On Navigationand Analysisof Softvare
ArchitectureEvolution

by

QiangTu

A thesis
presened to the University of Waterloo
in ful llmen t of the
thesisrequiremen for the degreeof
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada2002

¢ Qiang Tu, 2002

| herely declarethat | am the soleauthor of this thesis.
| authorize the University of Waterloo to lend this thesisto other institutions or individuals
for the purposeof stholarly researb.

Qiang Tu

| authorize the University of Waterloo to reproduce this thesis by photocopying or other
means,in total orin part, at the requestof other institutions or individuals for the purpose
of scholarly researt.

Qiang Tu

The University of Waterloo requiresthe signaturesof all personsusing or photocopying
this thesis. Pleasesign below, and give addressand date.

Acknowledgemen ts

| would like to thank many peoplewithout whosesupport this thesiscould not be possible.
First of all, I must thank my advisor, Michael W. Godfrey for his vision, encouragemet)
and support throughout the preparation and writing for this thesis. | am alsothankful to
the thoughtful commerts and insightful feedba&s from my thesis readers,Ric Holt and
Kostas Kontogiannis.

I would wish to thank members of the SWAG lab who deweloped the wonderful PBS
tools on which my thesis work is basedupon. They also provides excellent ideals and
commens on my work. In particular, many thanks go to John Tran, Thomas Parry,
Ahmed Hassan,Eric Lee, Davor Swetinovic and Igor Ivkovic.

And nally | would like to thank my dear father Xiang ZhengTu and mother Yun Yan
Li, brother PengTu, girl friend Hin-Chung Yuen, friends Joon and Michael, and everybody
who caresabout me for their encouragemenand supports throughout the process.

Abstract

Software systemsmust ewlve during their lifetime in responseto changing expectations
and environments. As the software ewlves,the systembecomesharder to understandand
maintain without the proper knowledgeabout how the systemhad changedin the pastand
the corntext of those changes. Studying software ewlution hasbeenextraordinarily costly
and time consuming,asit lacks a soundtheory, e ective researt approadies, aswell as
an integrated researt ervironmert.

In this thesis, we presen a researtr approad for studying software ewolution, which
incorporates ewlution metrics, visualization of system change history, and a method of
relating similar program ertities betweendi erent releasesin spite of changed name or
location. To validate our approad, we have implemerted a prototypereseart ervironmert
called BEAGLE to aid the software maintainer to understand how large software systems
have ewlved overtime. BEAGLE integratesdata from various statistic tools and metric
tools, and provides a query engine as well as a web-basedvisualization and navigation
interface. BEAGLE aims to provide help in understanding the long-term ewlution of
systemsthat have undergonearchitectural and structural changes.

We performeda casestudy on the ewlution of GNU Compiler Collection (GCC) using
a prototype implemertation of BEAGLE. We were able to discover seweral interesting
ewlution characteristicsof GCC, and to answer speci ¢ questionsrelated to the ewolution
history of GCC, sud as the relationship between the experimertal EGCS releaseand
traditional GCC release,and the di erent ewlution patterns shovn by GCC releasesat
di erent periods of time.

contents

1

Software Evolution: An Intro duction

1.1

Overviewof Thesis i i i i i .

1.2

Biological Evolution and Software Evolution

1.2.1 Biological Evolution

1.2.2 Software Evolution

1.2.3 Software Evolution and Software Maintenancé

13

Description of Researb Problems

1.4

Our Approach To the Problemsg

1.4.1 Software Evolution Browser

1.4.2 Analysis of Architectural Evolution

15

Major Contributions

1.6

Organization of Thesisls

2

Related Research On Software Evolution

21

Software Evolution: A Discipline of Software Engineering . . .

2.1.1 Lehman: Laws of Software Evolution

2.1.2 Perry: Dimensionsof Software Evolution Environmert

2.2

Software Evolution Metrics
2.2.1 Evolution Metrics From Program Sourcelnformation‘)

2.2.2 Metrics From Version Control Managemeh Information‘

2.2.3 Comparisonof Evolution Metrics

23

Visualization of Software Evolution

‘2.3.1 GASE Tool and KAC Systerﬁ

Vi

© 00 o o1 ~ADNDNPFP P

....... 12

2.3.2 Gall: Software Evolution in Colorand3-D 31
2.3.3 Comparisonof Evolution Visualization Tedniques. 32

‘2.4 Empirical Studiesof Software Evolution 33
2.4.1 Review of Software Evolution Empirical Studieelb 35
2.4.2 Conclusionof RelatedWork 37

‘3 BEA GLE: An Integrated Platform for Studying Software Evolution 39
3.1 Challengesto Software Evolution Researb‘ 40
3.2 Discussionof Methodologies 40
‘3.2.1 History Data Repositorﬂ 41
3.2.2 Navigation of Evolution Information‘ 45
3.2.3 Analysis of Software Structural Changes 47

‘3.3 BEAGLE: An Integrated Environmernt ‘ 54
‘3.3.1 DatabaseTier 56
3.3.2 Application LogicTier i 67
3.3.3 UserTier e e e e 71

‘3.4 Conclusioﬁm 72
‘4 Arc hitectural Evolution of GCC:A Case Study 73
‘4.1 Badkground and History of GCC Project 73
4.1.1 Origin of GCd 73
4.1.2 GCC 2.0and qunu§ 74
4.1.3 EGCS and Web-basedSoftware Developmen‘ 75

‘4.2 Common Software Architecture of GCCReleases 77
‘4.2.1 ReferenceArchitecture of Compiler% 77
4.2.2 GCC ConceotuaIArchitecture‘ 78
4.2.3 ConcreteArchitecture of GCd 81

‘4.3 RelatedResearb Work onGCC 83
‘4.3.1 GCC SystemSizeGrowth 83
4.3.2 GCCBuild-Time Behaviors 85
4.3.3 DominanceTree Analysis of GCC Evolution 88

‘4.4 Elaboration of Researb QuestionsOn GCC Evolution| 88

Vii

44.1 FromGCC1.0ToGCC2.0 i ittt 90

442 FromGCC2XTOoEGCS1X. 97

4.4.3 Stable Releasews. Developmert Releases 103

4.4.4 Build Con gurations and GCC Architecture 112

4.4.5 Refactoringand Rearditecting 115

4.4.6 Distribution of Evolution Eort 118

‘4.5 Summary of Obser\ationsl 125

‘5 Summary and Future Work 127
‘5.1 SUMMANY . . . o e e e e e e e e e e 127
‘5.2 Future WorlJ 129

viii

List of Tables

‘2.1 Researb on Software Evolution Metrich 28
‘3.1 Releasearchives of three open sourceprojectsl; 43
4.1 Origin analysisresultson EGCS1.0| Darsep 102
4.2 Origin analysisresultson EGCS1.0|] codegenerator 103
4.3 Changehistory of le gcc/combine.cl. 108
4.4 Changehistory of function add_methodi 110
4.5 Bertillonage analysison function assign _parms 115
4.6 Calleeanalysison function assign _parms. 117
4.7 Call analysison le enquire.c 118

List of Figures

1.1 Data Repository and Query Interfaceof BEAGLE 10
1.2 Software Structural Changeswith Similar Naming Smemé 13
1.3 Software Structural Changeswith Di erent Naming Scheme 14
2.1 Screenshobf KAC System. v i i e e e 30
2.2 Screenshoof 3-D Evolution Diagrams 31
2.3 Screenshobf 2-D Evolution Diagrams 32
3.1 Example of Origin Analvsi§ 48
3.2 Example of Call-Relation ChanqunaIvsisl 53
3.3 Conceptual Architecture of BEAGLE Environment 55
3.4 Scemaof BEAGLE Data Repository 58
3.5 Proceduresto Build Data Repository 61
3.6 Resultofthe rst examplequery 64
3.7 Result of the secondexamnlequer\} 67
3.8 ScreenShot of BEAGLE Architecture Comparison: GCC 2.0vs GCC 2.7.ﬁ 68
3.9 Userlinterfacefor Entering QueryOptions 71
4.1 Componerts and Phasesof Compiler 78
4.2 Conceptual Architecture of GCC and its Componerts 79
4.3 Conceptual Architecture of LanquaquompiIeA 80
4.4 ConcreteArchitecture of GCC 81
4.5 ConcreteArchitecture of LanguageCompiler - Call Relation 82
4.6 ConcreteArchitecture of LanguageCompiler - Data Reference. 82

4.7 SystemGrowth of GCC ReleaseLs
4.8 GCC BootstrappingBuild

4.9 GCC Build-Time Code Generation- GeneratedCodé

4.10 GCC Build-Time Code Generation- Code GenerationProcedure.
4.11 Architecture of GCC 2.0 Comparingto GCC 1.39- SeIectionScreeH e
4.12 Architecture Comparisonof GCC 2.0and 1.39- Top Subsystems.

4.13 Comparisonof GCC 2.0and 1.39-Parser

4.14 Comparisonof GCC 2.0and 1.39- RTL Generato#

4.15 Comparisonof GCC 2.0and 1.39- Code Generatol'
4.16 Comparisonof EGCS1.0and GCC 2.7.2.83.
4.17 Origin AnalysisonEGCS1.0

4.18 Evolution of EGCS Releases MakeQuery

4.19 Evolution of EGCS Releases Code Generatorand Optimizer‘
4.20 Evolution of EGCSReleases Parser,
4.21 Evolution of GCC 2.x Releases Code Generatorand Optimizer‘

4.22 Evolution of GCC 2.x Releases Parser.

4.23 CompareC-Only and All Build Con guration - Parsep
4.24 CompareC-Only and All Build Con guration - Optimizer‘
4.25 File Level Origin AnalysisExampleOne

4.26 File Level Origin Analysis Example de

4.27 Distribution of Code Distance AcrossSubsystems GCC Z.d

4.28 Distribution of Code Distance AcrossSubsystems GCC 2.8.(5
4.29 Distribution of Code Distance AcrossReleases Code Generator

Xi

Chapter 1

Software Evolution: An Intro duction

1.1 Overview of Thesis

Software systemsmust ewolve during their lifetime in responseto changingexpectationsand
ervironmens. The context of a software systemis a dynamic multi-dimensional erviron-
mert that includesthe application domain, the dewelopers' experience,aswell as software
dewelopmern processesind technologies[41]. Software systemslive in an ervironmernt that
is very complexand dynamic.

While changeis inevitable in software systemsiit is alsorisky and expensiwe, ascareless
changescan easily bring down the whole system. It is a challenging task for dewelopers
and maintainers to keepthe software ewlving, while still maintaining the overall stability
and coherenceof the system. To adhieve this goal, software engineershave to learn from
history. By studying how successfullynaintained software systemshasewlvedin the past,
researberscan nd answersto questionssud as\why and whenchangesare made", \how
changesshould be managed”,and \what the consequenceand implications of changesare
to cortinue software dewelopmen”. Software Evolution, one of the emergingdisciplinesof
software engineering studiesthe history of software systems,exploresthe underlying med-
anismsthat a ect software changes,and provides guidelinesfor better software ewvolution
processes.

Lehman suggestedthat the software ewlution is a feedba& system where complex
interaction and feedbak cortrol existsamongsoftware systems,dewelopmen processesnd

2 On Navigation and Analysis of Software Architecture Evolution

the application environment [32]. To understandthis complexmedanism, we can start by
studying the ewlution patterns of software systemsfrom artifacts sud as program source
code, commerts, and designdocumertation. Then we can relate the \evolution patterns”

discoveredin software systemswith those discoveredin the dewelopmen processand the
surrounding environment. Evertually, we can discover the underlying medanismsthat

decidethe ewlution of software systems.

To discover the ewlution pattern of past software systems,we needpractical browsing
and analysistools that can guide usersin navigating through software ewlutionary histo-
ries. Browsingtools help usto visualizewhat changeshad happenedto the software system
in the past. Analysistools canaid in discovering \undo cumerted” changes,assistingus to
nd out why sud changeshappened.

In this thesis,wewill describe an approad towardse cien t navigation and visualization
of ewlution histories of software architectures. Furthermore, we will alsointroducese\eral
methods to track and analyzethe software structural changesfrom past releases.Finally,
the ewlution history of a real-world software system,the GCC compiler suite, will be used
asa casestudy to demonstratethe e ectivenessof our approad.

1.2 Biological Evolution and Software Evolution

1.2.1 Biological Evolution

In the natural world, living organismsmay alter their characteristics over time, and the
traits that record the changesare passedfrom one generationto the next. The study of
biological ewlution attempts to understandthe forcesthat have causedanciert organisms
to ewlve into the great variety of life formsthat existstoday. It alsoaddressefiow species
branch o into entirely new species,and how di erent speciesmay be related through
family trees.

Similar to living organisms,a software systemalsoewlvesto adapt to its changingenvi-
ronmert by releasingnew versions,with enhancedfeaturesand improved quality. Robert-
son [45] distinguished the similarities and di erences between biological ewolution theory
and the conceptsof software ewolution. In that study, he summarizedthe following char-

Software Evolution: An Introduction 3

acteristicsthat dominate biological ewolution:

In a population of given species,every individual exhibits a unique set of attributes.
A variety of attributes are carried by all the individuals in the population.

Speci ¢ attributes may bene t individuals, to allow them to live longerand stronger
under a given ervironmert. Thus the individual that carriessud attributes will be
in favor for reproduction.

The o spring of successfulindividuals will inherit a signi cant portion of the at-
tributes from their ancestors.

Speciessurvive by cortinuing ewlution to keepup with the changesof their environ-
mert.

Robertson then discussedwo common misunderstandingsabout biological ewolution.
The rst misunderstandingis that changesare consideredsameas ewlution. Changes
of individuals that are directly causedby the environment are not ewlution: ewlution is
driven by the new permutations of DNA sequencen the specie'sgene,and thesenew DNA
permutations are prorogated to future generationsvia reproduction; on the other hand,
individual changesdo not causethe ertire speciesto changetheir DNA sequencethus
they cannot be prorogated as individuals of future generation cannot inherit them. For
example,there are frogs found to have three legsas the result of pesticide overuse. This
type of changeis limited to a small group of individuals and not inheritable by the whole
speciesthusit is not an ewlutionary phenomenon.Evolutionary changesare thosecanbe
inherited by o spring via genes.The whole speciesewlves,asnature selectsspeci ¢ groups
of individuals that carry critical genesto survive and reproduce. Thesecritical genesmake
them better adaptedto the ervironment. For example,germsthat causehumanto dewelop
u all start to carry special genesthat made many anti-biotic drugslesse ectiv e towards
them.

The secondmisunderstandingis that biological ewolution is all about organismschang-
ing their forms from simpleto complex,and the more\complex" they become the \b etter”
ewlution it is. Speciesare only consideredsuccess"in biologicalewlution term if they can
adapt to the current environment and reproduceenougho spring. Successfuspeciesmust

4 On Navigation and Analysis of Software Architecture Evolution

cortinuously ewlve and quickly enoughto keepup with the changesof the surrounding
ervironmert.

1.2.2 Software Evolution

It was suggestedby Lehman that software systemsewlve in a manner similar to that
of living organisms[31]. Software systemshave to keep ewlving in order to adapt to
the changing ervironmernt, i.e., dierent requiremen, businessprocess,and supporting
technologies.

The study of software ewlution coversall aspectsrelated to long-term software change,
especially systemicchangesthat exhibit repetitiv e patterns. Software ewolution study also
tries to discover the relationship between the changesof software developmen process,
program code, and software maintainability. The purposeof studying software ewolution
is to understandthe underlying medanismsthat decidehow software systemewlves, so
that softwaredeweloperscanadopt moree ectivedewelopmen practicesand guidelinesthat
make software systemsewlve quickly enoughto keepup with the changing environment,
while maintaining systemstability and low maintenancecost.

