les,

low-level subsystems,and high-level subsystem. Subsystemis a group of related

program �les working together to provide a major functionality of the system. In

BEAGLE, the grouping of program �les into subsystemsis performedmanually with

the help of sourcedirectory structure, domain knowledge, and design documenta-

tions.

Figure 3.4 shows the relations betweenfact tables and six dimensiontables, as well as

the schemaof each table.

Besidesthe fact tables, there are six dimensiontables. They provide additional infor-

mation for entities and dependenciesmodeledin the fact tables. Hereis a list that explains

each dimensiontable in detail:

1. The versionnumber table storesthe breakdown of the versionnumber of each history

release.For example,GCC 2.7.2.3is broken into major releaseas two, minor release

asseven, major bug-�x releaseastwo, and minor bug-�x releaseasthree. The series

column is usedto distinguish betweenthe stablereleasestreamand the experimental
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Figure 3.4: Schemaof BEAGLE Data Repository
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releasestream. In GCC project, GCC is reserved for production releases,and EGCS

is for experimental releases.In Linux kernel, the middle digit (minor releasenumber)

indicates whether the releaseis a production release(if even) or an experimental

development release(if odd).

2. The releasedate table storesthe releasedateof each history releases.It includesthree

columns: year,month, and day. The releasedate is usedto calculatethe time interval

betweenconsecutivereleases,which weuseasa rough indicator of development e�ort.

3. The entity attribute table mapsthe nameof entities storedin fact tablesto an integer

value to save storagespace,and improve the comparisonperformance.Applications

can easily retrieve the real nameof program entitles back by doing a lookup on this

table.

4. The con�guration attribute table extends the con�guration column in fact tables.

Many software systemssupport 
exible building con�gurations. For example,GCC

supports C, C++, Objective C, Chill, Fortran, and Java. It providesusersan option

to choosewhich compiler to be included in the build. In our casestudy, webuild each

releaseof GCC with two build options: CONLY for building a c only compiler, and

ALL for building GCC compiler suite with all supported programming languages.

5. The function complexity table contains a select of code metric measurements tar-

geted at the function level. Measuredmetrics include LOC, McCabe's cyclomatic

complexity, fan-in and fan-out. We alsopre-computeand store four composite met-

rics: S-Complexity, D-Complexity, Albrecht, and Kafura [28]. Wewill usethis metric

information to act as a kind of \�ngerprin t" for the functions in \origin analysis".

6. The �le complexity table contains a set of metrics at the �le level. Most metrics

included in this table are basic complexity metrics. The last metric, maintenance

index, measuresthe maintainabilit y of a program source�le as introducedin [38].

History Data Collection and Pro cessing

The data in the fact tables are collectedusing PBS tools. The metric measurements are

collectedusinga sourcecode analyzingtool calledUnderstandfor C++ , which is a reverse
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engineering,documentation, and metrics tool for C and C++ sourcecode[15]. The outputs

from both toolsareprocessedby a seriesof transformerswehavewritten to transform them

into the formats that conform to the BEAGLE repository schema.

The PBS outputs follow RSF (three-element tuple) and TA [23] formats. Both formats

are very close to fact table schema, so the conversion processis straightforward. The

situation is di�eren t for Understand for C++. BecauseUnderstand for C++ has it own

internal data storageschema,much work needto be doneto translate the data generated

by Understand for C++ from its own schemainto BEAGLE repository schema.

UnderstandC++ generatestwo typesof analysisreports. Oneis Metrics Report, which

showsbasicmetric information for functions and �les such asLOC, Cyclomatic complexity,

Fan In, Fan Out, etc. Another report is the CrossReference Report, which contains the

following information:

� The Object Cross Reference Report lists all C/C++ objects, such as variables, pa-

rameter and macrosalong with declaration or usagereferences.

� The Classor Type CrossReference Report lists all declaredclassesand typesalong

their declaration or usageinformation.

� The Function CrossReference Report lists all C/C++ functionsalongwith parameter

list, return type, and referenceinformation.

We can use Metrics Report directly to populate the two metric tables in BEAGLE

repository for basiccode metrics. For more complexmetrics such asAlbrecht and Kafura,

we have to parsethe CrossReferenceReport output to rebuild the internal cross-reference

databasein memory. By walking through the internal cross-referencedatabase,we can

calculate all kinds of required interactions between functions and �les to calculate com-

posite code metrics. We have to do sobecausePBS doesnot provide detailed information

at sub-function level. To build a completearchitecture fact repository for all the history

releases,we needto repeat the data collecting proceduresfor every archived release.Ad-

ditional information regarding the releaseevents, such as releasedata and releaseversion

number arealsocollectedand usedto populatevariousdimensiontablesin data repository.

Figure 3.5 is a 
o wchart that illustrates data collection procedure.
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Figure 3.5: Proceduresto Build Data Repository
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Rep ository Access In terface and Comparison Query

Having all the history data in a relational databaseis the �rst step in building the data

tier of BEAGLE. We must also provide a query facility for the repository so that all the

functional components in the logic tier can accessthe data repository e�ectiv ely, and to

\slice and dice" the history data stored in the repository to investigate the patterns of

software architecture evolution.

One of the bene�ts of choosinga relational databasefor implementing BEAGLE data

repository over someproprietary data storage is that RDBM provides SQL (Structured

Query Language)as the standard query interfacefor easyand 
exible data access.SQL is

a powerful query languagethat is able to expressalmost all the queriesthat userswant to

issueto the history data repository, for analyzingsoftwarearchitecture evolution attributes

and patterns.

We present two examplequeriesto illustrate the querying interfaceand working mech-

anism of BEAGLE comparisonengine.

Example Query: Change of Arc hitecture Entities

Our �rst task is to �nd the set of all functions that werenewly de�ned in versionv2 (i.e.

werenot present in versionv1). Wealsowant to �nd out all the �les in which newfunctions

are de�ned, as well as the LOC and Kafura metrics for all the new functions. Here is the

SQL statement that carry implement this task:

SELECTFunc_Name.entity_string AS Function,

File_Name.entity_string AS File,

Metrics.line_of_code AS LOC,

Metrics.Kafura AS Kafura

FROMEntity_Attribute AS Func_Name,

Entity_Attribute AS File_Name,

Function_metrics AS Metrics

WHEREFunc_Name.entity_id = Metrics.function_id

and File_Name.entity_id = Metrics.file_id

and Metrics.release_key = v2

and (Metrics.function_id, Metrics.file_id) IN (
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SELECTfunction_id, file_id

FROMFunction_Metrics

WHERErelease_key = v2

EXCEPT

SELECTfunction_id, file_id

FROMFunction_Metrics

WHERErelease_key = v1 )

This SQL statement usestwo data tables from the repository: Function Metrics and

Entity Attribute . It selectsthoserows in the Function Metrics table with releasekey

equalsto v2, plus condition that the function key and �le key exits in versionv2, but not

in version v1. Then it refers to the Entity Attribute table to convert the integer key

back to entit y namestring.

Figure 3.6 shows a sectionof the output of the above query. We are comparingGCC

2.7.2.3and GCC 2.8.0.

Example Query: Change of Arc hitecture Relations

Our secondtask is to compareversionv3 with v2 (both under build con�guration c1), and

show all the newrelationsbetween�les within subsystems1,wherethe caller is `old (exists

in both v2 and v3), but the �le being called is new (only exists in v3, not in v2). Here is

the SQL statement to carry out the query:

SELECTCaller_File.entity_string AS Caller,

Callee_File.entity_string AS Callee

FROMSS_Fact,

Entity_Attribute AS Caller_File,

Entity_Attribute AS Callee_File

WHERESS_Fact.relation = "useproc"

and SS_Fact.entity_a = Caller_File.entity_id

and SS_Fact.entity_b = Callee_File.entity_id

and SS_Fact.release_key = v3

and SS_Fact.configuration_key = c1

and SS_Fact.entity_a IN (
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Figure 3.6: Result of the �rst examplequery
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SELECTentity_b

FROMSS_Fact

WHEREentity_a = s1

ANDrelation = "contain"

ANDrelease_key = v3

ANDconfiguration_key = c1

INTERSECT

SELECTentity_b

FROMSS_Fact

WHEREentity_a = s1

ANDrelation = "contain"

ANDrelease_key = v2

ANDconfiguration_key = c1 )

and SS_Fact.entity_b IN (

SELECTentity_b

FROMSS_Fact

WHEREentity_a = s1

ANDrelation = "contain"

ANDrelease_key = v3

ANDconfiguration_key = c1

EXCEPT

SELECTentity_b

FROMSS_Fact

WHEREentity_a = s1

ANDrelation = "contain"

ANDrelease_key = v2

ANDconfiguration_key = c1 )

AND(SS_Fact.entity_a, SS_Fact.entity_b) IN (

SELECTentity_a, entity_b

FROMSS_Fact

WHERErelation = "useproc"

ANDrelease_key = v3

ANDconfiguration_key = C1
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EXCEPT

SELECTentity_a, entity_b from SS_Fact

WHERErelation = "useproc"

ANDrelease_key = v2

ANDconfiguration_key = C1 )

This example is more complicated than the previous one, so we will explain in more

detail. Sincewe do not needany metric information, soonly subsystem-level fact table

and entity attribute tables are accessedin the query. As introduced in the previous

section, subsystem-level fact table contains facts related to function call relations, data

referencerelations, and implementation relations between�les and subsystems.

The SQL statement �rst selectsrows from the subsystem-level fact table where the

releasekey is v3, con�guration key is c1, and most important, the relation between two

entities must be\useproc", which meanscall relation between�le or subsystementities.

Then it continues to specify the caller �le, callee �le and the call relations with SELECT

clause.

The �rst sub-clausein the SQL statement puts constraint on the caller �le. In the

�rst SELECT statement of the sub-clause,it selectsthose �les contained in subsystems1

in releasev3. The secondSELECT statement choosesthose �les contained in subsystem

s1, but in releasev2. The INTERSECT operator makessure that the selectedcaller �les

exists in both release,so that they are quali�ed for being \old" callers.

The secondsub-clauseconstrainsthe �le being called. In the �rst SELECT statement

of the sub-clause,it selectsthose�les contained in subsystems1 in releasev3. The second

SELECT statement choosesthose �les contained also in subsystems1, but in releaseV2.

The EXCEPT operator ensurethat the selectcallee�les existsonly in releasev3, but not

in v2, so that they are quali�ed for being \new" callees.

The last sub-clauselimit the call relations to be \new". It again usesthe EXCEPT

operator to choosethose\useproc" relations that exist in releasev3, but not in v2.