There are two major researt directionsin the software ewlution study. One direction
is to extend sourcecortrol systemsto support fast and safecode changes.Researb work
on con guration managemehsystemsthat have built-in supports for software ewolution in-
clude[29] [35] [55]. Code featuresthat assistsoftware ewolution include program invariants
and function clones. For example,Ernst et al. [14] deweloped a technique to dynamically
discover invariants of program properties, sothat software deweloperswho are working on
the new releasewill not break the systemby acciderally violating exiting assumptions
that haveto be presened. Lagee et al. [3(]] introducedfunction clonedetectiontechniques
into the software developmen processwith Datrix tools. When software dewelopers apply
quick changesto the program sourcecode, they tend to copy chunks of code from existing
code baseto implemert similar functionality. However, improper code cloningwill degrade
systemmaintainability asit introducesimplicit dependenciesbetweencode sectionsfrom
di erent modules. If the original segmen of the code needto be modi ed later, without
explicit documertation, maintainers usually forget to apply similar changesthat are neces-
sary to all the clonesscatteredthroughout the system. By applying clonedetectionin the

Software Evolution: An Introduction 5

dewelopmern process,;sud undesirablecloneswill be found and removed from the system,
or replacedby more appropriate techniquessud astemplate in C++ and interfacein Java.

A seconddirection focuseson the relationship between software developmen process,
sourcecode metrics, and software maintainability. Somestudies analyzethe growth pat-
terns exhibited by the software system, and then assiate these growth patterns with
causingfactors found in the dewelopmert procesq32, 31, 20, 17, 56, 36, 33. Other studies
try to build predictive modelsthat usethe metrics measuredfrom developmer processor
sourcecode to predict the future software maintainability and defects[43, 40, 10, 21, 27,
37,13 49,5, 38.

Someresearters attempt to build a theoretical foundation for software ewolution re-
sear®. Lehman believesthe ewlution of software systemis driven by multiple feedbak
loops between software development and usageof the system[32]. Perry examinedthe
surrounding environment of software system,and list three dimensionsthat will in uence
the way software ewlves[41]. The three dimensionsof software cortext are the applica-
tion domains,dewelopers’ experiencewith the system,and the dewelopmen techniquesand
process.Any changesin thesedimensionswill a ect the ewlution of software system.

1.2.3 Software Evolution and Software Main tenance

When researbers discusssoftware ewlution, they sometimesunintentionally equate the
term with \software maintenance”. Thesetwo conceptsare very closelyrelated, and there
are not yet standard de nitions that can clearly distinguish them. Howewer, from our
researt experienceswe beliewve there are subtle di erences betweenthem, and we needto
clarify them at the beginning of this thesis.

Software maintenancedealswith correcting program defects,adapting to new require-
merts, and enhancingsoftware functionalities. It mainly consistsof planned changesmade
to the software systemas the results of explicit maintenancerequiremers. The software
maintenanceprocessis usually carefully planned and closelymonitored.

Software ewlution, on the other hand, concernsabout what actually has happened
to the software systemover a long period of time, especially change patterns exhibited
by the whole system, as well asits software architecture. It alsoemphasizethe dynamic
interaction, including mutual seletion, betweensoftware systemand its environmert.

6 On Navigation and Analysis of Software Architecture Evolution

In summary, software maintenane tries to plan aheadand take cortrol of the change
process.On the other hand, software evolution examinesthe actual changesmadeto the
systemin the history, both planned and unexpected, and studies the relations between
obsened history ewvernts and environmental factors.

1.3 Description of Research Problems

The surprisingtruth about legacysoftware systemsis that their lifespanis commonlymuch
longer than the dewelopers had originally imagined. Many systemsthat had to be xed
for Year 2000problemswere written in COBOL or FORTRAN, and someare even older
than the peoplewho aretying to x them. Usersarereluctant to replaceexisting software
systemsthat are provento be reliable with completenew systemsthat are yet thoroughly
tested. The alternative is to dewelop new versionsof the systemthat are basedon the
existing infrastructure and proventechnologies.New featuresand bug xes areintroduced
into the system gradually without disturbing normal businessoperation. Software tends
to ewlve gradually, rather than by revolution.

To understand how software systemsewlve, empirical study on large systemswith
long historical releaseshasbeenprovento be an e ectiv e researtt method. Observingthe
ewlution patterns and dynamic behaviors exhibited by software systemsover a long period
of time helpsresearbersto discover the fundamertal medanismsthe in uence or shape
the way software ewlves.

Related researtr works on software ewlution have deweloped many metrics, empirical
study methodologies,and assistingtools with data interpretation and visualization capac-
ities to aid the understanding of the vast amourt of empirical data archives. Howe\er,
despite this progress,software ewlution remains a challenging researti area for seeral
reasons:

The complexity involvedin collectingand analyzingthe history data that recordshow
software systemshad changedin the past is enormous. Many commercial software
systemshave lived for decades,with many versionsreleasedduring their life. It
requiresmore resourcesand di erent methodologiesto understandthe ertire change

Software Evolution: An Introduction 7

history of a software system, whereastraditional software comprehensionusually
focusesonly on onerelease.

There are few empirical studies that meet the depth and breadth requiremerts to
make generalizedconclusionson the underlying medanismsof how a software system
ewlvesand why. Somestudiesemphasizedn the ewlution of operating systemsand
systemsoftware[20, 10], othersfocusedon applicationsin telecomnunication domain
[17,136, 37]. However, much moreempirical study is neededo cover other application
domainsbeforewe can generalizethe existing ndings.

Empirical data on software ewlution is currently interpreted heuristically, without
soundtheoretical support. After the proposal of \law of software ewlution” almost
two decadesago[31]], little progresshasbeenmade on the theory of software ewolu-
tion.

As Integrated Developmen Environment (IDE) and CASE tools have approved, to
increasethe productivity of dewelopers to designand implemert software systems,fully
automated tools and powerful supporting ervironmernt are essetial to overcomethe com-
plexity and high cost assaiated with collecting and analyzing empirical data on software
ewlution.

Herewe list someof the generalrequiremerts for suc supporting toolsand environmert
that we felt would improve the productivity and lower the costto conduct empirical study
on software ewlution:

1. Similar to the fact that softwarearchitecture hasmultiple views,researbersstudy the
empirical data of software ewlution history from di erent perspectives, depending
on their individual interest. The supporting tools and ervironments must be exible
and extensiblein functionality to satisfy the diversity of needs.

2. Software ewlution analysistools should be ableto \zoom-in" to the low-level details
sudh as the changehistory of individual function de nitions or data referencede-
tweenmodules, while also be able to \zoom-out" to the higher level to get the \big
picture" of the software ewlution history. For example,the distribution of changes

8 On Navigation and Analysis of Software Architecture Evolution

amongdi erent subsystemgtells us which parts of the software systemhave shavn
the most changes,and which parts have the most stable structure.

3. The supporting environmernt for software ewlution researt should provide powerful
navigation and visualization capabilities sothat usercan nd interesting patterns or
phenomenafrom the vast amourt of history data quickly.

4. Toolsthat automatically collect, analyze,and presen software ewlution metrics are
essefial to help us quartify changesmade to the software systemin the history.
Then we can usemany numerical methods to analyzethe quari ed changesand to
discover ewolution patterns.

5. When software ewlves, its architecture must also changesto re ect changedfunc-
tional and non-functional requiremerns. Architectural ewlution study focuseson the
change characteristics of software architecture, and its relations with other aspects
of software ewlution. We needtools and supporting ervironmerts that can assistus
to collect and analyzearchitectural changeinformation.

1.4 Our Approac h To the Problems

In this thesis,we will introduceour approadesto theseproblemsassaiated with software
ewlution researtr. Our solution involvesan integrated ervironmenrt, which incorporatesa
data repository, se\eral automated tools and a web-baseduser interface into one system.
Its featuresinclude collecting and storing archived software history information, detecting
changepatterns by applying ewlution analysisalgorithms, providing navigation and com-
parison facility for researber to study software architecture changes,and also sharing all
the information with other researbersor automatic tools over the Internet.

Our software ewlution study environmert is named BEAGLE, after the British naval
vesselon which Charles Darwin sened as a naturalist for an around-the-world voyage.
During that historical voyage,Darwin collectedmany specimensand made somevaluable
obsenations, which ewvertually provided him the essetial materials to dewelop the theory
of ewlution by natural selection. We expect our tools and the BEAGLE ervironmert
could help researbers conduct more e cient empirical study on software ewlution with

Software Evolution: An Introduction 9

lower cost, so that more valuable obsenations about software ewlution could be made
towards the creation of software ewlution theory. The BEAGLE ernvironmernt includes
three major componerts: architecture comparison, history visualization and navigation,
and origin analysis. Each of them provides a valuable functionality to assistresearbers
obsene and analyzethe software changehistory. We will discussfurther details of these
three componerts in the following sections.

1.4.1 Software Evolution Browser

Studying software ewlution requiresquick and corveniert accesgo the enormousamourt
of archived data that recordsall the adjustmerts madeto the software systemduring its
ertire life. In addition to quick accessto history information, researbers also needto
be able to jump betweenreleasesto comparethe characteristics of particular program
componert at the di erent times during the program's life. This requiresthe supporting
toolsto provide a exible navigation interface,and to be ableto comparemany aspects of
the software systemsacrossmany releases.

In BEAGLE, archived ewlution information is storedin a certral repository. There are
three types of history data stored in BEAGLE: architecture information extracted from
sourcecode, program code metrics, and dewelopmert activity information collected from
other sources,sud asreleasenotes, revision cortrol systemdata, and designdocumerts.
The sametypes of information are collectedand stored for every version of the software
systemthat waspreviously released.The BEAGLE repository providesvaluable rst-hand
researb material, from which we can obsene interesting ewlution patterns and make
conclusionsfor software ewlution theory. The repository is alsoequipped with a standard
accessand query interface. Evolution navigation and analysistools can easily retrieve
relevant information from the repository through this interface,as showvn in gure 1.1

We have designeda browser-basedavigation interfacefor BEAGLE sothat researtiers
can easily exploreand comparethe di erent characteristicsexhibited by di erent software
releases. Primarily, the user needsto selectthe past releaseshat he is interested, and
choose a referencereleaseon which all the comparisonsare based. BEAGLE will then
procesghe queryrequestshy executingrelated engineto completethe software comparison.
During the processingoriginal ewlution data is retrieved from the repository for analysis

10

On Navigation and Analysis of Software Architecture Evolution

Evolution Analysis
Tools

nterface

(.

Repository

BEAGLE Data

— Source — Code — E\%ﬁz('fi:)n
Architecture Metrics)
Infomation
v1.0 v1.0 v1.0

v2.0 v2.0 v2.0
v3.0 v3.0 v3.0

Figure 1.1: Data Repository and Query Interface of BEAGLE

Software Evolution: An Introduction 11

through the access/queryinterface provided by the repository.

The result returned from the BEAGLE comparisonenginehasthree parts. The software
structure of the referencereleaseis displayed as an expandabletree. The branchesand
leafsof this structure tree represem programertities at di erent levels,suc assubsystems,
les, and functions. A color schemais usedto represemn the changestatus of ead program
ertity. For example,red color meansthe program enity is newto system,with respect to
the other releasesn the comparison.

If the useris interestedto investigateewlution history of individual program entities in
greater detail, he can click on the correspnding branch or leaf in the structure tree. The
rst part is a text table that displays the change history of the selectprogram ertity in
terms of code metrics. For functions, we list sevenof its code metric valuesin all the releases
that participate in the comparison,including lines of code, lines of commen, cyclomatic
metrics, s-complexit, d-complexity, Albrecht and Kafura metric [28]. For program les,
we collect six metric values,including lines of code, lines of commern, number of functions
de ned, averagecyclomatic metric value, averagefan-out and maintenanceindex. This
table tells us the ewlution history of a particular program ertit y from a numerical aspect.

The last componert of the result is a visualization diagram that displays the software
architecture landscape for the selectedprogram ertity. This landscape diagram shaws the
contained modules (les) within a program subsystem,along with the relations between
these les, \supplier" subsystems,and \consumer" subsystems. The samecolor sthema
is usedto represem the ewlution status of les and relations asin the program structure
tree. Usersare provided with a rich set of query tools so that user can \zoom-in" to
a second-leel subsystemthat is cortained in current subsystem,or \jump" to another
subsystemthat has dependencyrelations with current subsystem. Userscan also select
viewing criteria such aswhat kind of relations will be shavn. For example,options can be
setto only display new relations introducedin the referencerelease.

The philosoplty behind BEAGLE's ewlution browser interface is to display as much
information aswe have collectedabout the selectedprogram ertity under study in a well-
organizedway. The feedba& cortains text description, numerical tables, and visual rep-
resenation. Userscan study the information from many anglesand aspects. At the same
time, userscan also study relations betweenthe main program entity and other program

12 On Navigation and Analysis of Software Architecture Evolution

ertities in the systemof the samereleaseor the sameentity from other releasesthrough
the \hyper link" style of navigation interface provided by BEAGLE.

1.4.2 Analysis of Arc hitectural Evolution

Software architecture of a software systemis the structure of the system,which comprises
software componerts, the externally visible properties of those componerts, and the rela-
tionships amongthem [4]. Software architecture has multiple views. In this thesis, we will
discussmainly about the code view, which focusthe structures and relationshipsbetween
sourcecode componerts, including subsystemsmodulesor les, and functions.

Software architecture concernghe behaviors and interactions of high-level componerts,
andis dewelopedasthe rst stepofthe software developmen procesgo achieve a collection
of desiredfunctional and non-functional properties. As the environment of software system
changes,the desiredfunctional and non-functional properties of the systemalso change.
As the result, the software architecture hasto cortinue ewlving as well.

The code view of software architecture can be treated asa nite, directed graph that
allows multiple edgesbetweena pair of vertexeswith di erent semarics [8]. For example,
there should be two di erent paths betweentwo subsystemspnefor call dependency and
the other for data referencedependency When software architecture ewlvesfrom release
to releasejts graphtopology alsochangesto re ect the structural and dependencychanges
of code componerts. Becausesoftware architecture could be abstractedasa graph, we can
also model the ewlution of software architecture as the morphing of its graph, as shown
in gure (1.2 In thesegraphs, nodesrepresemn program modules, and edgesbetweena
pari of nodes model the various dependenciesbetween program modules. The topology
of G2, which models the software architecture of a more recern release,is di erent from
that of G1. Howewer, sincethe vertex namesin both graphshave very similar scheme, it
is very easyto tell that vertex v2 is no longerin the graph, and there is a new vertex v6
introducedin G2.

Whenagraph G1 morphsinto G2, if all the vertexesare labelledunderthe samenaming
scheme,we can easily identify those vertexesin G2 that were originally in G1, and those
that are newly introduced into the graph by G2. We can usethis technique to idertify
new sourcecomponerts introducedin the newer software architecture. Howewer, if a new

Software Evolution: An Introduction 13

Gl

Figure 1.2: Software Structural Changeswith Similar Naming Scheme

naming schemeis usedin the newer release we losethe tracesbetweenthe vertexesin the
new graph and thosein the old graph. This situation usually happenswhen the software
architecture of a newreleasehasto be modi ed to addressmajor changesin requiremerts
or implementing technologies. Other activities sut as the re-architecting of the older
software architecture for easiermaintenancecould also causethis type of changes.Figure
shaws two graphs, one models the software architecture found in original release,and
the other with totally di erent vertex namesmodelsthe software architecture of the later
releasesfter a major re-architect e ort. From the newgraph G2, we canobsenethat some
vertexesare clusteredinto subsystemsssland ss2,and all the vertexesare now named
after letters, instead of numbersin G1.