Similar to the SQL statement in the �rst example, the original �le name strings are

converted back from integer keysby referring to the entity attribute table. The result

will be a list of (caller �le, callee�le) relation pairs that satisfy the query criteria.
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Figure 3.7 shows the output of this query. The two releasescomparedby the query

are GCC 2.8.0and GCC 2.3.3. The focusedsubsystemis \RTL Generator".

Figure 3.7: Result of the secondexamplequery

3.3.2 Application Logic Tier

The core functionalities of BEAGLE are provided by components in the application logic

tier. They are version comparison engine, origin analysis component and evolution visu-

alization component.

Version Comparison and Evolution Visualization

In BEAGLE, weadopt a novel approach to visualizethe di�erence betweenvariousreleases.

Figure 3.8 shows the screenshot of BEAGLE visualizing the architecture di�erences be-

tweenGCC version2.0 and GCC version2.7.2.

The tree structure in the left panel of the window shows the systemstructure of GCC

version2.7.2. Items shown in folder iconsare subsystems.It contains �les, which is shown

in Document icon. Under �le, there are items that represent functions de�ned within the

source�le. Functions are shown in block icons. User can click on an icon, and the system
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Figure 3.8: ScreenShot of BEAGLE Architecture Comparison: GCC 2.0 vs GCC 2.7.2
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structure tree will automatically expand to show entities under the selectedsubsystemor

�le.

In BEAGLE's evolution visualization, colorsareusedextensively to model the evolution

status of individual program entities:

� Red represents entities that are \new" to the release. Since we choseto visualize

the architecture di�erences between GCC v2.0 and v2.7.2, any entities including

subsystems,�les, or functions in v2.7.2, but were not in v2.0 are treated as \new",

thus are taggedwith red icons.

� Blue indicates program entities that were originally in v2.0, but are missing from

v2.7.2.

� Green indicatesthat parent-level entities, such assubsystemsand �les, contain either

\new" entities or have entities deletedfrom them. We choosegreencolor becauseit

presents life and changes.If the noneof the contained entitles ever changed,this will

be indicated by white.

� Cyan iconsare for functions that exist in both version2.0 and version2.7.2.

For programentities that are \new" to GCC version2.7.2,di�eren t \reds" with various

levels of saturation are usedto di�eren tiate their \ten ure" within the system. An entit y

in vivid red cameinto the systemrelatively late, while darker red meansthat entit y has

beenin the systemfor several releases.

At the left bottom of �gure 3.8 we can seenine new �les under \Scanner" subsystem.

c-pragma.c �rst appearedin GCC at version2.3.3. It is oneof the oldest amongall nine

�les, so its red is the darkest. c-pragma.h �rst appears in GCC at version 2.7.2, which

meansit is the youngest. Thus its color is very fresh red. File cp/Input.c �rst seenin

GCC at version 2.6.3. It is later than c-pragma.c but earlier than c-pragma.h. As the

result, its icon hasa red color with saturation somewherein the middle.

The frame on the right side of �gure 3.8 shows another style of software evolution

visualization. It is basedon the landscape viewer usedin PBS. It extendsPBS's schema

by adding evolution related entities and relations. Six new entities are added to model

new subsystem, deletesubsystem, changed subsystem, new �le , delete�le and changed �le .
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Also there are six new relations: new call, deletecall, new reference, deletereference, new

implemented-by, and deleteimplemented-by.

If userchoosesa newer releaseasthe referencerelease,and want to seehow the software

architecture hasbeenchangedsincea speci�ed earlier release,then the evolution visualizer

will display all the \new" entitles, \changed" entitles and \unchanged" entities, along

with \new" rations and \unchanged" relations. \New" meansthe entit y only exists in

the newer referencerelease. \Changed" meansthe subsystemor �le exists in both the

referencereleaseand earlier release,but it contains \new" modulesor functions within it.

Sincefunction is the most basic program entit y in BEAGLE, it only has two evolutions

status: \new", or \unchanged".

If userchoosesan older releaseasthe referencerelease,and want to compareits software

architecture with a newer release,then the evolution visualization will display all deleted,

changed,and unchangedentities. It alsoshows delete,changed,and unchangedrelations.

\Deleted" meansthe entit y exists only in the earlier release,but not in the newer release.

\Changed" meansthat subsystemor �le contains modulesor functions that are no longer

in the newer release.Sincefunction is the most basicprogram entit y in BEAGLE, it only

has two evolutions status: \unchanged", or \deleted".

Origin Analysis

In BEAGLE, we apply both Bertillonage analysisand dependencyanalysisto examevery

\new" functions in the selectedreleasewith its immediate previousreleaseto �nd out its

\origin", and examall the \delete" functions with its immediatenext releaseto �nd out its

\destination". Under somecases,source�les will be moved to new locations in the later

releases,most time to new directories, as a maintenancee�ort to reorganizethe source

directory structure. In other cases,related source�les are given commonpre�x or su�x in

their �le namesfor easierunderstandingof their responsibility in the system. Even though

the �le content does not change,many �les will have a new name after the new naming

schemeis adopted.

Thesetypesof changesto �le path and �le name make traditional architectural com-

parison tools such asGASE and KAC ine�ectiv e, becausethey treat a �le with a di�eren t

path or namea very di�eren t �le. The result will be too many \new" �les identi�ed in the
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newer release. Our solution to avoid this kind of chaos is to apply Bertillonage analysis

on every function de�ned in the \new" �le. If the majorit y of the functions have \origin"

functions that are from the same�le in the previous release,we can imply that this �le

is the \origin" �le of the selected\new" �le. Another solution is to perform call depen-

dency analysisat �le level. Instead of checking the \callee list" changeof caller functions

and \caller list" changeof calleefunctions, as in the call dependencyanalysisperformed

at function level, we examinethe \callee list" changeof �les that have call dependencies

with this \new" �le, or the \callee list" changesof those�les that this \new" �les hascall

dependencieswith. The result is the potential "origin" �le for the selected\new" �le.

3.3.3 User Tier

Users interact with BEAGLE through user tier components. Thesecomponents handle

user input and submit queriesto the logic tier, then organizeand display the results on

the screen.Hereusea simple exampleto illustrate the interaction betweenBEAGLE user

interfaceand a user. The software systemunder investigation is GNU C Compiler.

Figure 3.9: User Interface for Entering Query Options
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Initially , a list of history releasesof GCC are displayed in a web page,alongwith short

description for each release,such as the full releasenumber and releasedate. A user can

selectany two releasesor a group of consecutive releasesover a period, and then request

an architecture comparison,as shown in Figure 3.9. The user interface component will

respond to the user'srequestby sendinga messageto versioncomparison enginein the logic

tier. When the comparisonis �nished, the resultsare passedto the evolution visualization

component, where the di�erence betweenthe two software architectures are converted to

graphicaldiagramsalongwith other detailedchangeinformation about individual program

entities. Finally, the diagramsand other attributes are sendback to the landscape viewer

component in the user tier for display and further navigation, as shown in Figure 3.8.

3.4 Conclusion

We have introducedan interactive, web-basedintegrated approach to study software evo-

lution, especially architectural and structural changes. The data sourcewe selectedfor

study is the architecture facts extracted from program sourcecode, with additional in-

formation on evolution metrics, releasedetails, and revision control data. All the history

data is stored in a relations databaseand organizedaccordingto star schema. Queriesto

the evolution data are implemented in SQL statements. The query results are displayed

in a web browserasvisualizedevolution graphsand tables of evolution metrics. Userscan

navigate the evolution data as usual WWW pages. The evolution of software structure

is studied using origin analysis methods. The purpose of this analysis is to reveal the

hidden relationshipsbetweenprogram entities in the more recent releasewith those from

the earlier releaseas the results of system re-architecture. We present two methods for

origin analysis. One method comparesthe feature setsof functions from both releasesto

�nd the possiblematch. The other method analyzesthe changesof call relations between

suspected functions and their dependents. When used together, these two methods are

able to provide plausible results.

In the next chapter, we verify the e�ectiv enessof our approach by examining the

evolution history of GCC, a large open sourcesystem with a long development history

using BEAGLE.



Chapter 4

Arc hitectural Evolution of GCC:

A Case Study

In the previous chapter, we discussedthe main ideas we have developed to browse and

analyzesoftware evolution, with particular emphasison the evolution at the architecture

level. We also described an integrated platform BEAGLE that implemented thesetech-

niques. In this chapter, we will usethe evolution history of the GNU Compiler Collection

(GCC) project as an exampleto demonstratehow one may useBEAGLE to explore the

evolutionary history of a large software system.

This chapter beginswith a brief descriptionof GCC and its development history. Then

we demonstratehow BEAGLE can aid in answering various detailed questionsabout its

evolution. We have chosenquestionsthat a new developer might ask in trying to cometo

an understandingto the software architecture of GCC and its evolution.

4.1 Background and History of GCC Pro ject

4.1.1 Origin of GCC

The GNU Compiler Collection (GCC) was originally developed as a compiler for the C

language(gcc)by Richard Stallman, the founderof the GNU andFreeSoftwareFoundation.

The �rst versionof GCC wasreleasedin June1987. It consistedof 110,000linesof C code,

73
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initially supporting two target platforms: VAX and Sun3 Workstation. It compiled only

C code at that time. The original designgoal of GCC was to createa portable optimizing

compiler that supported diverseCPU architectures and multiple programming languages

[47], and onethat hasremainedthroughout its lifespan. GCC is 
exible to be extendedto

support other programming languageand platform1.

GCC version1.x wasdeveloped and maintained by Richard Stallman and a few enthu-

siastsfrom the GNU project [11]. The software is copyrighted and distributed under GNU

GPL (General Public License),which requires the redistribution of the compiler and its

sourcecode to be free.

4.1.2 GCC 2.0 and Cygn us

In the early 1990,GCC was facing a major challenge. While GCC version1.x performed

well on CISC machines such as DEC VAX and Intel i386, extra optimization e�ort was

neededto support newly emergingRISC platforms, which require much more complex

instruction scheduling mechanisms. Michael Tiemann wrote [11], \With the world transi-

tioning from CISC to RISC, we went from having hands-down the best compiler in almost

every regard to a more complex set of tradeo�s the customerwould have to evaluate. It

was no longer a simple, straightforward sell."

Another challengecamefrom supporting the C++ language.The GNU C++ compiler

started asa separateproject in the fall of 1987. Although its code wasoriginally basedon

GCC, the development of GNU C++ fell behind GCC in terms of stabilit y, as C++ is a

much more complex languagethan C. Furthermore, the designof the C++ languagewas

still evolving throughout late 1980sand most of the 1990s. New and complex features,

such as templates, were continually being introduced to the \draft" standard. It became

obvious that the old development model (i.e., maintenanceby a small group of enthusiasts)

of GNU was not practical.

To keep the GNU C and C++ compiler projects moving forward and competitiv e,

various changeswere made to the development model of GCC. Cygnus, which used to

pro�t by distributing GCC software and providing porting services,teamedwith FSF to

1Someonewas able to port GCC to a new CPU (the 32032from National Semiconductor) in just two
weeks,and still got performancethat was 20 percent faster than NS's proprietary compiler [11]
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develop GCC version 2. FSF still kept the \steering wheel" of GCC, which controls the

direction in which GCC should go and how it should be built. In the pre-web age, this

wasan e�ectiv e development model for open sourcesoftware to obtain necessaryresources

and commitment. Cygnus contributed most of the key developers of GCC, and in the

meanwhile making moneyby selling a value-addedproduct line basedon GCC and other

GNU tools, as well as providing porting and maintenanceservice.

GCC version2.x, which was releasedin February 1992,bundled compilersfor C, C++

and Objective-C into one package. GNU C++ was no longer a separateproject: as it

fully mergedwithin GCC. GCC 2.0 wasable to generateobject code for 19 di�eren t CPU

architectures, comparedto only 13 in GCC 1.42. Most newly supported architectureswere

for RISC machines, such as the HP 9000/800xseriesand IBM RS6000.The new version

alsohad more e�ectiv e optimization and scheduling algorithms.

4.1.3 EGCS and Web-based Soft ware Dev elopmen t

GCC 2.x is not perfect. Its support for \templates", as introduced in 1998ANSI C++

standard, was very poor both in completenessof functionality and e�ciency , due to the

limitation in its software architecture design. The STL (standard template library) imple-

mentation that was basedon the designfrom HP is inferior to the onefrom SGI (another

popular STL implementation). \Exceptions" in C++ are implemented in g++ without

much optimization. Many innovations in instruction scheduler designand code optimiza-

tion algorithms that emergedduring the 1990shaveyet to be incorporated into GCC source

code.

Along with the technical issues,therewasalsotensionbetweenvariousGCC developers.

Traditionally, GCC had been tightly controlled by FSF with respect to issuessuch as

which new featuresshould be addedand how the architecture should be modi�ed for the

next release. FSF tended to be conservative about adding new features. BecauseGCC

is the system compiler for all GNU projects, stabilit y was top priorit y for them. FSF's

conservativealtitude towardsthe evolution of GCC alsoresultedin the long product release

cycles,an averageoneyear for each new release(even for bug-�x releases)

On the other hand, with the increasingpopularity of GCC and web-basedcooperative

development models(pioneeredby Linux kernel), moreand morepeoplewith diverseinter-
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estshave becomeinvolved in the development of GCC. Each group has di�eren t interests

in the direction of GCC development. Somefocus on the optimization for a particular

architecture, such asthe Pentium; somewish to include a Fortran front-end or a newC++

library into GCC; somewant to port GCC onto embeddeddevices;and somejust want to

try out the newest instruction scheduler from the IBM research lab. The diversecollec-

tion of streamsof GCC development slowed down the overall processand causedtension

betweenzealousdevelopersand the conservative \steering committee".

To handle the situation, a group of developers decidedto start a more experimental

development project, basedon GCC but running as a parallel development systemto the

traditional GCC project. This project was named EGCS (Experimental GNU Compiler

Systems). The development model for EGCS is more \op en" and collaborative. It allows

developers all over the world to have an opportunit y to contribute to the project [11].

Similar to Linux kernel, EGCS hasa very short releasecycle.

The bene�t of having two projects active at the sametime is obvious. New features

and improved hardware architecture support could be tested in EGCS without hurting

the stabilit y of GCC. When a feature is debuggedthoroughly in EGCS and proven stable

enough,or a bug found in the old GCC code base,they are passedto the GCC maintainer

at FSF immediately, and vice versa. Linux kernel project has similar development model

that maintains the stable releasesand development releasesin parallel.

The EGCSproject madeits �rst release,EGCS1.0, in August 1997. Until March 1999,

seven versionshad beenreleased(1.0.x and 1.1.x). During the sametime, GCC published

their 2.7.x and 2.8.x releases.

After EGCSreleaseshad beenwidely acceptedby the softwaredevelopment community

for over two years and proven to be a reliable system, a historical moment occurred in

April 1999. The FreeSoftware Foundation o�cially halted development on the GCC 2.8.x

compiler and appointed the EGCS project as the o�cial GCC maintainers. Also the

meaningof GCC is changedto be the abbreviation of \GNU Compiler Collection". The

most up-to-date GCC versionat the data collection time of this thesiswas2.95.2released

on October 24, 1999)2.

2Version 3.0 was releasedon June 2001,after the work for this thesis had beencompleted
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4.2 Common Soft ware Arc hitecture of GCC Releases

4.2.1 Reference Arc hitecture of Compilers

A compiler is a program that processesa set of statements written in a particular source

programminglanguage,and translatesit into machine languagethat a computerprocessor

can execute.A compiler is comprisedof four essential components: a scanner,a parser,a

semantic analyzer,a code generatorand optimizer [2].

Conceptually, a compiler operatesin phases,each of which transforms the sourcepro-

gram from one form of representation into another. Thosephasesas shown in �gure 4.1,

are often grouped into a \fron t-end" and a \back-end". The front-end consistsof phases

that depend primarily on the sourcelanguageand are largely independent of the target

machine. This includes lexical and syntactic analysis, the creation of the symbol table,

semantic analysis,and the generationof intermediate code. The front-end can perform a

certain amount of codeoptimization aswell. The front endalsoincludesthe error handling

functionality that goesalong with each of thesephases.

The back-end includes the phasesthat depend heavily on the hardware architecture

of the target machine. Generally, the back-end doesnot depend on the sourcelanguage,

but instead on the speci�cation of the intermediate languageand the architecture of the

target hardware. The back-end normally includescode optimization and code generation,

together with necessaryerror handling and symbol table operations.

It hasbeena commonpractice to take the samefront-end of a compiler and rewrite its

associated back end to createnewcompilersthat runs on di�eren t machines. For example,

IBM VisualAge Smalltalk product family contains versionsfor many platforms including

Windows, OS2, AIX, Solaris,Netware, HP-UX, and Linux. It is also popular to compile

several di�eren t languagesinto one common intermediate language,and then reusethe

sameback-end for the particular target. Software architects of a compiler systemneedto

exercisecareful designto balancethe interfacesand dependenciesbetweenfront-end and

back-end to easecompiler porting
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Figure 4.1: Components and Phasesof Compiler

4.2.2 GCC Conceptual Arc hitecture

The conceptualarchitecture of a software systemis the software designer'smental model

of the overall system structure, including the decomposition of the system into subsys-

tems, and the dependenciesbetweensubsystems.The conceptualarchitecture provides a

suggestedor idealizedsystemstructure to help us understand the enormousinformation

provided by the program sourceand extracted low level architectural facts [7]. Concep-

tual models are usually created using the following information: directory structure and

grouping of �le names,graph layout, related documentation, build process,organization

structure of project group, and sourcecode comments.

Weusedthe discussionof modernprogramminglanguagecompiler[2] and existingGCC

documentation [47] to create the following conceptualarchitecture for a modern portable

multi-target multi-language compiler, in �gure 4.2. The major components of our GCC

conceptualarchitecture include:

� Driver is mainly an interface between GCC and the user. It also coordinates the
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Figure 4.2: ConceptualArchitecture of GCC and its Components

execution of various compilation phaseswithin GCC (and later, outside GCC). It

performsthe following tasks:

{ Interprets the commandline parameters.

{ Determineslanguagetype basedon �le namesu�xes, then choosesappropriate

languagecompiler and utilit y program to run, the parametersto run with, and

initites executionof the compile.

{ Converts commandline parametersaccordingto a formal speci�cation language

called \specs". The \specs" languagede�nes rules such as: if gcc is called with

option `-x', then call the compiler or utilit y program with option `-y'. This

e�ectiv ely createsa uni�ed entry point for all languagecompilersin GCC family.

� Preprocessor implements the preprocessordirectives, such as include and macro.

It also removes comments. The result is clean source code with line-numbering

directives,which the rest of GCC subsystemsmay usein warning and error messages.

� LanguageCompiler includesboth the languagefront-ends and a part of the target

machine back-end. It performslexical analysis,syntactic analysis,semantic analysis,

generatingintermediate code as well as someoptimizations at the RTL level.
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� Code Generator translates the intermediate code into assembly code for the target

machine.

� Assembleris not part of the GCC distribution, but is is usedby GCC driver \gcc".

It producesrelocatable machine code that can be passeddirectly to linker.

� Linker is also not part of the GCC distribution, but is usedby GCC driver "gcc".

It speci�es all object �les, the location of libraries and links program.

GCC is a large software systemwith half a million lines of commented code (version

2.7.2.3). In this section,we concentrate on the architecture of LanguageCompiler subsys-

tem, whoseconceptualarchitecture is shown in �gure 4.3.
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RTL

Generator


Scanner
 Optimizer


Repository


Control Flow


Figure 4.3: ConceptualArchitecture of LanguageCompiler

There are six lower-level subsystemsinside the LanguageCompiler subsystem. The

scannerreadsthe input �le from the preprocessorasa string of characters,and recognizes

a stream of words and symbols, called tokens. The tokens output by the scannerare

input to the parser, which recognizesthe phrase structure of the source languageand

builds an abstract syntax tree (AST) to pass on to the semantic analyzer. Semantic

analyzeraddsattributes to the AST nodesaccordingto the semantic analysisresult. Then

the AST is passedon to the RTL generator. The intermediate languagerepresented in

RTL format will go through various level of optimization by the optimizer before �nally

beginningemitted from LanguageCompiler subsystemto CodeGeneratorsubsystem.Data
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structures and related operations that implement token, AST, and RTL are put in the

repository subsystem.

In this chapter, we refer to software architecture asthe organizationof software system

with programentities such assubsystem,�le, and function. It alsodescribesthe dependen-

cies (control 
o w, data reference,and function declaration and de�nition) betweenthese

entities.

4.2.3 Concrete Arc hitecture of GCC

The Concretearchitecture shows the implementation model of the systemstructure pro-

vided from software reverseengineeringtools and human interpretation.