We need more sophisticated techniques other than straightforward name comparison
to relate vertexesin the newer graph with those in the old graphs. In this thesis, we
will introduce two algorithms that relate vertexesin one graph with vertexesin another
graph. We call this technique \Origin Analysis", asit help usto nd out the \origin"
of new source componerts in the new software architecture. One algorithm compares
the feature set of a vertex, which represems a function or le in the modelled software
architecture, with all the vertexesin another graph, and attempts to nd the most similar

14 On Navigation and Analysis of Software Architecture Evolution

W

SS2

Figure 1.3: Software Structural Changeswith Di erent Naming Scheme

one. Another algorithm relates vertexesfrom di erent graphsusing the change patterns
of paths (relations in software architecture) betweenthem and their neighboring vertexes.
Our casestudies demonstrate that both algorithms, especially when used together, are
very e ectiv e in tracking the ewlution of sourcecomponerts in software architecture.

1.5 Major Contributions
This thesismakesthe following cortributions to the researt of software ewlution:

We introducesan approad to studying software ewlution that integratesthe useof
metrics, software visualization, and structural analysistechniques.

We presetteesa prototype implemertation of the proposedintegrated ervironmert
called BEAGLE. It incorporatesdata from various statistical and metrics tools, and
providesa query engineaswell asa web-basedvisualization and navigation interface.

We deweloped "origin analysis"”, set of techniquesfor reasoningabout structural and
architectural changeacrossmultiple releases.

Software Evolution: An Introduction 15

We usesthe various functionalities of BEAGLE to analyzethe structural ewlution
of GNU Compiler Collection (GCC).

1.6 Organization of Thesis

The remainder of this thesisis organizedas follows. In the next chapter we review the
state of art in software ewolution researt, with emphasison works related to this researd,
sudh as ewlution metrics and empirical studies. Chapter 3 we discussour approad to
designan integrated researty ervironmernt to browseand navigate software ewolution. We
also proposetwo algorithms for tracking software architectural changes.In Chapter 4, we
presen a casestudy we have conductedthat demonstrateshow to use BEAGLE to study
the architecture ewlution of GCC software system. Sewral ndings about the ewlution
history of GCC are shown in this chapter to illustrate the e ectivenessof our approadies.
Finally, Chapter 5 summarizesour work, and indicates future researt directions.

Chapter 2

Related Research On Software
Evolution

There hasbeena greatamourt of researt in software engineeringconcerningthe ewolution
of software systems.In this chapter, we discussreseart that is related to our approad to
provide an integrated software ewlution study ervironment. We will include discussions
on the theory of software ewlution, ewlution metrics, visualization of program structural
changes,and empirical casestudies.

2.1 Software Evolution: A Discipline of Software En-
gineering

In this section,we review Lehman'slaw of software ewolution [31] and Perry's dimensionsof
software ewlution ervironmernt [42]. Theseworksaresimilar in the way that they aretrying
to build a theoretical foundation for software ewlution researtr. Lehman proposedeight
laws of software ewlution basedon his obsenations on the ewlution of seeral industrial
software systemsover a long period of time. Perry focusedon the cortext in which software
systemewlves. Factorsin this context usually a ect the way software ewlvesdirectly or
indirectly.

16

Related Researb On Software Evolution 17

2.1.1 Lehman: Laws of Software Evolution

Lehman has obsened the ewlution history of IBM OS/360 since 1968, and he has for-
mulated eight generalizedrules and hypothesesbasedon this systemand others. He has
called theserules the \laws of software ewlution". They include:

Law1: asoftwaresystemthat solvesreal-world problemsmust continually be adapted,
otherwiseit will becomeprogressiely lesssatisfactory

Law 2: asa program ewlves,its complexity increasesunlesswork is doneto main-
tain or reduceit. As the need for adaptation arisesand changesare successiely
implemerted, interactions and dependenciedetweenthe systemelemerts increasen
an unstructured pattern and thereforeled to an increasein maintenancecosts.

Law 3: the program ewlution processis self regulating with closeto a normalized
distribution of measuresof product and processattributes. This implies that after
the system has stabilized through its early ages, software systemsexhibit regular
trends that we can measureand predict.

Law 4. the averagee ectiv e global activity rate on an ewlving systemis invariant
over the product lifetime. Factors sud as managemety users,dewelopers, support
team, and the commnunication betweenthem cortribute to the stabilization of soft-
ware size. As Brooks noted, simply adding more dewelopersto the project will not
improve the productivity proportionally [24].

Law5: during the active life of an ewlving program, the content of successig release
is statistically invariant. The rate of changesfrom releaseto releaseis constart.

Law 6: functional cortent of a program must cortinually be increasedto maintain
user satisfaction over its life.

Law 7: the quality of software programwill declineunlessit is constartly maintained
to adapt to the changingernvironment. Program sourcecode decgs over time. Mean-
while, users'expectation on the systemkeepsgrowing. Without proper maintenance,
the quality of software systemsperceived by userswill declineover time.

18 On Navigation and Analysis of Software Architecture Evolution

Law 8: software programming processis a multi-lo op, multi-level feedba& system
that will self-stabilizeover time. Lehman claims that this hypothesishas beenval-
idated on seweral commercial software systems[34]. Howewer, di erent ewlution
characteristicshave alsobeenobsened on applications from other domainsand with
alternative dewelopmern processe$2Q].

Lehman'slaws of software ewlution are mainly derived from studies of software appli-
cationsthat are deweloped in commercialervironment using a closeddevelopmeri model.
The rst two laws state the generalewlution characteristics of many software systems,
irrelevant to the specic application domains. The rest laws are more specic to the
particular application domainsthat were investigated by their empirical study, and the
software processadopted by the deweloping organizations. Obsenations madeby Godfrey
and Tu indicate that theselaws do not apply to many Open SourceSoftware systems[20].

2.1.2 Perry: Dimensions of Software Evolution Environmen t

Perry introducedthe conceptof three dimensionsof software ewolution, and explainedhow
the changesin thesedimensionsa ect how a software system changesover time. These
three dimensionsare domain, exgerience, and process

Domains include the \real world" that encompas®ur application model, and theo-
retical sub-domainsthat provide infrastructure support for application systems.Any
changesto the domain require correspnding changesto the software system. Do-
main changesarethe fundamenal and direct sourceof systemewlution. As the \real
world" and its model ewlve, the speci cation of the software systemmust ewlve as
well, asdoesthe actual implemertation. On the other hand, software systemsthat do
not solve \real world" problemsdirectly, sud asoperating systemsor programming
language compilers, are in uenced by the advancesin computer sciencetheories.
Improvemerts in the areassud as algorithms or protocols bring new designsand
implemerntations to thesesoftware systems.

Experience is another dimensionthat a ects software ewolution. It doessoby helping
us better understandthe software applicationsthemseles,aswell asthe domainthat

Related Researb On Software Evolution 19

we are trying to model. Feedba& from customersand dewelopers provides insights
into domain modelling, speci cation, and implemertation of the software system.
Experimentation is a systematic way of gaining experience. Scierii ¢, statistical,
and engineeringexperimerts provide essetial knowledgeabout aspects of software
systemand dewelopmert process.The lessonsve learnedfrom experimertations help
us to enhancethe software systemby improving the software dewelopmen method
and process.The ewlution of our understandingand judgmern causedby cortinued
feedba&, experimertation and learning is also one of the major reasonsof software
ewolution.

Softwale processincludes mythologies,techniques,and tools that we useto dewelop
and maintain software systems. When these technologiesand processeswlve, it
a ects the ways we dewelop software systems,as well asthe nal software products
that we create. New software dewelopmert techniquessud as modulation, abstract
data type, object oriented analysisand design,designpatterns and rapid prototyping
had greatly in uenced how software systemsewlved over the past decades.Software
processde nes the way we dewelop and maintain software systems.Innovative dewel-
opmert model sud as\op en source"dewelopmert model and extreme programming
model create software systemsthat are quite di erent from those deweloped with
traditional process. Organizationsde ne the culture and structure for software de-
velopmen process,as well as the nal software products. Corway's famous law
hypothesizesthe interesting relationship between organization structure and soft-
ware systems.Bowman exploredthe ideal of using the organization of dewelopersto
recover software architecture [6].

2.2 Software Evolution Metrics

Evolution metrics measurehow ead version of systemdi ers from its ancestors,descen-
dants, and its many \cousins" in the ewlution tree. Analyzing the trends of ewlution
metric valuesover time helps dewelopersto managethe maintenanceand cortinuous de-
velopmen of the systemmore e ectively. Basedon the past pattern of ewlution metric
values,se\eral ewlution models might be built to predict the fault rate of componerts in

20 On Navigation and Analysis of Software Architecture Evolution

future releasesto budget maintenancecostsfor various maintenancetasks, to discover un-
desiredlogical dependenciedbetweencomponerts, or to stheduleredesigngor componerts
that are showing signsof decay.

There are many software artifacts from which we can collect ewolution metrics. Re-
searters usually usethree typesof them to analyze software ewlutionary histories: pro-
gram sourceinformation, version cortrol system database,and defect history database.
History of sourceinformation providesthe rsthand data on how the implemertation of
the software systemhaschanged. Versioncortrol systemsrecordthe reasondor eat code
change,details of the change,componerts a ected by the change,and sometimeresources
spert to implemert the change. Defect databasecortains the description for eat defects,
causesof the defect, details of the x and test casesof the veri cation for the x. Re-
searters have built seweral ewlution models that are basedon ewlution metric values
collectedfrom these program artifacts. We will introduce somerepreseting models and
the ewlution metrics they usedin the following sections.

2.2.1 Evolution Metrics From Program Source Information

Evolution metrics are divided into complexity metrics and change metrics. Complexity
metrics include line of code (LOC), cyclomatic metric, fan-in, fan-out, etc. Changemetrics
measurehow much code hasbeenchangedbetweentwo consecutie releases.They include
number of lines of code added, deleted, or altered, the number of functions changed. In
this section, we introduce someewlution models basedon source metrics. Models are
introducedtogether if they have similar purpose.

Understanding System Growth Patterns

Lehmanet al. tracked the systemgrowth history of IBM OS/360 and Logica FW system
by measuringthe number of modulesin the systemsfor every release[32]. The purpose
was to idertify patterns in the systemgrowth trend and to verify the \feedbad system"
medanism as proposedin his laws of software ewlution.

They deweloped an \in versesquaregrowth” model to explain similar patterns found in
the systemgrowth curvesof seweral industrial software systems. In this model, S; is the

Related Researb On Software Evolution 21

actual systemsizeof releasd measuredasthe number of modules, § is the predicted size,
n is the total number of consecutie releasesn the data set, and E is a model parameter.
E is the averageof individual E; calculatedas follows:

Ei=(S S 1)S?,

The model suggeststhat the rate of system growth tends to stabilize over releases.
Lehmanhasuseda \p ositive feedba&" hypothesisto explain the fast growth rate towards
the maximized \p eak" of the curve, and \negative feedba&"” hypothesisto explain the
declinesof growth rate in more recer releases.

§1 =S

§=9 1+ Ex9 1)%i = 2:n)

Godfrey and Tu examinedthe systemgrowth and other ewolution patterns of 96releases
of Linux kernel [20]. To measurethe systemsize, they primarily usedthe uncommered
lines of code for eat releaseinstead of the number of modulesin the systemas Lehman
did, becausethey found modulesin Linux kernel have great variation in LOC, and LOC
tendsto grow at the samepacewith the number of modules. Other metrics usedto reveal
systemgrowth patterns include the number of global functions, variables,and macros.

They obsened that for Linux kernel, the growth rate of uncommerneed LOC ts well
into a quadratic model, which doesnot agreewith Lehman's\in versesquare"model. They
therefore discussedhe possiblereasonsfor this disagreemeti One of the most important
reasonss the di erent dewelopmen and maintenanceprocessusedby commercialsoftware
systemsand open sourcesoftware system.

They also found that the stable releasestream of Linux kernel has di erent growth
patterns from thoseexhibited by dewelopmer releasestream. When the growth pattern of
eat major subsystemof Linux kernelis analyzed,they noticed that unusually large size
and high growth rate of the driver subsystem,and many instancesof code cloning in this
subsystem.They concludethat particular dewvelopmen processesand unique application
domainscan greatly a ect the growth rate and pattern of ead software system.

Identifying Fault-Prone Program Comp onents

Ohlssonand Wohlin deweloped a model basedon structural complexity metrics to detect
ageingand possiblefault-prone program componerts [40]. The purposeof this model is to

22 On Navigation and Analysis of Software Architecture Evolution

help dewelopersidertify thosecomponerts asearly aspossible sothat they canimprovethe
quality of thesecomponerts in the next releaseby usingrefactoringtechniqueor redesigning
the software architecture, beforetheseagingcomponerts start to degradethe overall system
maintainability. In this model, program componerts are labeledas green,yellow, and red,
dependontheir degreeof deca. This classi cation is calledG(reen)Y (ellow)R(ed) analysis.

Green Comp onents - Componerts shoving healthy maintainability and tractabilit y.

Yellow Comp onents - Decaed codethat requiresspecial attention to prevert possible
defectsin the future.

Red Comp onents - Codethat is hard to understandor cortains potertial defects.Red
componerts needto be xed immediately or risk disastrous consequences$o the
project.

Onhlssonet al. built the model by correlating the trends of a group of sourcecode metrics
with defecthistory of program componerts during past releases.They found that metrics
that reveal program structural complexity sud as cyclomatic metric, fan-in, and fan-out
have the strongestcorrelation with the componert defectiverate. They alsodiscoveredthat
by incorporating \program state" metric and cyclomatic metric, this model producedthe
best prediction results, while using code size metrics alone produce the worst prediction.
Using accurnulated ranking, their predicting model shavs strong correlation betweenthe
defectrates and componerts' decg rankings.

Similar to the Ohlsson's GYR model, Elbaum and Munson used a composite code
measuremen called\code churn” to predict program componerns' future defects[27]. Be-
sidescomplexity metrics, someresearters also suggestedthe use of coupling metrics as
runtime-failure predictor [5].

Predicting Program Main tainabilit vy

Burd and Munro use\dominancetree" to model the systemstructure and call dependencies
between program modules. They measurethe speci ¢ characteristics of this \dominance
tree" to predict the maintainability of program system|[10].

Related Researb On Software Evolution 23

Their \dominance tree" model is a static calling dependencygraph of the program.
Nodesin the tree are identi ed as either \direct dominated" or \strongly directly domi-
nated": if all the outgoing calls are made from one node to other nodeswithin the same
branch of a subtree, we identify this node as a \directly dominated" node; on the other
hand, if someoutgoing calls are madeto nodesoutsideits own brandh, it isidentied asa
\strongly directly dominated" node.

The prediction model works in the following way. First, the portions of directly domi-
nated nodesand strongly dominatednodesover the total number of nodesin the dominance
tree are calculated. Their hypothesisis the larger the proportion of directly dominated
nodes,the harder to maintain the systemsourcecode. On the other hand, the larger the
proportion of strongly dominated nodes, the easierit is for maintenance. This is because
when changesare madeto directly dominated nodes,this will causeripple e ects to other
call relations in the branch, and thereforeit is much lessdesirablefrom the maintenance
perspective. They applied this method to analyzethe changeof GCC from v2.7 to v2.8,
and concludedthat v2.8 is better maintained than v2.7.

2.2.2 Metrics From Version Control Managemen t Information

Versioncortrol system(VCS) provides another valuable resourcefor the study of the evo-
lution history of software systems.Comparedto other artifacts generatedduring software
dewelopmert and maintenance, VCS information is more consisteth becausea software
project usually sticks with oneVCS systemthroughout its life. All the code-relatedhistory
information is available from its database. The VCS databaseprovides not only informa-
tion about the text changesmadeto the project's sourcecode depot, it also recordsthe
date of the change,the number of linesa ected by the change,deweloper who is responsible
for the change,and a short description about the purposeand the nature of the change.
Many researbers have extracted valuable information from VCS databaseto bene't
their understandingof software ewlution. In this section,we review someof this work.