The concretearchitecture is GCC is created in the following steps. First we extract

architecture facts from the sourcecode. Then we abstract the lower level facts to the

architecture level. Eventually the implementation model is mapped to the conceptual

model sothat wecancomparethe similarities and di�erencesbetweenthe designer'smental

model and the actual systemimplementation.

The concretearchitecture of GCC version 2.7.2.3shown in �gure 4.4 was generated

using the software comprehensiontool suite PBS. It shows the \calls" relations and \data

reference"relations betweenthe systemcomponents of GCC in its implementation.
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Figure 4.4: ConcreteArchitecture of GCC
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The concretearchitecture of the LanguageCompiler subsystemis shown asa call rela-

tion graph in �gure 4.5, and a data referencerelation graph in 4.6.
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Figure 4.5: ConcreteArchitecture of LanguageCompiler - Call Relation
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Figure 4.6: ConcreteArchitecture of LanguageCompiler - Data Reference
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4.3 Related Research Work on GCC

GCC has beenusedas a casestudy in several research papers, especially by the SWAG

group at the University of Waterloo. In this section, we will summarize some of this

research, which covers the GCC sourcecode sizegrowth, its build-time behavior, and its

maintenanceevolution using dominancetree. We discusstheseresearch works as they aid

in understandinghow GCC hasevolved over time.

4.3.1 GCC System Size Gro wth

Godfrey and Tu studies the systemgrowth history of GCC over 10 yearsof releases[52].

The major result is that the growth of GCC is increasedby stepsasshown in Figure 4.7.

Within the sameproject branch, the growth is smooth and slow. However, betweenproject

branches, for example, between GCC 1.x and GCC 2.x, or between Gcc 2.x and EGCS

1.x, the size increaseddramatically. There are also releasesfrom di�eren t branches that

overlap in their releasesdate. For example, the last GCC 1.x release,1.42 was released

several months after the o�cial releaseof GCC 2.0. GCC 2.8.x was also releasedat the

sametime as EGCS releases.

This meansthat several GCC releaseswere developed at the sametime. This �nding

correspondsto our reviewof GCC development history. Releaseare maintained mainly for

stabilit y and bug �xing within releasebranches,while new architecture are experiencedby

creating a new releasebranch such as GCC 2.x and EGCS.

This �nding alsocontrasts with the fastergrowth rate of someother opensourcesystems

such as Linux kernel and VIM text editor. The development of Linux kernel and VIM

adopt a more de-centralized collaborative approach, whereone personacts as the project

coordinator (Linus Torvalds for Linux kernel and Bram Moolenaar for VIM), and many

other developers from all over the world are contributing code to the systemcontinuously.

As the result, the time intervals betweennewreleasesfor thesetwo projects arevery short.

On the contrary, GCC has adopted a more conservative development model. The key

developers of GCC are all from Cygnus, and the project is coordinated by FSF. Outside

development concentrates mostly on bug �nding and compiler porting. This conservative

approach attributes to the slower system growth rate of GCC within the samerelease
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Figure 4.7: SystemGrowth of GCC Releases
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stream. On the other hand, the parallel developingnature of opensourcesystemattributes

to the suddengrowth of GCC systemsizebetweendi�eren t releasestreams.

4.3.2 GCC Build-Time Behaviors

GCC exhibits interesting building behavior, including bootstrapping and build-time code

generation,as discussedby Tu and Godfrey [53].

Bo otstrapping
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Figure 4.8: GCC Bootstrapping Build

The build-time behaviour of GCC during bootstrapping is shown in Fig 4.8. During

the bootstrapping process,three di�eren t GCC compilersarebuilt. The �rst oneis built by

the default systemC compiler, and the remaining two are built by GCC itself. In all three
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builds, the samesource�les are compiled. Three copiesof the GCC compiler executables

GCC are created at di�eren t time and each but the last is immediately usedto compile

for the next phase.

Build-time Code Generation

In GCC, the RegisterTransferLanguage(RTL) is an intermediate representation usedto

represent the target system'scodeafter parsing,similar to Java byte code. However, unlike

Java bye code, RTL is hardware dependent. The speci�cation of RTL and the portion of

sourcecode that operateson RTL are generatedat build time, using machine description

information and collectedsystemparametersfrom the GNU configure . The main bene�t

of having a target-dependent RTL representation is that we can immediately generatethe

target machine language(assumingan in�nite number of registers),but in a way that the

compiler canunderstandand manipulate. Hardware-dependent optimizations alsooperate

on this intermediate format, and only valid instructions for the particular machine are

generatedas the result of all passesof transformation, for RTL has built-in knowledgeof

target CPU architecture.

RTL Generator   


Optimizer   


Parser   


Scanner   


Semantic   

Analyzer   


Subsystem   
 Call Dependency   
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... ...   
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Figure 4.9: GCC Build-Time Code Generation- GeneratedCode
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Figure 4.9 shows a portion of the code architecture view of GCC 2.7.2.3with \holes"

(dashedboxes) that represent the missing sourcecode �les. Both the core compiler sub-

systemand code generatorsubsystemcontain the RTL manipulation code that is missing

from the distribution. The internal code architecture of the core compiler subsystemis

illustrated in Fig. 4.9.

The missing�les in the corecompiler subsystemare generatedat build-time from code

templates by sourcecode generators.3 The procedureis explainedhere and illustrated in

Fig. 4.10with a build view architecture diagram.
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Figure 4.10: GCC Build-Time Code Generation- Code GenerationProcedure

1. First, the (build-time) sourcecode generatorsarecompiled;the sourcecode for these

generatorsare contained within �les whosenamesbegin with gen. The result is a

set of executableprograms.

3The build-time sourcecode generatorsshipped with the GCC sourceshould not be confusedwith the
object code generator subsystemof GCC, which is a standard component of any compiler.
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2. Next, thesecodegeneratorsareexecutedin sequence.They take machine description

�les for the target machine as input. The machine description �les are picked by

configure . The output is a collection of C source�les. Thesegenerated�les have

namesthat begin with insn . TheseC �les are usedto �ll the \holes" in the code

view of corecompiler subsystem.

3. Finally, the source�les to build a working GCC are all available. We now compile

the code from the sourcedistribution together with build-time generatedcode, and

link them together to createthe GCC compiler system.

Thus, the build-time architecture shows how the GCC system\�lls in the gaps" of the

code view of the shipped sourcecode that were(intentionally) left by the GCC developers.

4.3.3 Dominance Tree Analysis of GCC Evolution

Burd and Munro usedominancetrees [10] as discussedin Chapter 2 to track the change

in maintainabilit y from GCC v2.5.4 to GCC 2.8.0. They use the percentage cumulative

changeof strong to the direct dominancerelations against direct to the strong dominance

relations as the code maintainabilit y index. They discovered that the dominancerelation

index dropped to negative from v2.5.5 to v2.7.0,and continuing through to version2.7.2.

Then, the index jumped dramatically to positive at version2.8.0. They hypothesizedthat

GCC 2.7.0 added many new features, thus decreasingthe maintainabilit y as developers

wereburier writing new code than �nding bugsin existing code. On the other hand, GCC

2.8.0was planned as a maintenancerelease,which meansfew featuresare added,as most

activit y involved �xing existing bugs. They later on con�rmed thesehypothesisfrom the

interviews with the main developersof GCC.

4.4 Elab oration of Research Questions On GCC Evo-

lution

After we reviewed the GCC project history, and its software architecture, we have some

questionsabout how the software architecture of GCC hasevolved during its long history
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of 15 years. New programmerswho want to contribute to the development of GCC might

alsofacethesequestions.In this section,we elaborate on thesequestions,and demonstrate

how BEAGLE can be usedto explore the answers.

� The EGCS project played an important role in the life of GCC project. In EGCS,

a brand new architecture was designed.One of the immediately perceivable results

of such changesis that EGCS has a totally di�eren t sourcedirectory structure and

naming schemefor source�les. Traditional architectural comparisonmethods that

detect new or deleted program entities or relations acrossreleaseswill fail because

they treat every entit y and relation in EGCS releasesas new. Since there is no

commonprogram structure betweenclassicGCC and EGCS, they losetrack of what

has not beenchangedfrom GCC to EGCS. So our �rst research question is to �nd

out how di�eren t architecturally EGCS really is from GCC, that is, how much of

what appearsto be new is actually just a reformulation or renaming of preexisting

program elements.

� Rearchitecting activit y involves changesto the system structure at the subsystem

level and program level. On the other hand, refactoring is about restructuring pro-

gram sourcecode at the �le level and function level. Given the experimental nature

of EGCS project, we are interestedin knowing how much the EGCS software archi-

tecture haschangedduring its project development period. We are alsointerestedin

comparingthis result with that of stable GCC releases,such as GCC 1.x releasesor

GCC 2.x releases.SinceEGCS is an experimental project, onewould expect that it

would have a di�eren t changecharacteristicsfrom thoseof production releases,such

as the extend of changefor each new release,which subsystemsreceive most of the

changesand what typesof changes.

� During the long history of GCC development, there had beenmany e�orts to rearchi-

tect the system,and at lower level, to refactor modules. So our next question is to

discover those undocumented rearchitecting or refactoring actives. Refactoring is

one common practice of \p erfective maintenance" at the low level, where modules

are restructured for easiermaintenance and comprehension. At the higher level,

rearchitecting e�orts reorganizethe software structure at the subsystemlevel to add
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important new features,or to satisfy other designconcerns. In many Open Source

Software projects, theseactivities are often neglectedin the releasedocument, which

placesmore emphasison new featuresand bug �x.

� We discussedpreviously that di�eren t build con�gurations will a�ect the softwarear-

chitecture that is createdby the build processes.SinceGCC supports many program

languages,we would like to know how much of thesecompilerssharecommandcode

modules,and how the GCC front-end systemis organizedto support each language.

To be speci�c, we would like to comparethe architecture of GCC with only the C

compiler built-in, with those GCC architectures that include support for all of the

GCC compilers(C, C++, Objective C, Java, Chill, and Fortran as in GCC 2.95.2).

� We are also interestedin the distribution of the development e�ort amongdi�eren t

subsystemsfor each releases,and for a particular subsystem, the distribution of

maintenance e�ort acrossreleases. This information assistsus to understand the

development planning of successfulsoftware project in the past, so that we could

apply what we learnedin planning and budgeting future releases.

In the following sections,we will adopt a tutorial style of presentation to show how

BEAGLE can be usedto answer the above questions. At the sametime, we will present

somediscoveriesabout the evolution of GCC.

4.4.1 From GCC 1.0 To GCC 2.0

As we discussedin the sectionson background and history of GCC, it was a signi�cant

improvement of GCC to evolve from version1.x to 2.x, asa C++ compiler was integrated

with the system, a new back-end that can target more hardware platforms, and many

other Improvements weremade. In this section,we will demonstratehow to usethe basic

architecture comparisonfacility provide by BEAGLE to �nd changesmade to the GCC

architecture when it evolved to a new major release.
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Select Comparison Options

First, we click on the ArchitectureEvolutionslink in the menu frame on the left of the

screento enter the ComparisonOption window, wherewe would selectwhich GCC releases

to investigate, what is build con�guration of thesereleases,and which releaseshould be

usedas the reference(basepoint of all the comparisons).

In this example,we selectGCC release1.39as the representativ e releasefor GCC 1.x,

and GCC release2.0 as the �rst GCC 2.x releases.To fully understand the architecture

di�erences betweenthesetwo releases,we needto perform two comparisonsin BEAGLE.

In the �rst comparison,we set the newer version 2.0 as the reference,so that we could

observe all the new entities and relations that are added new to GCC 2.x architecture.

In the secondcomparison,we set the earlier version1.39 as the reference,so that we can

observe all the entities and relations that are to be discardedfrom the older architecture.

Figure 4.11 shows the screenwhere we perform the �rst comparison. We choose

GCC 2.0 as the referencerelease,and the \ALL" con�guration option that includes all

the supported GCC compilers. For the secondcomparison,we only need to changethe

selectionof show the software architectureof from newest releaseto oldestrelease, and we

will have GCC 1.39as the referencerelease.

Compare Arc hitecture: Overall System

After clicking on the Submit button, we examinethe comparisonresult screen. It shows

the architecture di�erences betweenthe two selectedreleasesat the subsystemlevel. The

diagram on the top of �gure 4.12 shows results for the comparisonwith GCC 2.0 as the

reference.Red entities and relation arrows are unique to GCC 2.0, which meansthey were

addedto the newer architecture. Greenentities meansthe components themselvesexist in

both releases,and they contain newly addedentities inside. Cyan color entities are those

that remain unchangedin GCC 2.0.

The diagramat the bottom of �gure 4.12shows the query result whenwe selectedGCC

1.39asthe referencerelease.The blue entities and relation arrowsareuniqueto GCC 1.39,

which meansthey will be deleted from the newer GCC 2.x architecture. Green entities

exist in both releases,and they contain subcomponents that are alsodeletedlater in GCC

2.0 too. Cyan coloredentities are thosethat remain unchanged.
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Figure 4.11: Architecture of GCC 2.0 Comparing to GCC 1.39- SelectionScreen

By comparing the two diagrams, we get the initial impression that GCC 2.0 added

many more new program entities and relations comparing to GCC 1.39 than the entities

and relations that wereremoved. This �nding agreeswith the generalbelief that software

always grows larger in size. GCC 1.39 contains 70 source�les, while GCC 2.0 has 126

source�les. The systemalmost doubled in size.

Comparing Subsystem Arc hitectures: Parser

Now we want to zoom into the compilersubsystemto seehow its architecture haschanged.

Click on the Compiler.ss icon to expand its branch in the system structure tree, all

the secondlevel subsystemscontained in compiler subsystemwill be shown, along with

their changestatus. The architecture landscape frame alsoupdatesto display the current

subsystem.Becausethe compiler subsystemdoesnot directly contain any source�les, we

continue to zoom into the Parsersubsystemunderneathto seehow it haschanged.

The screenshoton the top of �gure 4.13shows the architecture landscape of GCC 2.0

comparing to the referencereleasev1.39. It highlights the components and relations that

are new to the architecture, and thosecontaining new sub-components.
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Figure 4.12: Architecture Comparisonof GCC 2.0 and 1.39- Top Subsystems



94 On Navigation and Analysis of Software Architecture Evolution

From the summary displayed in the information frame, we can seeout of 21 �les con-

tained in Parser subsystem,17 of them are new. From the structure tree frame on the

left, we can observe that most \red" �les have \c", \cp", or \ob jc" as su�x. Recall the

history of GCC, we know that GCC 2.0 is the �rst releasethat integrated three language

compilers| C, C++ and Objective C | into one GCC distribution. As a consequence,

GCC developers designeda new Parser subsystem,where modules that handle di�eren t

languagesare di�eren tiated by the su�x in their �le names.

The screenshotat the bottom of �gure 4.13 shows the architecture of GCC 1.39com-

paredto referencereleasev2.0. It highlights the components and relationsthat weredeleted

from the new GCC 2.x architecture, and those contain sub-components that becameob-

solete. Only one �le, c-parse.tab.c will be deletedfrom parsersubysystem. Two other

�les, c-decl.c and fold-const.c also have functions that no longer exist in the newer

release.

Comparing Subsystem Arc hitectures: RTL Generator

The RTLGenerator subsystembelongsto the Compiler subsystem.In theory, it shouldbe

the last stageof compiler front-end, as the output of this stageof compilation should be

the intermediate representation in RTL format. However, in practice, this subsystemalso

contains a small portion of the compiler back-end, becausethe RTL format usedby GCC

is partially CPU architecture dependent. As mentioned before,all three parsersin GCC

(C, C++, and Objective C) generatetheir intermediate code in RTL format, sowe expect

very little changewill be made to the old GCC 1.x code that generatesand manipulates

RTL code from the parsetree. On the other hand, becauseGCC 2.x is designedto provide

better support for RISC CPUs,wealsoexpect somenewcodeto beaddedto this subsystem

so that RTL code can be generatedand then optimized at early stageby consideringthe

special characteristicsof RISC architecture.

The screenshotat the top of �gure 4.14 shows what has beenadded to GCC 2.0. As

we expected, few completely new �les were added. Someof them are speci�c to C++

compiler, such as cp-expr.c and cp-init.c . The majorit y of the additions occurred at

the function level, as many new functions are introduced. We believe thesenew functions

extendsthe way RTL code is generated,so that GCC 2.x can generatecode for a much
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Figure 4.13: Comparisonof GCC 2.0 and 1.39- Parser
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Figure 4.14: Comparisonof GCC 2.0 and 1.39- RTL Generator
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broader rangeof CPU platform.

The screenshotat the bottom of �gure 4.14shows all source�les within the RTLGen-

erator subsystemfrom older GCC 1.x are still kept in GCC 2.0. However, many �les have

obsoletefunctions deletedfrom the older architecture.

Comparing Subsystem Arc hitecture: Code Generator

The CodeGeneratorsubsystemis oneof the most important back-endsubsystems.Assem-

bler code that is speci�c to target CPU is emitted at this stage. SinceGCC 2.0 supports

many target CPUs, we expect this subsystemin GCC 2.0 architecture will have many new

�les. Figure 4.15veri�ed our expectation, as the number of �les in this subsystemalmost

doubled in GCC 2.0, and only two �les gnulib.c and gnulib2.c are moved out of the

system. Our investigation suggestedthat the removal of thesetwo �les is related to the

new way in which GCC 2.0 handlescommandlibraries. It doesnot mean the removal of

major featuresfrom the subsystem.

4.4.2 From GCC 2.x To EGCS 1.x

There aremany di�erencesbetweenGCC releasesand EGCSreleases.For example,EGCS

releasesreorganizedtheir sourcedirectory structure, and alsoadopteda new naming con-

vention for the source �les. These changesmake conventional architecture comparison

methods, which identify changed and unchanged program entities by comparing their

namesand directory location in both releases,no longer applicable. Thesemethods �rst

chooseonereleaseasreference,and then all entities in the other releasethat have di�eren t

nameand location in the sourcedirectory are treated aschangescompareto the reference.

If the two releasesunder comparisonhave very di�eren t sourcestructure, conventional

methods will treat everything in the later releaseas new entities.

Figure 4.16shows the comparisonresults by selectingArchitectureEvolutionfrom the

main menu, which is a \name and location based" comparisonmethod as used in our

previouscomparisonof GCC 2.x and GCC 1.x. As we can see,every program entit y (�le

and function) in the systemstructure tree and landscape diagram is red, which meansthey

are falsely identi�ed as \new" in EGCS 1.0.
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Figure 4.15: Comparisonof GCC 2.0 and 1.39- Code Generator
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Figure 4.16: Comparisonof EGCS 1.0 and GCC 2.7.2.3
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On the other hand, with Origin Analysis we can analyzewhether a particular function

has a correspondent from the previous release,or it is newly written for the later release.

If there a corresponding function is found in the previous releasethat either has similar

featuresor similar dependencieswith this function, we can related thesetwo functions, as

it demonstrateshow this particular function hasbeenmoved inside the program structure

as the software architecture evolvesinto the new release.

We can alsoperform Origin Analysis at the �le level. This will examineevery function

de�ned in a given �le, then count how many functions already exit in the previousrelease,

asGCC 2.7.2.3in this example,and how many functions are new in EGCS. If majorit y of

the functions camefrom a single�le in GCC 2.7.2.3,we can concludethat this new �le in

EGCS 1.0 are inherited from that �le in GCC 2.7.2.3.

Figure 4.17shows the result of a sampleOrigin Analysis requeston �le gcc/c-decl.c .

Among 70 �les de�ned in this �le, 41 functions canbe traced back to their origin functions

de�ned in the previousGCC releaseby using Bertil lonageAnalysis. With no exceptions,

all the original functions werede�ned in �le c-decl.c of GCC 2.7.2.3.

Starting from EGCS 1.0, many source �les that directly contribute to the building

of the C/C++ compiler were moved to a new subdirectory called /gcc . To analyze the

architecture changeat this magnitude (from GCC to EGCS), Bertil lonageAnalysis has

beendemonstratedto be more e�ectiv e than DependencyAnalysis. DependencyAnalysis

assumesthat when we analyzea \new" function, its callersand calleesfrom both current

releaseand the previous releaseshould be relatively stable, which means most of the

functions that have dependencieson this particular function should not also renamedor

related in the newer release. However, this is not the casewhen completely di�eren t

software architecture is adopted in EGCS 1.0 comparingthat of GCC 2.7.2.3,and most of

the �les and functions are either renamedor related in the directory structure.

In our casestudy, we have performed Origin Analysis on every source�le of EGCS

1.0, which attempts to locatedpossible\origins" in its immediatepreviousreleaseof GCC

2.7.2.3. The goal is to understand what portions of the old GCC architecture is carried

over to EGCS, and what portion of EGCS architecture represents the new design. This

test takes 3 days to run on a Dual Pentium II I 1GHz workstation. Here we present the

result for two representing subsystemsof GCC: Parserand Code Generator. One is from
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Figure 4.17: Origin Analysis on EGCS 1.0
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compilerfront-end, and anotherfrom the back-end. Both of them areessential to the EGCS

software architecture, so their evolution story is representation of entire EGCS system.