24 On Navigation and Analysis of Software Architecture Evolution

Determine The Readiness For Release

IEEE Standard 982.2de nes a Software Maturit y Index (SMI). It is usedto determinethe
readinessfor releaseof a software system,when changes,additions, or deletionsare made
to the software systemscomparingto previous releases.The history record of this index
can alsobe usedto study the impact of code changes.It is calculated as follows:

SMI= Mt - (Fa+ Fc + Fd) / Mt)

In this equation, Mt is the number of software functions/modulesin the current release,
Fc is the number of functions/modulesthat contain changesfrom the previousrelease fFa
is the number of functions/modulesthat cortain addionsto the previousrelease,and Fd
is the number of functions/modulesthat are deletedfrom the previousrelease[1].

Predicting Future Fault Incidence

In the previoussection,we have introducedsomedefectprediction modelsbasedon source
code metrics. Many researbers discovered that change history extracted from version
control systemdatabaseis alsoe ective in predicting future defects.

Graveset al. createda model that can predict the defect probability of a module by
aggregatingfactors from the past changes(\deltas”) madeto the modules[21]. The larger
and morerecert a\deltas" occurred,the morelikely the componert will have defectslater.
Their researt is signi cant in that they reveal the closerelations between past software
dewelopmern activities and future software quality.

They claimedthat metrics basedon changehistory information that is extracted from
version cortrol systemdatabaseis more e ective in predicting future defectthan metrics
basedon program sourcecode. Their statistic data shovsthat LOC is a weakindicator of
defectrate. Sincemany complexity metrics are correlatedwith LOC, it implies that code
metricsin generalare not very e ectiv e predictors. Surprisingly, they alsofound thereis no
strong correlation betweenthe number of developersinvolved in a changeand the future
defectrate of the module that is a ected by the change.

In this model, two metrics are calculatedfrom versioncortrol systemdatabasefor eah
componert of the system:

1. The number of deltas madeto a module over the releasehistory. History data shows

Related Researb On Software Evolution 25

that this measureis proportional to the overall defectrate.

2. The averageageof the module. This measureis calculated as a weighted averageof
the dates of the changesmadeto the module, weighted by the scope of the change.

A linear modelthat incorporatesthesetwo metrics providesthe bestprediction accuracy
for future defects. An intuitiv e explanation is that componerts that have a long history
and are seldoma ected by changesare usually thoroughly tested and have fewer defects
hidden inside.

They alsointroduceda more nely tuned, non-linearmodel called\w eighted time damp
model" that producesevenbetter results. It summarizescortributions from all the \deltas”
madeto the componert in the past, whereold \delta" measuresare down weighted by ft y
percent per year. This improved model provides very satisfying results when they usedit
to analysisthe error-prone componerts in the examinedsystem.

The morerecert study by Eick et al. useda similar methodology[13]. His purposeis to
detect\decayed code" in legacysystem. A sectionof program code is said to be \decayed"
if it is much moredi cult to changethan it shouldbe, that is, the costand time required
for the changeincreaseswhile code quality drops.

Onedirect reasonfor decgyed code is past changesmadeto the software system. Other
reasonsinclude inappropriate architecture, violations of original designprinciples, impre-
ciserequiremerts, time pressure,inadequateprogrammingtools, etc. The main symptom
of decg/ed code is quality degradation, which includes excessie code complexity, history
of frequert changes,history of defects, widely dispersed changes,kludgesin code, and
excessie number of interfaces.

Eick et al. proposedseweral code deca indicators. Theseindicators are calculated
from metrics basedon version cortrol managemenh formation. Basic metrics include the
number of deltas, the number of lines that are added or deletedin eat delta, the date
when a delta is complete,the interval to implemert a delta, and the number of dewelopers
involved in a delta. Their model has six deca indicators: history of frequencychanges
(CHNG), spanof changes(FILES), size(NCSL), age(AGE), fault potential (FPwtd, the
weighted time model in [21] and FPglm, the linear model), and e ort (EFF). Using these
deca indicators, dewelopers can easily idertify decaed code in legacy system, so that

26

On Navigation and Analysis of Software Architecture Evolution

prevertion can be taken beforethey becomebottleneds for the project. The e ectiveness
of these decgy indicated is veried and proved work well on the change history data of
Lucert Tednologies'telephoneswitch system.

Revealing Hidden Dependencies Between Mo dules

Software maintainers often face a di cult task to identify hidden dependenciesbetween
modules in the software system. When one module is being changed, the ripple e ect
causedby hidden dependencieswill impact someother modules. Sud impacts are usually
undocumernted, and often causeexpected problems.

Gall et al. investigatedsomechangepatterns exhibited by the changehistory of Prod-

uct ReleaseDatabase,and found that these patterns can help to reveal hidden \logical
coupling” among program modules[16]. Their approat hastwo steps. The rst is called
changeseguene analysis and the other is called changereport analysis

Changesajuene analysisidenti es similar changesequencehownn by program mod-
ules. Every past changemadeto a module in the systemis labeledwith the system
releasenumber. When these system releasenumber are put together, it createsa
\change sequence"for the module that records at which releasesthat this mod-
ule was modi ed. Then they try to identify modulesthat shav similar pattern in
their changesequencesThesecommonsequenceseveal \logical coupling” between
matched modules.

Changereprt analysis veri es the logical coupling identi ed from changesejuene
analysisby examiningarchived\c hangereport”. A changereport recordsthe reasons,
defect class,amourt, and type of ewvery change. This step of analysiscomparesthe

\changereport" of modulesthat are found to have similar change sequence.If the

same change reason can be found in the change report for two \logical coupled"
modules, for example,they both respondedto the samebug report, then the \logical

coupling" betweenthesetwo modules are veri ed.

Similar work by von Mayrhauser et al. also attempts to detect hidden dependencies

betweenmodulesin the systemby exploiting information from history defectdatabase[54).

Related Researb On Software Evolution 27

Their approad is to build a defect architecture by identifying relationshipsbetweensystem
componerts basedon whether they are involved in the samedefect report, and for how
many times this situation happenedin the past. The stepsto build a defectarchitecture
is described as follows:

1. First, they apply GYR analysis[4(Q] to every componerts of the software systemfor
all the history releases.All the decgyed componerts (yellow and red) are identi ed
and labelled. The sourcedirectory structure is usedto asthe framework for defect
architecture, and those decgyed componerts are attached as leaves.

2. Two or more decged componerts (leaves)are linked, if they are related to the same
defectreport. This relation canbe found at subsystemevel aswell, if two subsystems
contain leavesthat are already linked.

3. If a pair of componerts or subsystemsexhibit persisten fault relations over many
releasesit indicatesthat there are seriousdesign aws in the designof thesecompo-
nerts or subsystems.

In their casestudy, this method is able to pick three modulesthat all responseto the
samebug report and have the same change sequences.Their logical coupling are later
veri ed in the description sectionsof the changereports.

2.2.3 Comparison of Evolution Metrics

All the models and the ewlution metrics introduced here are summarizedin Table 2.1
We list the name of the main author, the name of ewlution metrics, the data sourcefrom
wheremetric is measuredthe purposeof the model, and somenoteson the model.

2.3 Visualization of Software Evolution

Analyzing ewlution metrics can help software managersand dewelopersbetter understand
the software dewelopmer process,especially the maintenanceand enhancemen activities
betweenreleasesand more importantly, to plan and budget future dewelopmen activities.

28 On Navigation and Analysis of Software Architecture Evolution
Author Metrics Aritfact Purp ose Signi cance
Lehman Number of modulesin | Code Understand system | Inverse square growth;
(1997) the system growth rate and pattern | feedbak system
Godfrey Lines of code, num- | Code Understand system | Super linear growth;
(2000) ber of global func- growth rate and pattern | strong growth in partic-
tions, variables, and ular subsystemsof Linux
macros kernel; counter example
of Lehman's model
Ohlsson McCabe and program | Code Identify aging and error- | First to assaiate struc-
(1998) states prone componerts tural complexity with de-
fect rate
Burd Dominancetree Code Measure maintainability | Their case study is not
(1999) of componerts very pervasive
Graves Number of deltas, and | VCSlog | Predict future defectrate | Claim to work better
(2000) averageage than code metrics
Eick (2001) | Various \delta" re- | VCSlog | Identify decayed code Six decg indictors based
lated metrics on \delta" metrics; veri-
ed with very large-scale
and extensive casestud-
ies
Ramil Module or subsystem| VCSlog | To estimate ewlution ef- | Subsystem level change
(2000) changed, added or fort metrics are more e ec-
deleted tive than module level
Gall (1998) | Changeoccurred, and | VCSlog | Identify hidden depen- | componerts change to-
reasonof changes dencies gether tend to have log-
ical dependencies; very
novel apporach
Mayrhauser | Defect report VCSlog | Identify hidden depen- | Construction of \defect
(1999) dencies, and bad archi- | architecture” and \cu-

tecture design

mulated defect architec-
ture™

Table 2.1: Researb on Software Evolution Metrics

Related Researb On Software Evolution 29

Howe\er, existing ewolution metrics are not able to model structural changesmadeto the
software system during its releasehistory becausemany metric-basedewlution models
assumethat the software systemmaintains a static architecture.

Information visualization has been demonstratedas valuable software comprehension
tool for usersto understand software architecture and its ewlution. In this section, we
reviewsomeof the work that appliesvisualization techniquesin software evolution researd.

A generalintroduction to software visualization and various visualization techniques
are discussedby Ball and Eick in [3]. When a software project grows large, and has a
complex architecture, it becomesmpossibleto recognizethe high-level system structure
and behaviors by analyzing only the sourcecode. Software visualization tools help soft-
ware dewelopers deal with the complexity and increasetheir productivity for cortinuous
dewelopmern of the software system. Software visualization use graphical techniquesto
make software architecture visible by displaying program artifacts and behaviors. Ball and
Eick demonstratedtwo tools that can visualize code di erences betweenreleases:

Visualizing code version history. Data from version cortrol system are visualized
with special viewsfor code age,ageand bug x, and x-on- x information.

Visualizing code di erence betweenreleases. This tool displays the di erences be-
tweensourcedirectoriesand le pairs simultaneously Four colorsare usedto high-
light the changestatus of code: red for deleted code, greenfor added lines, yellow
for changedlines and gray for unchangedtext.

Their tools focus mainly on the changesat sourcecode level. They are not capableto
represem changesat software architecture level.

2.3.1 GASE Tool and KA C System

GASE is a Graphical A nalyzer for Software Evolution tool that takesthe architectural
facts of consecutie software releases,and generatevisual diagrams that represen the
architecture ewlution[22]. The GASE tool consistsof four componerts: a fact extractor,
a changeanalyzer, a diagram generator, and a visualizer. The fact extractor parsesthe
sourcecode of selectreleasesof target system, and extract the \facts" from the source

30 On Navigation and Analysis of Software Architecture Evolution

codethat cortains architecture information, sud asthe systemcortainment hierarciy, and
\call" and \include" relations between program ertities. The change analyzer compares
the di erence betweenthe \facts" of two releases.The diagram generatortranslates the
di erence of \facts" into coloredbox-and-arrow diagramsready for visualization. Finally
the viewer displays the architecture di erence betweenselectedreleaseswvith a navigation
and query interface.

KA C systemis anotherewlution visualizationtool similar to GASE [25]. The di erence
is that it reusesmany componerts from popular reverseengineeringtools sut as CIA for
fact extraction and Rigi for visualization.

FERe Gereral - 1 Root < <ACTIVE>» ¢ FoR Gereral - 1 Roat <<ACTIVE> >
[GUES U L
commands b Commancs ¢
] wariabieh
DEPENDENCY ENGINE 55 gl o
PR / — AN
_ — |
PARSEF 85 g o remakec o* |
4 Fay. L funehion
y ¥ & wariable ¢
i I 4 y
rs r//I 7~
n 55 RULF FNGINE 558 g -~
FILE HANDLING 55 RIAE EREAlE 2 FILE HANDLING 58 £ v
Fd L F ’
/ o
/ L
/ .
& .
F 4 ¥
/ Fr
e JuB CTRL 5% / 10 CATALSS
/ [] miscs
£ ainbigiob @
.] = glokifrmatch o
NCLTbES GENERAL BRVCS .55 mNCLOpES glolsiolo
LIBRARIES LIBAARIES

Figure 2.1: Screenshoibf KAC System

In KAC, colorsare alsousedto illustrate three di erent typesof changesof architecture
ertities: presened,added,andremoved. The screenshobf KAC isshavnin gure 2.1 The
window on the left shavsthe visualization at the subsystemlevel. The window on the right
shows the zoom-in e ect, asmodulesand dependenciesnside subsystemDEPENDENCY
ENGINE are showvn in greater detail.

Related Researb On Software Evolution 31

2.3.2 Gall: Software Evolution in Color and 3-D

Gall et al. incorporated a three-dimensionmodel and color histogram in the visualization
of software releasehistories[18]. Di erent from GASE and KA C, which canonly compare
two releasesat a time, this approad consolidatesthe entire changehistory of a software
systeminto single2-D or 3-D diagram. With a special VRML interfaceand a unique color
stheme, userscan visualize and navigate in the 3-D spaceto seard interesting patterns
and hidden relations betweenmodules.

9000000 @ ¢ d

Figure 2.2: Screenshobf 3-D Evolution Diagrams

In the 3-D model, x and y dimensionsshow the software system architecture. The
architecture is modeled as a layered tree with four levels: system, subsystem, module
and program. The z dimensionsrepresen time, labelled by the releasenumber. Color
with di erent saturations acts as an additional dimensionthat illustrates the ewlution
attribute of modules: the relative module age measuredby the module releasenumber
(module releasenumber is the systemreleasenumber whenthis module waslast modi ed).
Figure 2.2 shavs a sample 3-D ewlution model. The diagram on the left visualizesthe
ewlution of whole systemwith individual module shaovn asleavesof the systemhierarchy

32 On Navigation and Analysis of Software Architecture Evolution

tree. The diagramon the right usespercenage barsto represenm the proportion of modules
of di erent age.

=z

programs
TTTnnnmnmnmmmm
UL UL I II]!

wlo e o e lw |- |o
w oo =1 o | e o |8 e

[
o

ol [

o
H
w |- o

-

s fea

[
w

[
w

-
Y

-
0]

el ol
o | e
[
o

-

J
[
~1

-
@

[
o

() o
a o o |-

(]
o

Figure 2.3: Screenshobf 2-D Evolution Diagrams

The 2-D model is a simpli ed model that doesnot cortain any systemstructural infor-
mation. It is a quick tool to overviewthe ewlution history of all the modulesin the system,
asshown in Figure 2.3 On the left is the color scalethat shaws which color correspnds
to which systemrelease. The chart in the certer shows the percertage of modules with
dierent ageat ead release. The chart on the right shows the the age of ead program
module.

The advantage of this model is its simplicity. Using 3D diagramand 2D color histogram,
usercan get an instantaneousview of the system'sewlution history. The disadwvantage of
this model is that the ewlution information provided for eady module is limited to its age.
No furtherer information is provided for eatc module and its relations with other modules
in the system.

2.3.3 Comparison of Evolution Visualization Techniques

All these visualization technologiesprovide some capabilities to visualize the ewlution
of software system structure. GASE and KAC adopt a reverseengineeringapproad to

Related Researb On Software Evolution 33

compareextracted software architecture facts. The 3D software releasehistory model is
uniquein that it providesthe quick overview of the ertire software revision history, and a
powerful visual cue for identifying certain changepatterns.

There are also limitations sharedby thesetechniques. For example,usersdo not have
much freedomin selectingmultiple releasedor architecture comparison;the query facil-
ities are very limited and user cannot create arbitrary queries; the comparisonengines
capture limited typesof architectural changes;and the navigation interface provideslittle
information about individual program module.