There are 30 �les in the parser subsystem. Half of them are header �les, or very

short C �les that de�ned macros. We will not considerthese�les in the analysis. Of the

remaining 15 �les, we have three �les consideredto be old GCC �le carried over from

v2.7.2.3. We say �les are \old" if more than 2/3 of functions de�ned in the �le have

\origin" in the previous release,on the other hand, \new" �les should have lessthan 1/3

of carried over functions. In the parsersubsystem,we have seven of such \new" �les. All

the other �les are consideredas \half-new, half-old", which numbered�v e. Overall, out of

848functions de�ned in the parsersubsystemof EGCS1.0, 460are considered\new", and

388 are considered\old". The \new" functions counted as 56 percent of total functions.

For a new releaseof compiler software, this percentage of newly designedcode is really

high, esp. for a subsystemthat is basedon mature techniquessuch programminglanguage

parser. Table 4.1 lists the completeresult.

File Name Total Func New Old ChangeType Origin

gcc/c-aux-info.c 9 0 9 Mostly Old c-aux-info.c

gcc/fold-const.c 44 15 29 Mostly Old fold-const.c

gcc/objc/objc-act.c 167 17 150 Mostly Old objc-act.c

gcc/c-lang.c 16 14 2 Mostly New c-lang.c

gcc/cp/decl2.c 57 50 7 Mostly New cp/decl2.c

gcc/cp/errfn.c 9 9 0 Mostly New None

gcc/cp/except.c 25 20 5 Mostly New cp/except.c

gcc/cp/method.c 30 26 4 Mostly New cp/method.c

gcc/cp/pt.c 59 57 2 Mostly New cp/pt.c

gcc/except.c 55 52 3 Mostly New cp/except.c

gcc/c-decl.c 70 29 41 Half-Half c-decl.c

gcc/cp/class.c 61 31 30 Half-Half cp/class.c

gcc/cp/decl.c 134 84 50 Half-Half cp/decl.c

gcc/cp/error.c 31 16 15 Half-Half cp/error.c

gcc/cp/search.c 81 40 41 Half-Half cp/search.c

Table 4.1: Origin analysisresults on EGCS 1.0 | parser

Table 4.2 lists the result of the Origin Analysis on the Code Generator subsystem.
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Out of the �v e �les that contain function de�nitions, three �les are sonsidered\new" by

the analysis,and the rest two are considered\old". Overall, 84 percent of the functions

de�ned in Code Generator subsystemare newly written. This percentage is much higher

than the Parser subsystem. From these results, we can concludethat EGCS 1.0 has a

signi�cant portion of the sourcecode that were newly developed comparing to the GCC

releasethat it is supposeto replace,especially for back-end subsystems.

File Name Total Func New Old ChangeType Origin

gcc/cplus-dem.c 36 36 0 Mostly New None

gcc/crtstuff.c 5 5 0 Mostly New None

gcc/insn-output.c 107 95 12 Mostly New input-output.c

gcc/final.c 33 20 13 Half-Half final.c

gcc/regclass.c 20 12 8 Half-Half regclass.c

Table 4.2: Origin analysisresults on EGCS 1.0 | code generator

4.4.3 Stable Releases vs. Dev elopmen t Releases

GCC Evolution During EGCS 1.x Releases

To comparethe di�eren t evolution patterns of GCC stablereleasesand EGCSexperimental

releases,we �rst issuea query to BEAGLE as shows in Figure 4.18.

From the main menu, we choosethe selectionof ArchitectureEvolution, and then from

the query frame on the right, we selectthe radio button Compare Multiple Releases. Since

we are going to view the evolution history of the EGCS project, we selectall of the EGCS

releasesfrom EGCS 1.0 down to EGCS 1.1.2, which contains seven releasesin total. We

want to seehow entities and relations have been added to the system, so we select the

option Show the landscape of newest release. Then click on the Submit button to execute

the query.

Figure 4.19 and Figure 4.20 show the query results. Figure 4.19 presents the EGCS

evolution history for Optimizer subsystemand Code Generatorsubsystem,both of which

are essential components for GCC compiler back-end. Figure 4.20 shows the evolution



104 On Navigation and Analysis of Software Architecture Evolution

 


Figure 4.18: Evolution of EGCS Releases- Make Query

patterns for Parsersubsystem,which is oneof the most important subsystemof compiler

front-end.

In �gure 4.19, we can observe that in the Code Generator subsystem,there was only

one new �le gcc/frame.h (in red icon) added at EGCS 1.0.1 during the entire EGCS

project, and there are four �les (greenicon) having new functions de�ned within it. In the

Optimizer subsystem,there are three new �les added at various releases,as gcc/gcse.h

added at EGCS 1.1, gcc/global.c added at EGCS 1.0.1, and gcc/haifa-sched.c in

EGCS 1.1. Many other �les contain new functions inside of them, aswe can seeeight �les

are shown in greenicon in the subsystem.

From the �les branched out from Optimizer subsystem,we can observe that there were

many new �les addedduring the life of EGCS. This �nding is expected,as EGCS project

emphasizedtrying out many state-of-art optimization and machine instruction scheduling

algorithms, thus this will certainly introducenew�les and newfunctions to this subsystem.

Figure 4.20 shows the detailed evolution information for the Parser subsystem.Com-

paring to the evolution history of Optimizer and Code Generatorsubsystems,there are no

new �les addedto the Parsersubsystemduring the life of EGCS project. However, many

of the �les had new functions de�ned within it.
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Figure 4.19: Evolution of EGCS Releases- Code Generatorand Optimizer
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Figure 4.20: Evolution of EGCS Releases- Parser
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The reasonfor this �nding is obvious if we understandthe history background of GCC

and EGCS.When EGCSproject started, the languagefront-end of GCC compilerhad been

very mature. The extra featuresneededat languagefront-end included support for new

ANSI C++ features,which canbe achievedeasilyby de�ning newfunctions insideexisting

source �les. This explains why in the Parser subsystem,the number of new functions

dominates the number of new �les. However, this is not the casefor compiler back-end,

such asCode Generatorsubsystem,and Optimizer subsystem.New optimizing techniques

and new scheduler algorithms were usedextensively in EGCS releases.This meansextra

optimization cyclesare neededat the back-end. With pipe-and-�ler architecture style, one

processingstep always corresponds to one code module [46]. As the result, new source

code modules(�les) areaddedat the back-end subsystemsto support the extra optimizing

cycles.

BEAGLE alsoallowsus to investigatethe changehistory of individual �les or functions.

In the information frame, if we scroll the pagedown, we can seethe comparisonmetrics

for selection�le or function. If we click on the link view�le history or viewfunctionhistory,

BEAGLE will show a table listing the entire history of selected�le or function in term of

its major metrics. By observingthe changepattern of its metrics, we will have someidea

about how this �le or function hasbeenevolved during its entire life.

Table 4.3 shows the evolution history of �le gcc/combine.c from Optimizer subsystem

during EGCS releases.From the table, we can observe that the sizeof this �le increased

three times during EGCS project at 1.0.1, 1.1, and 1.1.2. The reason for secondsize

increaseat EGCS 1.1 is causedby new functions de�ned within this �le. The functions

within the �le had not changedmuch structurally, as the averagecyclomatic complexity

and averagefan-out metric for all de�ned function remainedconstant.

Table 4.4 shows the evolution history of a selectedfunction " add method" in EGCS

releases.This function is de�ned in �le class.c and part of the C++ compiler. Its job

is to add a method to the type that de�ned by the current class. We can observe that

this function kept the sameduring EGCS 1.0.x releases,then there is a major changeat

EGCS1.1, and later remain unchangedthroughout EGCS1.1.x releases.The changeitself

is very interesting, as the length of the function decreaseby 16 lines, as well as all other

complexity metrics decreasein value. After we have investigated the sourcecode of this
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EGCS Release Code Comment Func Avg. Cycl. Avg. Fan-out MI

1.0 7279 2740 58 28 23 -30

1.0.1 7281 2742 58 28 23 -30

1.0.2 7281 2742 58 28 23 -30

1.0.3 7281 2742 58 28 23 -30

1.1 7532 2799 59 28 23 -30

1.1.1 7532 2799 59 28 23 -30

1.1.2 7569 2814 59 28 23 -31

Table 4.3: Changehistory of �le gcc/combine.c

function by following the links provided in the web page, we found out that in EGCS

1.0.x, one of the function parameter method (de�ned as a pointer to data type tree ) is

not useddirectly in the function body. At the beginning of the function, more than 10

lines of code is consumedto make a copy of data structure pointed by method to decl .

According to the comment, the purposeof this step is to \b e sure that we have exclusive

title to this method's DECLCHAIN". After this point, all the referenceto methodis replaced

by decl . In EGCS 1.1.x, this extra copy procedureis eliminated, and all the references

to decl are changedback directly to the function parametermethod. We suspectedit was

causedby changesmadeto other parts of the system,especially to the tree data structure.

This explains the shrinkage in the code sizeof this function in EGCS 1.1x comparing to

EGCS 1.0.x. Also becausereferencesto local variable and function parameter generate

di�eren t result in the calculation of many composite complexity metrics, we have di�eren t

S-Complex,Albrecht and Kafura metric valuesfor thesetwo function de�nitions.

GCC Evolution During GCC 2.x Releases

Now that we have examinedthe evolution of experimental EGCS releases,let us compare

it with those of stable production releaseof GCC from 2.0 to 2.7.2. Our goal is to com-

pare the di�eren t evolution strategy adopted by the project planner, and how they treat

experimental releasesand stable releasesdi�eren tly.

Figure 4.21 shows the evolution history of GCC from 2.0 to 2.7.2. In this particular

screen,only new entities are presented. For Optimizer subsystem,we observe that only
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Figure 4.21: Evolution of GCC 2.x Releases- Code Generatorand Optimizer
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EGCS Release Code Comment Cycl. SComplex DComplex Albrecht Kafura

1.0 106 16 11 144 5.4 408 24336

1.0.1 106 16 11 144 5.4 408 24336

1.0.2 106 16 11 144 5.4 408 24336

1.0.3 106 16 11 144 5.4 408 24336

1.1 90 13 10 121 5.5 381 20736

1.1.1 90 13 10 121 5.5 381 20736

1.1.2 90 13 10 121 5.5 381 20736

Table 4.4: Changehistory of function add method

one �le was introduced new during the long releaseperiod. All other addition happened

beneath �le level. It contrasts to the pattern of EGCS releasesthat we just investigated,

wheremany new �les are introduced.