2.4 Empirical Studies of Software Evolution

Empirical study helps us to understand how and why things work, and allows us to use
the knowledgeto materially changeour practise and outcome. Empirical study has been
applied widely in many other scierti ¢ researt areas,but with limited successn software
engineering,especially in software ewolution [42, 26)].

Perry discussedhe di culties in conductingthe usefulempirical studiesin software en-
gineering[42). It is very hard to de ne and implemert empirical study that could be relied
on to changean organization'slong-practiceddewelopmen processesThe empirical study
must be carefully designed,and the conclusionmust be persuasie and general. Kemerer
and Slaugher sited speci ¢ obstaclesfor software ewlution studiessud as di culties in
collecting historical data, and the lack of existing theory [26].

To conducta successfulnd credibleempirical study, we must maximizethe accuracyof
interpretation of data and obsenation, the relevanceof our result to software engineering
principles, and the impact on the software engineeringpractice. Perry proposeda six-
componert structure for a successfuempirical study on software engineering. These six
componerts are:

Researb cortext. The problem of focusis de ned and its terminology is explained.
Also the goal of study is linked to what is currently understood about the problem.

Hypotheses. Hypothesesare essetial to empirical study as they state the researt
questionswe are asking. An example hypothesis for software ewlution is \Do es

34

On Navigation and Analysis of Software Architecture Evolution

software systemalways grows its systemsizewhen new releasessomeout?"

Study Design. It is a detailed plan for creating the data that will be usedto test its

hypotheses.We needto designdependert and independert variablesto link causes
and e ects, a plan to systematically manipulate independent variables to change
predictably the way independert variables change, and the operational cortext of

the study.

Threats to Validity. Theseare in uences that may limit our ability to interpret or
draw conclusionsfrom the study's data and obsenations. Three types of validates
must be protected in the empirical study:

{ Construct Validity: independent and depender variablesmust accuratelymodel
the abstract hypotheses.

{ Internal Validity: changesin the dependert variables can be attributed to
changesin the independen variables.

{ External Validity: resultsshouldbe generalizeio ervironment outsidethe study
cortext.

Data Analysis and Presenation. Quartitativ e analysisand qualitative analysisare
two generalapproades.

{ Quartitativ e analysismeanscomparingthe numericaldata. There aretwo tools
commonlyused. Hypothesistesting determinesthe con dencelevel at which the
null hypothesescan be rejected. Power analysisdeterminesthe likelihood that
the null hypothesiswill be rejectedwhenit really should be.

{ Qualitativ e analysisrely subjective data sud asobsenations and interviews to
understand human's perspective of software process.

Results and Conclusion. This is the weakest part of current empirical studies. In
this section,we must explain the limits of the study, what the data says and how the
data related to our initial problem.

Related Researb On Software Evolution 35

2.4.1 Review of Software Evolution Empirical Studies

In this section,we review someempirical studieson software ewlution. Each of them will
be introduced and evaluated using Perry's empirical study principle.

Patterns of System Gro wth

As introducedin the sectionon code-basedewlution metrics, Lehman and Godfrey have
conductedstudieson the systemgrowth of long-lived software systems,as summarizedin
[33] and [19]. Lehman'searly work was conductedon IBM OS/360 operating systemand
contributed to his \laws of software ewolution”. More recerily, empirical data of industrial
systemsfrom ICL, Logica, BAE and Ministry of Defensehave beenstudied. The result
shows that many systemgrowth curves t into a\single parameterinversesquaremodel”.

Godfrey and Tu have examinedthe growth patterns of someemergingOpen Source
Systems. They studied the systemgrowth of Linux kernel for over ninety releasesas well
as marny past releasesof VIM and GNU C Compiler system. Both the overall system
growth and the ewlution patterns of individual subsystemsare studied. They found that
the system size of Linux kernel grows at a geometric rate (super linear). The authors
attributed this result to the dewelopmen characteristics of open source projects, sud
as the large number of dewelopers cortribute to the project in parallel, the distributed
debuggingprocess,and the certralized cortrol over systemarchitecture. They moreover
found that commoncoding practicesin opensourceproject sud ascode cloning cortribute
to the unique growth patterns of many subsystems.

Evolution of Lucent PBX System

Mockus, Eick, and other researbers at Lucent Tednologiesconducted the large-scale
empirical study on the changehistory of Lucent's main telephoneswitch systemfor over
fteen years[13]. The systemis huge, consistingof 100 million line of code, another 100
million lines of headerand Make les, organizedinto 50 subsystems,and 5000 modules,
with 10 thousand dewelopersinvolved.

They have extracted usefulinformation from the databaseof changemanagemenh sys-
tems, including SourceCode Control System, Extended Con guration Managemem Sys-

36 On Navigation and Analysis of Software Architecture Evolution

tem, and Fault and Feature Tracking System. Their methodologiesand analyzingtools are
discussedn [37]. The goal of their researt is to idertify evidenceof \code deca" in the
system(\code decg/" hasbeendiscussedoreviously in the sectionon ewlution metrics).
They collect seeral code decg indicators (CDI), and usethem to diagnosethe well being
of the system. The analysis result shavs some evidencesof \code deca", sud as the
increaseover time in the number of les a ected per changeto the code and the decline
in modularity of subsystems.The results also correlate factors sud asthe frequencyand
age of the changeto the fault rate in modules, and the span and size of changesto the
e ort requiredto implemert a change. Finally, the researtiers concludedthat there is no
evidenceof dramatic, widespreaddecyg found in the system.

Evolution of Main tainabilit y

Burd et al. performed an empirical study that comparesthe ewlution history of four
software systems[9]: a retail systemover eight releaseswith a size of 10 KLOC, GNU
C Computer systemover thirteen releasessizedat 300 KLOC, an operating systemover
four releasessizedat 20 KLOC, and another retailed systemover four releasesizedat 40
KLOC. Their approad is to identify the increaseof data complexity in the applications.
Modulesthat had rapid increaseof data complexity, but with relatively fewer changesto
their call structures, are likely error-proneand may require maintenance.

They obsenedin oneof the retailer system,there had beena signi cant increasen the
data complexity in earlier releases.Howewer, the increasehad stopped when prevertativ e
maintenance had been performedin later releases.In the other retailer systemand the
operation system,a corvergenceof cumulative changesin call and data dependenciesvas
identi ed, which suggestedhat a consisten preventative maintenancestrategy has been
applied. Finally, the GCC system exhibits a chaotic change history. They interviewed
somedewlopers of GCC, and they were told that a prevertative maintenance approadh
was only attempted whentime was permitted.

Dieren t Change Characteristics Between System and Its Comp onents

Gall et al. studied the product releasehistory of a telecomnunication application for
twenty releaseq17]. They comparedthe sizegrowth of the whole systemwith individual

Related Researb On Software Evolution 37

subsystems.In addition, they measuredthe changesof functionality in terms of modules
added, removed or changedin the whole systemand eat major subsystem.

They obsened someinterestinggrowth characteristicsat the systemlevel. For example,
the sizeof the systemis growing linearly, which is very high for industrial system. In the
beginning, the number of modules addedinto ead new releaseis very large, and then it
signi cantly decreasesind becomesalmost constart. Evertually the ertire systemewlved
into a stabilized stage,whereboth the growth and changerates are decreasing.

Then they examinedthe ewlution of oneparticular subsystem becausehis subsystem
has the highest growth rate and changerate. They found one module of this subsystem
has many functions with similar nameswith slightly di erent endings. This indicatesthat
many new functions are only slightly modi ed from existing ones. In fact, this module
contains all the con guration information for the system. New con gurations are often
copiedfrom existing functions with little modi cations, and old con gurations are seldom
changedin newrelease.This explainsthe high growth rate, and low changingrate of this
module. The other two modules of the subsystemsboth have a high grownth and change
rate, which meansalmost every other changein the systemwill a ect thesetwo modules.

Their conclusionof this empirical study is that there are signi cant di erencesin the
ewlution characteristicsbetweenthe whole system,and individual subsystemor module.

2.4.2 Conclusion of Related W ork

Many studieson software ewlution emphasizehe statistical changesof the software system
by analyzing its ewlution metrics. Beside somevisualization tools, very little work has
beendoneto help understandingthe nature of the ewlution of software architecture.

Another limitation of many empirical studiesis the number of releasesexaminedand
the history of many archived data that is not long enoughto generalizethe results of the
study as an ewlution theory. Howewer, the enormousamourt of work required by large-
scale empirical study makes it almost impossible without the application of dedicated
tools and integrated ervironmert, like the SoftwaeChangeervironment createdby Lucert
Tednologieswhen they conductedthe imperial study discussedn [13]. Strong tool and
ernvironment support has beenproven a key factor in conducting a successfulempirical
study on software ewlution.

38 On Navigation and Analysis of Software Architecture Evolution

Our approad to study software ewlution incorporates someof the researth methods
coveredin this chapter, suc asapplying popular ewolution metricsto measurethe historical
changesof system componerts, and using graphical diagrams to visualize the software
changehistory. The main di erence betweenour approad and existing methods is that
we created an integrated ervironment that allow researters to investigate the software
change history from many aspects including ewlution metrics, visualization graphs, and
other analytical tools. We alsointroducean analysismethod that couldtrack the structural
changesof the software systemwhenits sourcedirectory structural or le naming scheme
was changed. In the next chapter, we will describe our integrated approad and structural
analysismethods in detail.

Chapter 3

BEA GLE: An Integrated Platform
for Studying Software Evolution

In chapter 2, we reviewed the two popular researt approatesfor studying software evolu-
tion. The rst approad is to collectand analyzethe historical trends of ewolution metrics.
The secondapproad visualizesthe ewlution of software organizationswith graphical rep-
resenations. We discussedhe advantagesand limitations of ead of thesetwo approades,
and then raisedthe issuethat there hasbeenlimited researt e ort in studying ewlution
at the architectural level. Furthermore, we reviewed se\eral empirical casestudieson soft-
ware ewlution, and nally proposedan integrated environment with automated tools to
assistthe empirical study in this area.

To overcomethe limitations in current researt, we have proposeda new researt
method, which integrates ewlution metrics as well as visualization techniquesinto one
web-basedreseart platform. In this environment, researberscan query the history data
of the software system,comparethe di erences betweenreleasesand investigateinterest-
ing ewlution patterns from di erent perspectives. We also deweloped a technique called
\origin analysis"to examinethe structural changeof software systems.The purposeof this
techniqueis to nd possiblematchesbetweenrenamedor relocated software componerts
in the later releaseswith their \origins” from an earlier release.

In this chapter, we rst introduce the researti problemswe are trying to solwe, then
we discussthe methodologiesfollowed by the discussionof our methodologies,and nally

39

40 On Navigation and Analysis of Software Architecture Evolution

we descrike a prototype implemertation, an integrated environment called BEAGLE that
we have deweloped to help researbers study software ewlution.

3.1 Challenges to Software Evolution Research

We beliewe there are three major challengesthat we must overcomein software ewolution
researtr. Theseobstacleslimit our ability to understandthe history of software systems
using e ective empirical study, thus prevert us from generalizingour obsenations into
software ewlution theory.

The rst challengeis how to organizethe enormousamourt of historical data in a way
that allow researbersto accessthem quickly and easily Software systemswith a long
dewelopmern history would generatemany typesof artifacts. We needto determinewhich
artifacts should be collectedasthe data sourcefor software ewlution analysis.

The secondchallengeis how to incorporate di erent researt techniques of software
ewlution into one integrated platform. We have reviewed seeral models that are based
on software ewlution metrics, and visualization techniquesthat display software history
in graphical diagrams. Evolution metrics are precise, extendable, and can be used for
numerical analysis. Visualization diagrams provide the overview of the ewlution history
and have visual appear to the users. When used together, they are valuable tools for
software ewolution study.

The third challengeis how to analyzethe structural changesof software systems. We
have discussedin the previous chapter the needsfor this analysis, and why traditional
name-basedcomparisontechniquesare not e ective to solve this problem. New researt
methods must be exploredto solwe this challenging problem.

3.2 Discussion of Metho dologies

In this section, we introduce our answers to the three challengeslisted above. Our ap-
proad includesa web-basedreseart platform that integratesseeral essetial techniques
in studying software ewlution, and a novel approad for analyzing software structural
changesthat is includedin our researt platform.

BEAGLE: An Integrated Platform for Studying Software Evolution 41

We rst discusshow the data are selectedand stored in the platform, followed by the
discussionof the various analysis methods integrated in the platform, and how to apply
them to solwe problemsin ewlution resear.

3.2.1 History Data Rep ository
Data Source

As a software systemewlves, the various activities related to its ewlution produce many
new and changedartifacts. Theseartifacts include:

Program sourcecode, Makefile s, compiled binary libraries, and executables.These
artifacts are the main products of software developmern activities.

Artifacts related to the requiremen speci cation and architecture design. They in-
clude feasibility study, functional and non-functional requiremer speci cation, user
manual, architecture designdocumerts, userinterface mockup, and prototype imple-
mertation.

Artifacts related to testing and maintenanceactivities. They include defectreports,
changelogs, newfeature requests test suites,and automated quality assurancgQA)
tools.

The archivesof eat of theseartifacts reveal one or more aspects of the software ewvo-
lution. Collecting and organizing these artifact archives are usually the rst stepin an
empirical study.

In this thesis,our primary focusis the ewlution characteristicsof Open SourceSoftware
(OSS) systems. The reasonis that most OSS projects maintain complete archives of
program sourcecode and version cortrol databasefor history releasesn their FTP sites,
and free of change. With the full accessto program source code and version cortrol
database, we have been able to discorer many details of the history of these software
systems. We also have more freedomin our researti without getting into complicated
copyright or con dential issuesasthe casewith commercialsystems.

42 On Navigation and Analysis of Software Architecture Evolution

One characteristic of OSSdewelopmen processis that dewelopersoften do not system-
atically adhieve initial speci cation and designdocumeris. Much of the documertation
consistsof sketcheson scratch paper or drawing board, private emailsbetweendewelopers,
or newsgroupdiscussions. This \bazaar" dewelopmen style cortributes to many factors
that make OSSsuccessfulsud asshort releasecycle, quick adoption of new features,and
prompt responsesto bug reports [44]. Howeer, the lack of well-archived documerts make
it dicult to investigatethe ewlution of OSSsystems. For some OSS projects, the key
documerts that recordoriginal designdecisionsor reasongor important changesare either
lost or di cult to retrieve.

On the other hand, OSS project usually has a complete archive of version cortrol
information, becausethe code \di " is often distributed as patch to update the program
sourcecode from the earlier releaseto the current, wherethe endusercanbuild the newest
program binaries. The version cortrol databasealso has a web interface for distributed
dewelopmern and debugging. Howewer, typically versioncortrol information descrikesthe
text changesmadeto the sourcecode at line-level, and sometimewith a short description
of the changes.It doesnot explain the cortext of the code change,sud asthe high-lewel
modi cation to the software architecture, and its relations with other code changes.If the
software dewveloper did not documert them explicitly, it is very hard for usto realizeexactly
what had beenchanges,and for what reasons.This makesversioncortrol database,when
usedalone,an ine ectiv e resourceof data for investigating software architecture ewlution.

The ad hoc nature of OSSdewelopmen processmakesit very di cult to nd archived
documertation that describesin detail all the major changesmadeto the software architec-
ture in the past. Fortunately, OSSprojects usually maintain a complete sourcecode base
for every past releases. Furthermore, there are many software reverse engineeringtech-
niquesthat can extract and rebuild someof the software architecture information from the
sourcecode. As the result, we selectedsourcecode asthe primary data sourcefor study-
ing the ewlution of software architecture, and other program artifacts including version
cortrol databaseare usedas complemetary.

Many OSSprojects publish the sourcecode of past releaseon FTP sites. Table3.1lists
three popular OSSsystems,the archived releasesand their FTP addresses.

BEAGLE: An Integrated Platform for Studying Software Evolution 43

Pro ject Arc hiv ed Releases FTP Site

Linux Kernel | Linux 0.0.1(9/17/1991) To Linux 2.4.9 | ftp://ftp.k ernel.org/pub/lin ux/
(presert)

GCC GCC 1.37.1 (2/21/1990) To GCC | ftp://fftp.gn u.org/gnul/gcc/
2.95.2(10/24/1999)

VIM Vim 3.0 (3/5/1996) To Vim 5.8 | ftp:/ftp.vim.org/pub/vim/
(5/31/2001)

Table 3.1: Releasearchivesof three open sourceprojects

Software Arc hitecture Mo del

In this thesis, software architecture refersto the structure of system, emphasizingthe
organization of its componerts that make up the systemand the relationships between
thesecomponerts. We apply reverseengineeringtechniqueson the program sourcecode
to extract the most basicarchitecture facts including program componerts and their rela-
tionships, and then recreatethe high-level software architecture using fact abstractorsand
relational calculators.

Depending on the abstraction level, we have four architecture models that descrike
the structure of the software systemsusing componerts and their relationships[51]. Each
model describesthe system structure with a di erent level of abstraction. By modeling
the software systemat se\eral abstraction levels, researtierscan not only study the overall
organization of the system, but also be able to \drill down" the high-level componert to
further examineits internal structure. The four architecture models are:

1. Entity-L evel Model This model descrikes the data and cortrol ow dependencies
between basic program ertities, sud as functions, non-local variables, types, and
macros. It alsodescribesthe cortainment relations betweentheselow-level program
ertities and their cortaining ertities, which are program les.

2. File-Level Model This model descrikesthe control ow and data ow dependencies
betweenprogram les or modules. Thesehigher-lewel ertities and relations are\lifted
up" from thosein the function-level model using relational calculus.

44 On Navigation and Analysis of Software Architecture Evolution

3. High-LevelModel This model also descrikesthe dependenciesbetweenprogram les
or modules. However, the dependenciesare the abstractionsof thosepresened in the
le-level model. Related dependenciesare grouped into three basic relation group:
function call, data reference,and implemertation relations betweenheader les and
implementation les. Instead of having more then ten di erent dependencytypesas
in the le-level model, high-level model has only three basic dependencytypes.

4. Architecture-LevelModel This model describesthe software architecture at the high-
est abstraction level. Program ertitles models at this level are mainly subsystems
and les. A subsystemis a group of related les or lower level subsystemshat im-
plemerts a major functionality of the system. The processof creating subsystems
for a software systemis mainly performedmanually with assistancegrom the source
directory structure, lename corvertion, and automatic module clusteringtools. The
relations betweensubsystemsare descriked by the samethree basicrelation typesas
in the higher-level model.

Evolution Metrics

Code-basedewlution metrics are valuable information to study the ewlution attributes of
individual program ertities. Our integrated platform provides accesgo seeral ewolution
metrics in addition to the capability to comparesoftware architectures of di erent releases.

The metrics we selectedinclude basic metrics and composite metrics. Basic metrics
include lines of code, lines of commerts, cyclomatic complexity, code nesting, fan-in, fan-
out, global variable accessand update, number of function parameters,number of local
variables, and the number of input/output statemerts. Composite metrics include S-
complexity, D-complexity, Albrecht metric, and Kafura metric [28].

In addition to architecture facts extracted from program source code and ewlution
metrics that are also measuredfrom sourcecode, we needdata that provides extra infor-
mation about ead past release.This information includesthe releasedate, the full version
number, the new feature list, and the bug x list.

BEAGLE: An Integrated Platform for Studying Software Evolution 45

3.2.2 Navigation of Evolution Information
Incorp orating Evolution Metrics with Software Visualization

Previousworks in incorporating software metrics with visualization techniquesin program
comprehensiormave beendiscussedoy Demeyer et al. [12] and Systaet al. [48. Demeyer
et al. proposeda hybrid reverseengineeringmodel basedon the combination of graph vi-
sualizationand metrics. In their model, every node in a two-dimensionalgraph is rendered
with seweral metrics at the sametime. The valuesof selectedmetrics are represeted by
the size, position, and color of the node. Possiblegraph type includestree, correlation,
histogram, cheder, and stapled graph. They also implemerted a platform called Code-
Crawier to experimert with various conmbinations of metrics and program visualization
techniques. Systaet al. have deweloped a reverseengineeringervironmert called Shimka
for understandingJava programs. Shimba usesreverseengineeringtools Rigi and SCED to
analyzeand then visualizethe static structure and dynamic behavior of a software system.
The nodesin ead of thesediagramsare annotated with metric attributes. Thesemetrics
measurethe properties of the classeshat are represeted by the nodes, the inheritance
hierarchy of the Java program, and di erent relations betweenclasses.

Both approathesassistprogram comprehensiorby conmbining the immediate appeal of
software visualization with the scalability and precision of metrics. We are proposing to
adopt a similar approad in software ewlution researf, by creating an integrated platform
that integratesewlution metrics, program visualization, software structural analysis,and
sourcenavigation capability into one environmert.

The platform should provide at leasttwo windows when showing the ewolution informa-
tion of software systems.The rst window shaws a visualization that modelsthe history of
the whole software system,or selectedprogram entitles or relations. When the userneeds
more detail about particular program entity, he can click on the graphical elemen that
models the ertity and the secondwindows will be shovn. This window cortains a table
shawing the history of the ewlution metric measuremets of interested program ertities.

46 On Navigation and Analysis of Software Architecture Evolution

Comparing Dierences between Releases

As we have discussedn the previous chapter, there are two commonapproahesto visu-
alizing software ewlution. The rst approad attempts to show the ewlution information
with one graph for all the history releases. The exampleis Gall's colored 3D ewlution
graph. The other approad shows the architectural di erences betweentwo releasesas
seenin GASE and KA C systems.

Our method is to display the two types of ewlution visualization graph at the same
time. First, we provide a tree-like diagram that shows the system structure of one of
the releasethat is included in the comparison, usually the most recert one. We call it
the structure diagram. The structure diagram modelsthe systemhierarchy as a tree with
branches and leaves. The \branches" or internal nodes of the tree represemn subsystems
and program modules. The \leaves" of the tree represemn functions de ned in the program
modules. User can click on a \branch" (a subsystem)to expandit to shav the lower-
level \branches" (modules), and further to \leaves" (functions). We also use colors and
saturations to model the ewlution status of ead ertity in the \tree". Red, green,blue,
and white are usedto represem \new", \changed", \deleted", and \unchanged" status
respectively. To di erentiate program ertitles that are all \new" (added to the system
later than the rst versionin the comparisonwas released),di erent levels of red are used
to represen their relative \ages". Entity in vivid red cameinto the systemmost recerly,
and the darker red meansthe ertity has beenin the systemfor many releases.With the
help of the tree diagram and a novel color sthema, we can model the ewlution of the
systemover se\eral releasesn a single graph.

The other kind of diagram is shavn next to the tree diagram: it is designedto display
and navigate the di erences betweentwo releasesWe call it the degendencydiagram. The
dependencydiagram is basedon the landscape viewer usedin PBS tools, and extendsthe
sdhemaby adding ewlution related ertities and relations.

If a userselectsa group of releasesand wants to visualize the changehistory, the tree
graph usually shows the program structure of the most recen releasein the group, with
di erent colorsto represen the di erent ewlution status of its program entities inside. The
software landscage graph will show the di erences betweenthe architecture of the earliest
releaseand the most recen release,especially the structural di erence of the program

BEAGLE: An Integrated Platform for Studying Software Evolution 47

ertity that is selectedin the tree diagram betweenthe two releases.By shaving the two
typesof visualization graphstogether, usercan examinethe ewlution from many di erent
perspectives, and navigate from one diagram directly into another diagram. Figure 3.8
shows a prototype implementation of the idealsdiscussedabove.

3.2.3 Analysis of Software Structural Changes

The method we have deweloped to analyze software structural changeis called \Origin
Analysis". We useit to nd the possibleorigin of a function or le that appearsto be
new to a later releaseof the software system,if it existed previously within the systemin
another location. Many re-arcitecting (high-level changesto the software architecture)
and refactoring (low-level modi cation to the program structure) activities involve reor-
ganizing the program sourcecode by relocating functions or les to other locations, with
little changeactually made to the program ertity. Meanwhile, their name may also be
changedto re ect a new naming shema. As a result, many new ertities that appear to
be addedto the newer releaseof the systemare actually old ertitles in the new locations
and/or with a new names.

We de ne \origin analysis" as the practice to relate program entities from the earlier
releasewith the apparert new enities in the later releases. With \origin analysis', the
transition processfrom the previous program sourcestructure to the new one could be
better understood becausewe are able to unveils many hidden dependencieshetweenthe
two architectures.

Why Origin Analysis?

Imagine we are given a task to analyzethe software ewlution of SystemX. SystemX has
two releasesso far, releasevl1.0 and releasev2.0. Figure 3.1 shows the systemstructures
of both v1.0 and v2.0.

After we comparedthe two architectures basedon the namesof program ertities from
both releasesye createa graph that shavs all the new entitles and relationsin v2.0, and
another graph that displays all the entities and relations that will be missingin v2.0. Pro-
vided with thesetwo diagrams, questionssucd as\Where does le D.c in subsystemS2go

On Navigation and Analysis of Software Architecture Evolution

Xv1.0
S1 S2
Main.c C.c
60 | [f70 |
f10) f20)
f3() f4() D.c
B.c f9
0 f10()
Xv2.0

S1

Main.c subdinB.h | | subdinB.c 50

i bdi
Ah|Ad f10 | subdinBB.h |1 BT [713()

S2
Ch ce | 60 | [0 |
80 | [o0 |
S3 _

Figure 3.1: Example of Origin Analysis

BEAGLE: An Integrated Platform for Studying Software Evolution 49

in v2.0and why?" or \Where does le lib.c in subsystemS3comefrom in v2.0?" remains
unanswered. We needmore sophisticatedanalysismethods to answer these questions,or
at least provide somecluesif no conclusive answers can be provided.

In the next section, we will introduce two techniquesthat we have deweloped to im-
plemert origin analysis The rst technique is called Bertil lonage Analysis It usescode
featuresto match similar program ertities from di erent releases.The other technique is
called DependencyAnalysis It examsthe changesof relationship betweenselectedprogram
ertity and thosewho are dependedon it to nd the possiblematch.

Bertillonage Analysis

Bertillonage analysiswas originally usedby police departmert in Francein the 1800sto
attempt to uniquely idertify criminals by taking the measuremets on various body parts
likethumb length, arm length, and headsize. This approad predatesthe useof ngerprints
or DNA analysisasthe primary forensictechnique. We borrow this term to descrike our
approad to measurethe similarity betweennew functions iderti ed in a later releasewith
those missing functions from the previousrelease,hopingto nd a pair positive matches
so that we can declarethis \new" function has an \origin" in the previous release. We
usedthe term \Bertillonage" asit is an approximate technique. Unlike more advanced
techniques sudh as ngerprinting and DNA analysis that require more e ort and take
longerto conduct, \Bertillonage" is ableto identit y a small group of \suspects" easilyand
quickly from tens of thousandsof population. We could use other advanced techniques
that requires more computing power, or sometimeeven common sense,to lIter out the
real \suspect" from a much smaller population.

This approat was rst usedin clone detection, where the goal is to discover similar
code segmets within the samesoftware release.We extendits application to software evo-
lution, wherewe try to match similar functions from di erent releasego analyzestructural
changes. \Bertillonage" is a group of program metrics that represen the characteristics
of a code segmeh Kontogiannis proposesto use Vv e standard software metrics to clas-
sify and represen a code fragmert: S-Complexity, D-Complexity, Cyclomatic complexity,
Albrecht, and Kafura [28].

We have pre-computedand stored these v e measuremets for every function in every

50 On Navigation and Analysis of Software Architecture Evolution

releaseof the systemunder consideration. Any two functions from consecutie releases
with the closestdistance betweentheir measuremen vectorsin a 5-D spaceare potertial
candidatesfor a match. The rational is that, if a newfunction de ned in the later release
is not newly written, but rather an old function relocated from another part of the system
in the previousrelease, then the \new" function and \old" function should sharesimilar
measuring metrics, thus they should have the closestEuclidean distance between their
Bertillonage measuremets. The matching algorithm is described as follows:

1. As the result of an architectural comparison,a function in the referencereleaseis
identied as\new", which meansa function with the samename in the same le
doesnot exits in the previousrelease.

2. Compile a \missing" list that cortains functions that existedin the immediate pre-
vious release but do not exist in the current release.

3. Match the Bertillonage measuremenvector of the \new" function with that of every
function in the \disappeared"function list. Sorttheir Euclideandistancein ascending
order.

4. Selectthe v e best matches.

5. Among the v e best matches,comparetheir function namewith the \new" function
being matched by matching the commonsubstring in their names. Choosethe one
whosefunction nameis the most similar to the \new" function, which meansit has
the longestcommonsubstring with the function namethat we are matching with.

The last step of comparing function name works as a Iter to discard mismatched
functions, sincethere are chancesthat two irrelevant functions happento have very similar
Bertillonage measuremets. Hereis an examplefrom the casestudy of GCC that illustrates
why it is necessary In GCC 2.0, there is a new function build_binary_op_nodefault
de ned in le cp-typeck.c in subsystemSemantic Analyzer. When applying Bertillon-
age analysis, we get the following v e best matches. The distanced is calculated as the
Euclidian distancebetweenthe two le-element vectorsthat represem the code featuresof
selectedfunctions.

BEAGLE: An Integrated Platform for Studying Software Evolution 51

1. combine from fold-const.c: d=1005745.47
2. recog_4 from insn-recog.c: d=2496769.23
3. insn-recog.c from recog_b: d=7294066.05
4. fprop from hard-params.c: d=8444858.78

5. build_binary_op_nodefault from c-typeck.c: d=8928753.44

The obvious choice should be match number 5, which has the exact lename as the
\new" function. The only di erence betweenthesetwo functions is the les in which they
are de ned. Howewer, they do not have the closestdistance, as match 1 to 4 are much
closerto the \new" function than the correct \origin” function. The explanation could
be that this function has somewhatchangedits internal structure (control ow and data
ow) in v2.0, soit measuredasdistant in the 5-D vector space.Howeer, sincethesetwo
functions are expectedto implemert the samefunctionality in both releaseswe can still
pick them up with Bertillonage matching algorithm enhancedwith function name lter.

Dep endency Analysis

We usethe following analogyto explain the basicidea behind the DependencyAnalysis:

imagine a compary that manufactureso ce furniture hasdecidedto move from Tororto

to Waterloo. This evert will a ect both its businesssuppliersand customers.lIts supplier,
say a factory that provides building material to the compary, must update its customer
databaseby deleting the old shippingaddressn Toronto, and then adding a shipping ertry

to re ect the newaddressn Waterloo. The customer,for example,O ce Depot, alsoneeds
to update their supplier databaseto deletethe old Toronto addressand update it with the
new Waterloo address. If we do not know the fact that the new o ce furniture compary

that just registeredwith City of Waterloo is actually the old compary with many yearsof
operation history in Toronto, we can comparethe changesof the customerdatabaseof its

suppliers,and the supplier databaseof its customersto discover this move.

52 On Navigation and Analysis of Software Architecture Evolution

The sametype of analysiscanalsobe usedfor analyzing software architectural changes.
In this case,we aretrying to identify a particular changepattern on call dependency Here
is a description of how the dependencyanalysisis performedto track function movemeris:

1. Identify the \new" function in the referencerelease.

2. Analyze the caller functions:

(a) Find all the caller functions of this \new" function.