For the RTL Generator subsystem,the situation is a little di�eren t. Many new �les

were introduced at di�eren t releasesin this period. When we pay closer attention to

the �lenames of thesenew �les, we discover that many of them are header�les, such as

bytetype.h , bi-run.h , and bc-typecd.h which de�ne several macrosand data structures

such as C struct and union .

Figure 4.22shows the evolution history of the Parsersubsystemduring GCC 2.x stable

releaseperiod. We can seemany new �les were introduced, especially those �les related

to C++ compiler and Objective C compiler. We can attribute these additions to the

continuous e�ort of GCC development to support three languagesfrom the C family in

one system, and have them work together harmoniously. Also during this long period,

the languagestandardsthemselvesare kept evolving, so it is natural to continually change

the languagefront-end to keep the parser up-to-date. When the EGCS project started,

all three languageswere �nally standardized,so there was no more needto changeparser

element dramatically.

By comparing the evolution pattern of GCC stable releaseswith EGCS experimental

releases,we concludethat exceptsomeother factors, most new code is addedto the stable

releasesin the form of new functions within existing �les, while for experimental releases,

they tend to be in the form of new �les.
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Figure 4.22: Evolution of GCC 2.x Releases- Parser
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4.4.4 Build Con�gurations and GCC Arc hitecture

In this section,we comparethe architecture of GCC 2.7.2 under two di�eren t build con-

�gurations. The �rst one built only the essential C compiler, and the other con�guration

will build all the compilersthat GCC supports.

In GCC, every languagecompiler generatesits intermediate code in RTL format, so

they sharethe sameback-end subsystemsincluding RTL Generator,Code Generator,and

Optimizer. At the front-end, they each have their own scannerand parser subsystem.

Each parser createsa syntax tree directly into the tree format, and later is processedby

the sematicanalyzer. This tree format is identical for all the program langaugesupported

in GCC. The partial treesare then passedfrom time to time to routines that belongsto the

RTL Generatorsubsystemto convert the syntax tree to the RTL format. Soeven though

each langaugecompiler has its own scannerand parser, all the parserscreate parse tree

using the samedata structure as de�ned in the tree.h , tree.c , and tree.def . Joachim

Nadler and Tim Joslingthoroughly discussedthe proceduresto write a newcompiler front-

end for GCC that reusesthe standardparsertree data structure and back-endcomponents

of GCC in [39].

Figure 4.23shows the di�erence betweentwo builds of the Parsersubsystem.All red

icons represent �les unique to the complete build comparing to the C only build. The

purposeof these�les is to support programming languagesother than C. In GCC 2.7.2,

they are C++ and Objective C. By examinethe �lenames of theseextra �le, we �nd out

that they all contain special su�x. For example, textttcp are common su�x for C++

compiler �les, and textttob jc are su�x for Objective C compiler. All other �les that do

not have languagespeci�c su�x such asoptions.h and fold-const.c and core�les for C

compiler such asc-decl.c and c-parse are sharedbetweenthe two build con�gurations.

For the back-end subsystems,such sourcesharing is much more common,as compiler

back-endsare usually program languageindependent. In �gure 4.24that shows the Opti-

mizer subsystemunder two di�eren t build con�gurations, all the �les are sharedbetween

the two build con�gurations (white color �le icons). The only di�erences are dependency

links that are initiated from modules in other subsystems.
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Figure 4.23: CompareC-Only and All Build Con�guration - Parser
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Figure 4.24: CompareC-Only and All Build Con�guration - Optimizer
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4.4.5 Refactoring and Rearc hitecting

In this section,we will demonstratehow to useOrigin Analysis assupported by BEAGLE

to discover undocumented refactoring and rearchitecting activit y in GCC 2.0.

First we click on link AnalyzeChangesin the main menu, then we chooseGCC 2.0 from

the pull-down list, and then click on Submit button. The origin analysis is performed at

both the �le level and the function level. If the user selectsa �le, BEAGLE will perform

Bertillonage analysison all functions that are de�ned within that �le. It will also apply

dependencyanalysison the source�le to detect its possibleorigin �le from the previous

release.If the userselectsa function, both Bertillonage analysisand dependencyanalysis

are performedon the selectedfunction.

In Figure 4.25, we select the �le function.c from the system tree of GCC 2.0, and

the analysisresults are displayed in the frame on the right. This screentells us that there

are 49 functions de�ned in this �le; Bertillonage analysisreturns seven positive matches,

and no matches for the remaining 42 functions. This result reveals that there are even

instancesof refactoring e�orts put into this �le, where functions are moved from their

original location to this �le. In this particular example,they are all from same�le stmt.c

in GCC 1.42.

Tables4.5 shows the result of Bertillonage analysison function assign parms that is

de�ned in �le function.c .

Function File Subsystem

1 build_binary_op_nodefault c-typeck.c Semantic Analyzer

2 assign_parms stmt.c RTLGenerator

3 recog_5 insn-recog.c RTLGenerator

4 store_one_arg expr.c RTLGenerator

5 gen_mulsi3 insn-emit.c RTLGenerator

Table 4.5: Bertillonage analysison function assign parms

Bertillonage analysis correctly �nds the original function. The origin function has

the samename as the \new" function, and it ranks secondin Bertillonage distance. For

dependencyanalysis,wearegivenno result by calleranalysis. However, weget good results

from calleeanalysis,as shown in table 4.6.



116 On Navigation and Analysis of Software Architecture Evolution

 


Figure 4.25: File Level Origin Analysis Example One
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The best candidate function from table 4.6 is " assignparms" in �le stmt.c from

subsystemRTL Generator. In this example, the Bertillonage analysis and dependency

analysisprovide consistent results. Although this is not the casefor every analysis,we still

can observe many positive results on di�eren t new functions.

Callee Function Caller Functions Unique In Previous Version

build_pointer_type Datatype

max_reg_num assign_parms,save_for_inline

move_block_from_reg assign_parms

Bzero strength_reduce, assign_parms, cse_main

reg_mentioned_p copy_rtx_and_substitute

int_size_in_bytes assign_parms

convert_to_mode expand_inline_function

gen_rtx wipe_dead_reg, assign_parms

tree_last assign_parms

get_last_insn emit_jump_if_reachable

Bcopy save_string, assign_parms

expand_expr assign_parms, expand_asm_operands

list_length Commontype, symout_types

emit_move_insn emit_unop_insn

build_decl implicitly_declare

Table 4.6: Calleeanalysison function assign parms

Figure 4.26 is another example that gives good results. We look at a \new" �le

" enquire.c" in the Con�guration subsystem.Bertillonage analysison all the functions de-

�ned in this �le revealsthat among62 functions, 13 functions havebe found to haveorigins

in �le hard-params.c from the previous release,such as function bitpattern , ceil log

and efprop . Function fprop is very interesting. Even though the code feature distance

betweenthis function and its origin from �le hard-params.c is as large as 12519800,our

detection algorithm is still capableto pick them up as perfect match. The remaining 49

functions such asbasic and check defines do not haveorigin functions that provide good

match results. It meansthesefunctions are possiblenewly written for this release.

For dependency-basedanalysis,the caller analysisdoesnot provide correct result. This

is understandablesinceonly 13out of 62 functions are from another �le. The percentageof
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relocated functions are not large enoughto generatethe usual dependencychangepattern

to its caller functions that we can useto detect its origin �le. However, when we analyze

its callees,we get very good result as shown in table 4.7: two out of �v e callee �les of

enquire.c , which are regclass.c and rtl.c , list hard-params.c as one of the missing

�les that no longer have call dependencywith them. This �nding agreeswith the result

from the previousBertillonage analysis.

Callee �le Caller Files Unique In Previous Version

" regclass.c" " hard-params.c"

" cccp.c" " integrate.c", " combine.c"

" rtl.c" " 
o w.c", " loop.c", " print-tree.c", " hard-params.c"

" toplev.c" " symout.c", " c-parse.y"

" gcc.c" " 
o w.c", " c-decl.c"

Table 4.7: Call analysison �le enquire.c

4.4.6 Distribution of Evolution E�ort

In chapter 3, we introduced the technique of using code feature distance (�rst proposed

by Kontogiannis to detect function cloning) in our Bertillonage analysisto match similar

function from the previousreleaseto \new" function in the current releaseasits \origin". In

this chapter, we introducethe experiment resultsof usingthe sametechnique in measuring

the quanti�ed di�erence between consecutive releasesof GCC, and the distribution of

the quanti�ed di�erences amongdi�eren t subsystemsof GCC, especially the distribution

betweenfront-end components and back-end components. We begin with an introduction

of the idea, followed by the experiment result by measuring29 releasesof GCC for over 10

years. Finally, we discussthe feasibility of this approach and possibleimprovements.

The code feature distancebetweentwo consecutive releasesof GCC is measuredin the

following manners:

� If a function (identi�ed by its containing �le directory location, �lename, and function

name) exists in both releases,the code feature distancebetweenthe two version of

the function is calculatedasthe Euclideandistancebetweentheir �ngerprin t metrics.
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Figure 4.26: File Level Origin Analysis Example Two
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� If a function (identi�ed by its containing �le directory location, �lename, and function

name)existsin only onerelease,the codefeaturedistanceis calculatedasthe absolute

Euclidean distancebetweenits �ngerprin t metrics and a imaginary function, whose

�ngerprin t metrics are all zero.

� If a �le (identi�ed by its directory location and �lename) exists in both releases,the

code feature distancebetweenthe two versionsis the sum of all the distancevalues

betweenthe functions de�ned in the �le.

� If a �le only exists in onerelease,the code feature distanceis calculatedas the sum

of all functions de�ned in this �le, which meansthey are all comparedto a null �le

with null functions de�ned.

� The overall code feature distance between two releasesof GCC is the sum of all

distancevaluesof their source�les.

The codefeaturedistancegiveusa rough ideaabout how much di�erence exits between

the sourcecodeof two consecutive releasesof GCC usinga singlenumerical value. Herewe

present someresultsasweapplied this measureto GCC history releases.The measurement

is performedin two dimensions.

The �rst dimension is the distribution of code distance among di�eren t subsystems.

Which subsystemare changedmost for a particular release?This question is commonly

asked by software project leader to budget his limited resourcesfor developing the next

releaseof software system.

Figure 4.27 is a code feature distance chart for GCC release2.0. From the chart,

we can seeat this evolutionary release,subsystemssuch as RTL Generator, Parser, and

Optimizer are most di�eren t from those peersin the previous release.Major changesto

RTL Generatorand Optimizer correspond to oneof the two major newfeaturesintroduced

in GCC 2.0: better RISC CPU support. A much changedParser is the direct result of

the other new feature of GCC 2.0, which is the integration of support for C, C++ and

Objective C into onecompiler system.

GCC 2.8.0 is mainly a maintenancerelease. At the time it was released,the EGCS

project, which was basedon the GCC 2.7.2.3, had already started, so no new features
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Figure 4.27: Distribution of Code DistanceAcrossSubsystems- GCC 2.0
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Figure 4.28: Distribution of Code DistanceAcrossSubsystems- GCC 2.8.0
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were added into GCC 2.8.0. Most development e�ort of 2.8.0 was in code cleaning and

bug-�xing. In �gure 4.28, we can seeParser,RTL Generator,Repository, and Optimizer

received most of the changesin their sourcecode.

The seconddimensionof our measurement is along di�eren t releases.For a particular

subsystem,at what stageof the product life doesit exhibit most activeevolution activities?

Speci�c to GCC system, we expect the scannerand parser to evolve fast in the early

releases,and then stabilize. For back-end subsystem,such as the optimizer and code

generator, we expect to seetheir continuous evolution, especially at later stage of the

project releasehistory. Also, we expect lesscode feature distancebetweenminor releases,

while much more distancebetweenbetweenmajor releases.

Figure 4.29showshow the development of CodeGeneratorsubsystemhasbeenchanged

along the history of GCC releases.GCC 2.0, EGCS 1.0, EGCS 1.1, and GCC 2.95 are

four major milestonereleaseswherethere weresigni�cant changesto the Code Generator

subsystem. GCC 1.42, GCC 2.7.2, GCC 2.8, EGCS 1.0.2, and EGCS 1.1.2 are someof

the maintenancereleasesthat also change the internal structure of the Code Generator

subsystemsigni�cantly.

From thesecharts, we can observe that this method is more suitable to measurethe

changesbetweensoftware releaseswhenit is in stablestage. The condition to usethis met-

ric relieson the assumptionthat very few program entitles (function, �le, and subsystem)

are addedor deletedfrom the systemduring the period that the code feature distance is

measured.For example,the data is moremeaningful for GCC releasesfrom 1.37.1to 1.42,

and from GCC 2.0 to GCC 2.8.1. When GCC experiencedmajor changesto its funda-

mental systemstructure, like the casein EGCS 1.0 and GCC 2.95, this method generate

meaninglessresults, becauseevery function of the releaseis actually being comparedwith

a null function that doesnot exists.

One possible improvement to this simpli�ed model is to create a linear model that

incorporates all factors such as code feature distance, AST (Abstract Syntax Tree) and

LOC in calculating the single-value code distance between two releasesof the software

system. When a function is detected in both releases,code feature distance contributes

more to the calculation. If the function is newly added,or deletedfrom onerelease,LOC

and AST should contribute more to the calculation. To create such model, extensive
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Figure 4.29: Distribution of Code DistanceAcrossReleases- Code Generator
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empirical study is neededto �nd the ideal coe�cien t of all the contributing factors.

4.5 Summary of Observ ations

In our casestudy, we have successfullyinvestigatedthe evolutionary history of the GCC

systemusing the BEAGLE platform and methodologiesintroduced in chapter 3. We are

able to answer many questionson the history of GCC system,especially thoseconcerned

the high level structural changesmade to the GCC during several historical milestone

releasesof GCC and its development branch, EGCS.

Wehavedemonstratedthe e�ectiv enessof our methodologyof integrating the evolution

metrics with visualization techniquesin the processof answering thesequestions.First we

select the history releasesof GCC that we are interested in compare. Then BEAGLE

will present the comparisonresults in a web browser with three di�eren t views. The tree

view summarized the evolution status of di�eren t program components at all levels of

abstraction. The landscape view shows the evolution detail of speci�c GCC subsystem

including the changesof relations betweeninternal subsystemsand modules. The metric

view provides further information about the complexity and structure changehistory of

speci�c �le or function by listing the history valuesof representing evolution metrics.

The new naming schemeand sourcedirectory structure adopted by EGCS | the ex-

perimental releasebranch of GCC | justify the need for Origin Analysis that we have

developed and integrated in BEAGLE. Origin analysis reveals the connectionsbetween

entitles in the new software architecture of EGCS and thosein the traditional GCC archi-

tecture. It can alsobe usedto discover undocumented refactoring activities aspart of the

sourcecode maintenancee�ort in many GCC releases.

Our casestudy alsorevealedsomeinteresting evolution patterns of GCC system. Pro-

duction releases,such asGCC 2.0 to GCC 2.7.2.3,follow a slow but steadyevolution path,

where new modules are added to the system gradually. Experimental releases,such as

EGCS 1.x, took a more aggressive evolution path by rewriting almost half of the system

modules and also adopting a new sourcedirectory structure. Di�eren t GCC subsystems

also exhibit distinct evolution patterns. Subsystemsin the compiler front-end such as

scannerand parserevolved quickly in the early stage,when there weresigni�cant changes
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in the program languagestandard supported by GCC, and alsowhen additional program

languagecompiler was integrated in GCC. The back-end subsystemssuch ascode genera-

tor and optimizer tend to stabilize during, but experiencedquick evolution in experimental

releases,and alsowhen new CPU architectures are supported by GCC.



Chapter 5

Summary and Future Work

5.1 Summary

The main contribution of this thesis is to propose an integrated approach to studying

software evolution, with emphasison the evolution of software architecture and internal

structural changesof program components. The goal is to automate the history data

collection, interpretation, and representation processesso that researchers can conduct

more e�ectiv e empirical studies on software evolution histories. A research platform is

designedand implemented to incorporate evolution metrics, software visualization, and

structural evolution analysistools into a uni�ed environment: the BEAGLE system.

In the beginningof this thesis,we comparethe similarities betweensoftware evolution

and biological evolution. Then we discussedthe motivation for studying software evolu-

tion, and the needfor an integrated platform and new methods to analyzethe structural

changesof software system. In the next chapter, we reviewed the existing works on related

topics, including the \la ws" for software evolution, evolution models basedon software

metrics, and visualization techniquesthat represent the changehistory of software system

in graphics. Then we proposeda framework that includes an integrated research plat-

form and specialized analysis methods for software architectural evolution to overcome

shortcomingsfound in exists research approaches.

Our approach starts with the selectionof appropriate data sourcefor software evolu-

tion study. We choseprogram sourcecode and the extracted architecture facts from the

127
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sourceas the primary evolution data source,supplemented by evolution metrics and ver-

sion control database.We store thesearchived data in a relational database,which serves

as the data repository for BEAGLE. A query interface, implemented in SQL statements,

is provided for applications to accessthe information stored in the data repository, and

perform architecture comparisonand other analysis. Userscan comparethe di�erences

betweenreleasesand investigateevolution patterns in a web-baseduser interface.

Wealsodiscussedthe conceptof Origin Analysis. Origin analysisis a techniqueto relate

\new" program entities such as functions and source�les found in the more recent release

with those entities that existed in the previous release,but are no longer present in the

later release.Theseentities have very similar code featuresand dependencieswith other

program entities. These types of changesare usually causedby system rearchitecturing

and code refactoring activities. We demonstratedtwo methods that match \new" program

entities with their \origins" in the previous release,if they do exit. The �rst method

comparesthe code feature of candidate functions, and choosesthe one with the shortest

distance between the two code feature vectors. The secondmethod analyzesthe change

patterns of functions that have dependencieswith the \new" program entities to �nd out

their \origins".

Webelieveour approach is helpful for the softwaredeveloper who is interestedin under-

standing the evolution history of a software system. The BEAGLE platform demonstrates

that an integrated environment is invaluable tool for answering many questionsrelated to

the evolution of software system,as shown in our casestudy using the evolution of GNU

Compiler Collection asexample. For instance,we discoveredthat GCC exhibited di�eren t

evolution pattern in its experimental releasestream (EGCS 1.x and 2.x) comparing to its

production releasestream(GCC 1.x and 2.x). BEAGLE is alsoable to tell uswhat portion

of the EGCS 1.0 releasesourcecode can be traced back to the previousGCC release,and

what portion is complexly newly developed for this release.

The main contributions of this thesis is summarizedas follows:

� We provided an integrated environment for researchers to conduct empirical stud-

ies on the evolution of software systems. It o�ers many research capabilities such

as evolution metrics, visualization of sourcecode changehistory, peer or group re-

leasecomparison,structural changeanalysis,as well as a power query and browsing
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interface.

� We also developed an analysis technique that tracks the structural changesof the

software code architecture when its directory structure and/or naming scheme for

�les and functions are changed in the newer release. This technique assistsus in

understanding the architectural di�erences and relations between traditional GCC

releasesand the experimental EGCS releases,wherethe na•�ve name-basedcompari-

son techniquespreviously failed to handle.

5.2 Future Work

In our approach, we have developed a web application that allows users to accessthe

query and analysis facility provided by BEAGLE from any client machine connectedto

the Internet. On the other hand, many open sourcesoftware projects are using web-based

CVS tools to managesourcecodecheck-in and check-out. Oneof the possibleextensionsto

BEAGLE is to integrate it with web-basedsourcecontrol system,so that when new code

is checked in, the architecture facts will be automatically extracted from the new source

code and stored in the BEAGLE's data repository. The submitter could able then view

the changesto the systemarchitecture shortly after shesubmitted the new code.

We presented two methods for origin analysis in this thesis. We have also examined

their e�ectiv e using many examplesfrom GCC history releases.However, to be able to

provide more accurateanalysis results, it is essential to �nd out more analysismethods.

By combining more than one origin analysis results will de�nitely improve the analysis

accuracy.

In order to further examine our BEAGLE platform, and to collect more �rst hand

information on the architectural evolution of large-scalelong-life softwaresystems,it would

be usefulto useBEAGLE to analyzemoresoftware systems.Possiblecandidatesare those

open sourcesoftware systemswhoseextracted architecture have beenstudied using PBS

or other reverseengineeringtools, such asthe Linux kernel,VIM editor, Netscape Mozilla,

andLinux Nautilus �le managersystem. The BEAGLE systemwill enableusto expandour

knowledgeon softwareevolution through e�ectiv e empirical studieson largeand successful

software projects.
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