(b) For ewery caller function that also exists in the previous release,comparethe
di erences of the function lists that it callsin both releases.Selectthose func-
tions that werebeingcalledin the previousreleaseput no morein the reference
release.

(c) Any functions that are selectedmore than onceare candidatesfor the origin of
the \new" function.

3. Analyze the calleefunctions:

(a) Find all the functions that this \new" functions callsin the referencerelease.

(b) For ewery calleefunction that alsoappear in the previousrelease,comparethe
di erence of the list of functions that call it in both releases. Selectthose
functionsthat werecalling it in the previousreleaseput no morein the reference

release.
(c) Any functions that are selectedmore than onceare candidatesfor the origin of
the \new" function.

4. By combining the results from previoustwo steps,we might nd the \origin" for the
\new" function, if it is not really newly written, but an\old" function being moved

to the current location.

Figure 3.2 shavs an examplethat we can verify our dependencyanalysis. Function A
in releasev2.0is \new" to the system. Now we needto nd out if there it hasan origin in

the previousreleasevl.0.

BEAGLE: An Integrated Platform for Studying Software Evolution

Release
G() v1.0
B()
F()
E()
N()
Release
G() v2.0
B() D()
A()
EC)
C()
N()

Figure 3.2: Example of Call-Relation ChangeAnalysis

53

54 On Navigation and Analysis of Software Architecture Evolution

Caller Analysis: Function A is called by Function B and C in v2.0. Howewer, only B
exits in both v2.0 and v1.0. Sowe will seehow the calleelist of B hasbeenchanged:
B usedto call G and F in v1.0, but in v2.0,it callsG and A. The di erence is function
F in v1.0 and we put this function in the candidatelist.

Callee Analysis. Function A calls function D and E in v2.0. Be-causeD was not in
v1.0, we only needto study E: E usedto be calledby F and N in v1.0, but it is called
by A and N in v2.0. The di erence is function F again, which agreeswith the result
from caller analysis.

After applying both caller analysisand calleeanalysis,we beliewe that the \new" func-
tion A in v2.0 hasvery closetie with an\old" function in v1.0, if they are not the same
function at all.

3.3 BEA GLE: An Integrated Environmen t

To validate the researth techniques we have just discussed,we have built an researt
platform called BEAGLE, that integratesse\eral researti methods for studying software
ewlution, including the useof ewlution metrics, programvisualization, and origin analysis
for structural changes.

BEAGLE hasa distributed architecture that reasserbles a three-tier web application.
Figure 3.3 illustrates the conceptualarchitecture of BEAGLE. At the badkend, the ewlu-
tion data repository storeshistory information of the software system. The data repository,
togetherwith the query-processingnterface,formsthe databasetier. In the logictier, com-
parison engineretrievesinformation from the databasetier, and comparethe di erences
betweenthe selectedreleasesdrom various perspectives. The origin analysis componert
performsthe task to reveal the hidden relations betweenthe program structures of di er-
encereleases.The visualization componert generatesthe graphical represemation of the
software ewlution data. The componerts in the logic tier receiwe user queriesand send
badk query results through the user interface application running on clients' madines,
which forms the usertier. Userscan alsonavigate the ewlution data usingtools from this
tier.

BEAGLE: An Integrated Platform for Studying Software Evolution 55

Client Tier ﬁ -

A A
Applicati Comparison Origin Analysis Visualization
PP !Ca I_On Engine Component Component
Logic Tier
Database
Tier Evolution Data

Repository

Figure 3.3: Conceptual Architecture of BEAGLE Environmert

56 On Navigation and Analysis of Software Architecture Evolution

3.3.1 Database Tier

Like many information retrieval systems BEAGLE is supported by a data repository that is
implemerted as a relational database.In the database,software architectural information
of past releases,as well as metrics that describe the attributes of program ertities are
storedin the database,organizedaccordingto a star schema which are described below.

Functional componerts in the logic tier accesghe information storedin the data repos-
itory through a query interface. In BEAGLE, the query interfacesare written in SQL, the
standard relational databasequery language.

Data Repository Schema

In the repository, relational tables are organizedaccordingto a star schema The star
schemais a popular data model in databasewarehousesystemsand multi-dimensional
databasesystems.lt is a query-certric model designedfor static databaseghat storelarge
amourt of historical data, and supports time seriesanalysisto discover historical patterns
presenied by the data and to forecastfuture trends.

In star schema tables are arranged in the following ways. A certral \fact" table is
connectedto a setof \dimension" tables, oneper dimension. The name\star" comesfrom
the usual diagrammatic depiction of this schemawith the fact table in the certer and eadh
dimensiontable shavn surroundingit [50].

The BEAGLE data repository hasfour fact tables. They model the systemstructure
and relations between program ertities at various abstract levels. The four levels of ab-
straction are: entity, le, high, and architecture. Each level of architecture fact is stored
in its own table for all the history releasesBesidesthe di erent abstraction level, all four
fact-tables have very similar structure.

1. Entity-L evel Facts - A ertit y-level fact table storesthe lowest level of architecture
information that we model in BEAGLE: the dependenciedbetweenfunctions, global
variables,and macros. It alsostoresthe cortainment relations betweenbasicprogram
ertities and les. We have usedthe sourcecode extractor cfx to pull out suth
information from the sourcecode in our examples.

BEAGLE: An Integrated Platform for Studying Software Evolution 57

2. File-Level Facts - This table is the abstraction of ertit y-level facts: it storesthe
relations betweensource les. File-level facts areinducedfrom ertit y-level facts using
relational calculusformulas de ned in grok scripts in PBS. Ten types of relations
are stored in this table: call _body, call _ifc , call _ifc , call _noifc , dep.other,
impl _proc, impl _var, ref _body, ref _ifc , and ref _lifc

3. High-Level Facts - Information stored in the table is further abstracted from le-
level facts. Even thought the main entities modeledin this table are still les, the
relations between les are a set of higher-lewel relations that are mergesfrom the
intermediate relations modeled by le-level facts. We call these facts high-lewel to
di erentiate them from the le-level facts. The abstraction of relations between les
removed cluster of dependenciesby concenrating only on three simple dependency
relations: userpioc, usevar and implementby

4. Architecture-Level Facts- The architecture-level fact table cortains not only rela-
tions betweenprogram les, but alsohigher level architecture facts between le and
subsystem,subsystemand subsystem,and also cortainment relations between les,
low-level subsystems,and high-level subsystem. Subsystemis a group of related
program les working together to provide a major functionality of the system. In
BEAGLE, the groupingof program les into subsystemss performedmanually with
the help of sourcedirectory structure, domain knowledge, and design documena-
tions.

Figure 3.4 shows the relations betweenfact tables and six dimensiontables, aswell as
the sthemaof eadt table.

Besidesthe fact tables, there are six dimensiontables. They provide additional infor-
mation for ertities and dependenciesnodeledin the fact tables. Hereis a list that explains
ead dimensiontable in detail:

1. The versionnumtler table storesthe breakdown of the versionnumber of eat history
release.For example,GCC 2.7.2.3is broken into major releaseastwo, minor release
assewen, major bug- x releaseastwo, and minor bug- x releaseasthree. The series
columnis usedto distinguish betweenthe stablereleasestreamand the experimertal

On Navigation and Analysis of Software Architecture Evolution

Entity Attribute Configuration Attribute
PK | Entity ID PK | Configuration Key
Entity String Configuration String

AN 7

Function Metrics
PK | Function ID_ Entity-Level [File-Level]
PK | FileID PK | Release Key PK | Release Key
PK | Release Key PK | Configuration Key PK | Configuration Key - -
£ Cod PK | Relation PK | Relation File Metrics
Line of Code PK | Entity A PK | Entity A -
Line of Comment ity - PK | Eile D
Cyclomatic PK | Enliy B PK | Entiy B PK | Release Key
Elax |Nesnng Entity B Property Line of Code
an-in
Fan-Out = Average Cyclomatic
Global Variable Access |[——— [High-Level | [Arch-Level | — ﬁverage Il:ine 0; gode
i wverage Line of Comment
Global Variable Update PK |Release Key PK |Release Key Average Fan-out
Parameter PK | Configuration Key PK | Configuration Key Functions Defined
Paramete_r Update PK |Relation PK |Relation_ ot
Iéo(c:al Va}nable PK |Entity A_ PK | Entity A ontout
-Complex Entity B -
D-Complex PK PK|Enttv B Global Variable Access
Albrecht Maintainance Index
Kafura
Input
Output /
Version Number \
Release Date
PK | Release Key
PK | Release Key
_ . Series
PK = Primary Key Major Vear
Minor Month
Bugfix Major Day
Bugfix Minor

Figure 3.4: Schemaof BEAGLE Data Repository

BEAGLE: An Integrated Platform for Studying Software Evolution 59

releasestream. In GCC project, GCC is resened for production releasesand EGCS
is for experimertal releasesIn Linux kernel,the middle digit (minor releasenumber)
indicates whether the releaseis a production release(if even) or an experimental
dewelopmer release(if odd).

2. The releasedate table storesthe releasedate of ead history releaseslt includesthree
columns: year, month, and day. The releasedate is usedto calculatethe time interval
betweenconsecutie releasesywhich we useasaroughindicator of developmert e ort.

3. The entity attribute table mapsthe nameof ertities storedin fact tablesto an integer
value to save storagespace,and improve the comparisonperformance. Applications
can easily retrieve the real name of program ertitles bad by doing a lookup on this
table.

4. The con guration attribute table extendsthe con guration column in fact tables.
Many software systemssupport exible building con gurations. For example, GCC
supports C, C++, Objective C, Chill, Fortran, and Java. It providesusersan option
to choosewhich compilerto beincludedin the build. In our casestudy, we build eah
releaseof GCC with two build options: CONLY for building a c only compiler, and
ALL for building GCC compiler suite with all supported programminglanguages.

5. The function complexity table cortains a selectof code metric measuremets tar-
geted at the function level. Measuredmetrics include LOC, McCabe's cyclomatic
complexity, fan-in and fan-out. We also pre-computeand store four composite met-
rics: S-Complexity, D-Complexity, Albrecht, and Kafura [28]. We will usethis metric
information to act asa kind of \ ngerprin t* for the functions in \origin analysis".

6. The le complexity table cortains a set of metrics at the le level. Most metrics
included in this table are basic complexity metrics. The last metric, maintenane
index, measureghe maintainability of a program source le asintroducedin [3§].

History Data Collection and Pro cessing

The data in the fact tables are collected using PBS tools. The metric measuremets are
collectedusing a sourcecode analyzingtool called Understandfor C++ , which is a reverse

60 On Navigation and Analysis of Software Architecture Evolution

engineeringdocumertation, and metricstool for C and C++ sourcecode[15. The outputs
from both toolsare processedy a seriesof transformerswe have written to transform them
into the formats that conformto the BEAGLE repository schema.

The PBS outputs follow RSF (three-elemenm tuple) and TA [23] formats. Both formats
are very closeto fact table sdhema, so the corversion processis straightforward. The
situation is di erent for Understand for C++. BecauseUnderstandfor C++ hasit own
internal data storagestema, much work needto be doneto translate the data generated
by Understandfor C++ from its own schemainto BEAGLE repository schema.

UnderstandC++ generategwo typesof analysisreports. Oneis Metrics Report, which
shows basicmetric information for functionsand les sud asLOC, Cyclomatic complexity,
Fan In, Fan Out, etc. Another report is the Cross Referene Report, which cortains the
following information:

The Object Cross Referene Report lists all C/C++ objects, sud as variables, pa-
rameter and macrosalong with declaration or usagereferences.

The Classor Type Cross Referene Report lists all declaredclassesand typesalong
their declaration or usageinformation.

The Function CrossReferene Report lists all C/C++ functionsalongwith parameter
list, return type, and referenceinformation.

We can use Metrics Report directly to populate the two metric tables in BEAGLE
repository for basiccode metrics. For more complexmetrics sud as Albrecht and Kafura,
we have to parsethe CrossReferenceReport output to rebuild the internal cross-reference
databasein memory By walking through the internal cross-referencelatabase,we can
calculate all kinds of required interactions between functions and les to calculate com-
posite code metrics. We have to do sobecausePBS doesnot provide detailed information
at sub-function level. To build a complete architecture fact repository for all the history
releaseswe needto repeat the data collecting proceduresfor every archived release.Ad-
ditional information regardingthe releaseevens, sud as releasedata and releaseversion
number are alsocollectedand usedto populate various dimensiontablesin data repository.
Figure 3.5is a owchart that illustrates data collection procedure.

61

BEAGLE: An Integrated Platform for Studying Software Evolution

9|gel ||qeL 9|geLl sinquny 9|gel
lagwinyN UOISIBA aleq aseaay uoneinbiyuod ainguny Anug
9|qe 10e4 a|qe] 10e4
|9A87-ybiH [9AS7-8114
a|qeL soueN alqeL
uonoun4 SoBN 914
9|gel 1oeH s|gel 1oed
[oAa1-Anug [9A37-Y2IY
(2@ o1 pueisispun)
lorejsuel |
[y
(aag o1s49d)
(1loday somen lorejsuel |
1o} pasinbal 10U) |« SETITIEYN < lasled uoday
19zAreuy uone|ay/Anu3 .puepsiapun,
90U319J94-SS0ID
dny{waisAsgns} Jsis1oe4janaybiy
(aindino sgd) (andino sgd)
/{\} /{\}
1oday aoualajey-ssold uoday somaN IslI'sjoe-|anaT9|l JsIaseqioe)
(++2 puelsiapun) (++D pueisiapun) (aindino sgad) (andino sgd)

0°TA asesjay

Q'ZA 9sesjay 7

QN 8ses|ay 7

Figure 3.5: Proceduresto Build Data Repository

62 On Navigation and Analysis of Software Architecture Evolution

Repository Access Interface and Comparison Query

Having all the history data in a relational databaseis the rst step in building the data
tier of BEAGLE. We must also provide a query facility for the repository sothat all the
functional componerts in the logic tier can accesshe data repository e ectively, and to
\slice and dice" the history data stored in the repository to investigate the patterns of
software architecture ewlution.

One of the bene ts of choosing a relational databasefor implemerting BEAGLE data
repository over someproprietary data storageis that RDBM provides SQL (Structured
Query Language)asthe standard query interfacefor easyand exible data access.SQL is
a powerful query languagethat is able to expressalmost all the queriesthat userswant to
issueto the history data repository, for analyzing software architecture ewolution attributes
and patterns.

We presen two examplequeriesto illustrate the querying interface and working med-
anism of BEAGLE comparisonengine.

Example Query: Change of Arc hitecture Entities

Our rst taskisto nd the setof all functions that were newly de ned in versionv2 (i.e.
werenot presen in versionvl). Wealsowant to nd out all the les in which newfunctions
are de ned, aswell asthe LOC and Kafura metrics for all the new functions. Here s the
SQL statemert that carry implemert this task:

SELECTFunc_Name.entity_string AS Function,
File_Name.entity_string AS File,
Metrics.line_of_code AS LOC,
Metrics.Kafura AS Kafura

FROMENtity Attribute AS Func_Name,

Entity_Attribute AS File_Name,

Function_metrics AS Metrics
WHEREuUnc_Name.entity id = Metrics.function_id

and File_Name.entity_id = Metrics.file_id

and Metrics.release_key = v2

and (Metrics.function_id, Metrics.file_id) IN (

BEAGLE: An Integrated Platform for Studying Software Evolution 63

SELECTunction_id, file_id

FROMFrunction_Metrics

WHEREelease _key = v2
EXCEPT

SELECTunction_id, file_id

FROMFrunction_Metrics

WHEREelease _key = vl)

This SQL statemert usestwo data tablesfrom the repository: Function Metrics and
Entity Attribute . It selectsthoseowsin the Function Metrics table with releasekey
equalsto v2, plus condition that the function key and le key exits in versionv2, but not
in versionvl. Then it refersto the Entity Attribute table to corvert the integer key
bad to ertity name string.

Figure 3.6 shows a sectionof the output of the above query. We are comparingGCC
2.7.2.3and GCC 2.8.0.

Example Query: Change of Arc hitecture Relations

Our secondtask is to compareversionv3 with v2 (both under build con guration c1), and
show all the newrelations between les within subsystems1,wherethe calleris "old (exists
in both v2 and v3), but the le being calledis new (only existsin v3, not in v2). Hereis
the SQL statemern to carry out the query:

SELECTCaller_File.entity_string AS Caller,
Callee_File.entity_string AS Callee
FROMSS_Fact,

Entity Attribute AS Caller_File,

Entity _Attribute AS Callee_File
WHERES_Fact.relation = "useproc"

and SS_Fact.entity_ a = Caller_File.entity_id

and SS_Fact.entity b = Callee_File.entity id

and SS_Fact.release_key = v3

and SS_Fact.configuration_key = cl

and SS_Fact.entity_ a IN (

64

On Navigation and Analysis of Software Architecture Evolution

save_constants_in_decl_trees i grate .. 11 10
insn_cuid combine.c 11 ed
rte_equal_for_field_assignment_p | combine ¢ 33 120
{|sets_function_arg_p combine ¢ 27 12}
merge_assigned_reloads reload! o 45 40
|reload_cse_check_clobber reload! .c] 4
reload_cse_invalidate_mem reload! ¢ 23 12
relnad_cse_invalidate_regno reload! ¢ 55 o]
reload_cse_invalidate_rtx reload! ¢ 15 Y
relosd_cse_mem_conflict_p reload! c 49 il
reload_cse_noop_set_p reload? ¢ 63 120
reload_cse_record_set reload! c 10 360
reload_cse_regna_equal_p reload! o a2 af
reload_cse_simplify_set reload! c 40 100
reload_cse_regs reload! ¢ 1149 537
reload_cse_delete_death_notes reload! ¢ bl 36|
(reload_cse_no_longer_dead reload! ¢ 13 T
(reload_cse_simplify_operands reload! ¢ 156 480
|free_regset_vectar flow.¢ a 7
print_ril_with_bh o ¢ 86 50
|find_valid_class reload.c 24 0
| exception_section wArasm.c 16 1
||mark_constant_pool varasm.c 18 9
mark_tonstanis WATASIM.L a0 36
output_after_function_constants varasm.c 13 (5
asm_output_aligned_bss WArASM.C 18 55
hss_section WAFSIN.L 19 2
|=h_frame_section VArasm.c] 1
in_data_section varasm.c 5 0

Figure 3.6: Result of the rst examplequery

BEAGLE: An Integrated Platform for Studying Software Evolution

SELECTentity b

FROMS_ Fact
WHERERNtity a = sl
ANDrelation = "contain"

ANDrelease _key = v3
ANDconfiguration_key = cl

INTERSECT
SELECTentity b
FROMS_ Fact
WHERENtity a = sl
ANDrelation = "contain"

ANDrelease_key = v2

ANDconfiguration_key = cl1)
and SS_Fact.entity b IN (

SELECTentity b

FROMS_ Fact
WHERERNtity a = sl
ANDrelation = "contain"

ANDrelease_key = v3
ANDconfiguration_key = cl

EXCEPT
SELECTentity b
FROMS_Fact
WHEREnNtity a = sl
ANDrelation = "contain"

ANDrelease _key = v2

ANDconfiguration_key = cl1)
AND(SS_Fact.entity_ a, SS_Fact.entity b) IN (

SELECTentity a, entity b

FROMS_Fact

WHEREelation = "useproc”

ANDrelease_key = v3

ANDconfiguration_key = C1

66 On Navigation and Analysis of Software Architecture Evolution

EXCEPT
SELECTentity a, entity b from SS_Fact
WHEREelation = "useproc”

ANDrelease_key = v2
ANDconfiguration_key = C1)

This exampleis more complicated than the previous one, so we will explain in more
detail. Sincewe do not needany metric information, soonly subsystem-level fact table
and entity attribute tables are accessedn the query. As introducedin the previous
section, subsystem-leel fact table cortains facts related to function call relations, data
referencerelations, and implemertation relations between les and subsystems.

The SQL statemert rst selectsrows from the subsystem-leel fact table where the
releasekey is v3, con guration key is cl1, and most important, the relation betweentwo
ertities must be\useproc”, which meanscall relation between le or subsystemertities.
Then it continuesto specify the caller le, callee le and the call relations with SELECT
clause.

The rst sub-clausein the SQL statemert puts constrairt on the caller le. In the
rst SELECT statemen of the sub-clause,t selectsthose les cortained in subsystemsl
in releasev3. The secondSELECT statemert choosesthose les cortained in subsystem
sl,but in releasev2. The INTERSECT operator makessurethat the selectedcaller les
existsin both releasesothat they are quali ed for being\old" callers.

The secondsub-clauseconstrainsthe le being called. In the rst SELECT statemert
of the sub-clausejt selectsthose les contained in subsystemslin releasev3. The second
SELECT statemert choosesthose les contained alsoin subsystemsl, but in releaseV2.
The EXCEPT operator ensurethat the selectcallee les existsonly in releasev3, but not
in v2, sothat they are quali ed for being\new" callees.

The last sub-clauselimit the call relations to be \new". It again usesthe EXCEPT
operator to choosethose\useproc” relations that exist in releasev3, but not in v2.

Similar to the SQL statemert in the rst example,the original le name strings are
converted badk from integer keysby referring to the entity attribute table. The result
will be a list of (caller le, callee le) relation pairs that satisfy the query criteria.

BEAGLE: An Integrated Platform for Studying Software Evolution 67

Figure (3.7 shaws the output of this query. The two releasescomparedby the query
are GCC 2.8.0and GCC 2.3.3. The focusedsubsystemis \RTL Generator".

CALLER CALLEE |

bc-amit.c
simic bc-amit h
Istr’nt £ be-aptab h
simic bytecode h
function.c bc-amit. h
Yarasm.c bc-emit.c
!eapr ; bc-armit.c
T bc-amit. h
ermit-rtl.c bc-amit. h
B he-optab h
1exprt bytecode h
optabs.c insn-opinit.c

Figure 3.7: Result of the secondexamplequery

3.3.2 Application Logic Tier

The core functionalities of BEAGLE are provided by componerts in the application logic
tier. They are version comparison engine origin analysis component and evolution visu-
alization component

Version Comparison and Evolution Visualization

In BEAGLE, we adopt a novel approad to visualizethe di erence betweenvariousreleases.
Figure 3.8 shows the screenshot of BEAGLE visualizing the architecture di erences be-
tweenGCC version2.0 and GCC version2.7.2.

The tree structure in the left panel of the window shaws the systemstructure of GCC
version2.7.2. Items shawn in folder iconsare subsystems.lt cortains les, which is shovn
in Document icon. Under le, there are items that represem functions de ned within the
source le. Functions are showvn in black icons. User can click on an icon, and the system

68 On Navigation and Analysis of Software Architecture Evolution

Figure 3.8: ScreenShot of BEAGLE Architecture Comparison: GCC 2.0vs GCC 2.7.2

BEAGLE: An Integrated Platform for Studying Software Evolution 69

structure tree will automatically expandto show ertities under the selectedsubsystemor
le.

In BEAGLE's ewlution visualization, colorsare usedextensively to model the ewolution
status of individual program ertities:

Red represens ertities that are \new" to the release. Since we choseto visualize
the architecture di erences between GCC v2.0 and v2.7.2, any ertities including
subsystems, les, or functions in v2.7.2, but were not in v2.0 are treated as \new",
thus are taggedwith red icons.

Blue indicates program ertities that were originally in v2.0, but are missing from
v2.7.2.

Green indicatesthat parert-level ertities, sud assubsystemsand les, cortain either
\new" ertities or have entities deletedfrom them. We choosegreencolor becauset
preserts life and changes.If the noneof the cortained ertitles ever changed,this will
be indicated by white.

Cyan iconsare for functions that exist in both version2.0 and version2.7.2.

For program ertities that are\new" to GCC version2.7.2,di erent \reds" with various
levels of saturation are usedto di erentiate their \tenure" within the system. An ertity
in vivid red cameinto the systemrelatively late, while darker red meansthat entity has
beenin the systemfor se\eral releases.

At the left bottom of gure 3.8 we can seenine new les under \Scanner" subsystem.
c-pragma.c rst appearedin GCC at version2.3.3. It is one of the oldestamongall nine
les, soits red is the darkest. c-pragma.h rst appearsin GCC at version 2.7.2, which
meansit is the youngest. Thus its color is very freshred. File cp/lnput.c rst seenin
GCC at version2.6.3. It is later than c-pragma.c but earlier than c-pragma.h. As the
result, its icon hasa red color with saturation somewherean the middle.

The frame on the right side of gure 3.8 shaws another style of software ewlution
visualization. It is basedon the landscape viewer usedin PBS. It extendsPBS's schema
by adding ewlution related ertities and relations. Six new ertities are addedto model
new subsystemdeletesubsystemchange subsystemnew le, delete le and change le.

70 On Navigation and Analysis of Software Architecture Evolution

Also there are six new relations: new call, deletecall, new referene, deletereference, new
implementeal-by, and deleteimplementel-by.

If userchoosesa newer releaseasthe referenceeleaseand want to seehow the software
architecture hasbeenchangedsincea speci ed earlier releasethen the ewlution visualizer
will display all the \new" entitles, \changed" ertitles and \unchanged" entities, along
with \new" rations and \unchanged" relations. \New" meansthe ertity only exists in
the newer referencerelease. \Changed" meansthe subsystemor le existsin both the
referencereleaseand earlier release put it contains \new" modulesor functions within it.
Sincefunction is the most basic program entity in BEAGLE, it only has two ewlutions
status: \new", or \unchanged".

If userchoosesan older releaseasthe referencereleaseand want to compareits software
architecture with a newer releasethen the ewlution visualization will display all deleted,
changed,and unchangedertities. It alsoshows delete,changed,and unchangedrelations.
\Deleted" meansthe ertity existsonly in the earlier release but not in the newer release.
\Changed" meansthat subsystemor le cortains modulesor functions that are no longer
in the newer release.Sincefunction is the most basicprogram entity in BEAGLE, it only
hastwo ewlutions status: \unchanged", or \deleted".

Origin Analysis

In BEAGLE, we apply both Bertillonage analysisand dependencyanalysisto examevery
\new" functions in the selectedreleasewith its immediate previousreleaseto nd out its
\origin", and examall the \delete" functions with its immediate next releaseo nd out its
\destination". Under somecases,source les will be moved to new locationsin the later
releasesmost time to new directories, as a maintenancee ort to reorganizethe source
directory structure. In other casesyelated source les are givencommonpre X or su x in
their le namesfor easierunderstandingof their responsibility in the system. Eventhough
the le content doesnot change,many les will have a new name after the new naming
sdhemeis adopted.

Thesetypesof changesto le path and le name make traditional architectural com-
parisontools sud as GASE and KA C ine ectiv e, becausehey treat a le with a di erent
path or namea very di erent le. The result will be too many \new" les iderti ed in the

BEAGLE: An Integrated Platform for Studying Software Evolution 71

newer release. Our solution to avoid this kind of chaosis to apply Bertillonage analysis
on ewery function de ned in the \new" le. If the majority of the functions have \origin”
functions that are from the same le in the previousrelease,we can imply that this le
is the \origin” le of the selected\new" le. Another solution is to perform call depen-
dencyanalysisat le level. Instead of cheding the \callee list" changeof caller functions
and \caller list" changeof calleefunctions, asin the call dependencyanalysisperformed
at function level, we examinethe \callee list* changeof les that have call dependencies
with this \new" le, or the \callee list* changesof those les that this \new" les hascall
dependencieswith. The result is the potential "origin” le for the selected\new" le.

3.3.3 User Tier

Usersinteract with BEAGLE through user tier componerts. These componerts handle
user input and submit queriesto the logic tier, then organizeand display the results on
the screen.Here usea simple exampleto illustrate the interaction betweenBEAGLE user
interface and a user. The software systemunder investigationis GNU C Compiler.

Figure 3.9: User Interface for Entering Query Options

72 On Navigation and Analysis of Software Architecture Evolution

Initially , a list of history releaseof GCC are displayed in a web page,alongwith short
description for ead release,such asthe full releasenumber and releasedate. A usercan
selectany two releasesor a group of consecutie releasesover a period, and then request
an architecture comparison,as showvn in Figure 3.9. The userinterface componert will
respondto the user'srequestby sendinga messagéo versioncomparison enginein the logic
tier. When the comparisonis nished, the results are passedo the evolution visualization
component, wherethe di erence betweenthe two software architectures are corverted to
graphical diagramsalongwith other detailed changeinformation about individual program
ertities. Finally, the diagramsand other attributes are sendbadk to the lands@pe viewer
componert in the usertier for display and further navigation, asshawvn in Figure 3.8.

3.4 Conclusion

We have introducedan interactive, web-basedntegrated approad to study software evo-
lution, especially architectural and structural changes. The data sourcewe selectedfor
study is the architecture facts extracted from program sourcecode, with additional in-
formation on ewlution metrics, releasedetails, and revision cortrol data. All the history
data is storedin a relations databaseand organizedaccordingto star sdhema. Queriesto
the ewlution data are implemerted in SQL statemens. The query results are displayed
in a web browserasvisualizedewlution graphsand tables of ewlution metrics. Userscan
navigate the ewlution data as usual WWW pages. The ewlution of software structure
is studied using origin analysis methods. The purpose of this analysisis to reveal the
hidden relationships betweenprogram ertities in the more recen releasewith those from
the earlier releaseas the results of systemre-arcitecture. We present two methods for
origin analysis. One method comparesthe feature setsof functions from both releasedo
nd the possiblematch. The other method analyzesthe changesof call relations between
suspected functions and their dependens. When usedtogether, these two methods are
able to provide plausible results.

In the next chapter, we verify the e ectivenessof our approad by examining the
ewlution history of GCC, a large open sourcesystemwith a long dewelopmern history
using BEAGLE.

Chapter 4

Arc hitectural Evolution of GCC:
A Case Study

In the previous chapter, we discussedthe main ideaswe have deweloped to browse and
analyze software ewlution, with particular emphasison the ewlution at the architecture
level. We also descriked an integrated platform BEAGLE that implemerted thesetech-
niques. In this chapter, we will usethe ewlution history of the GNU Compiler Collection
(GCC) project as an exampleto demonstratehow one may use BEAGLE to explorethe
ewlutionary history of a large software system.

This chapter beginswith a brief descriptionof GCC and its developmen history. Then
we demonstratehow BEAGLE can aid in answering various detailed questionsabout its
ewlution. We have chosenquestionsthat a new deweloper might askin trying to cometo
an understandingto the software architecture of GCC and its ewlution.

4.1 Background and History of GCC Pro ject

4.1.1 Origin of GCC

The GNU Compiler Collection (GCC) was originally deweloped as a compiler for the C
language(gcc) by Richard Stallman, the founderof the GNU and FreeSoftware Foundation.
The rst versionof GCC wasreleasedn June 1987. It consistedof 110,000ines of C code,

73

74 On Navigation and Analysis of Software Architecture Evolution

initially supporting two target platforms: VAX and Sun3Workstation. It compiled only
C code at that time. The original designgoal of GCC wasto createa portable optimizing
compiler that supported diverseCPU architectures and multiple programming languages
[47], and onethat hasremainedthroughout its lifespan. GCC is exible to be extendedto
support other programming languageand platform?.

GCC version1.x was deweloped and maintained by Richard Stallman and a few ernthu-
siastsfrom the GNU project [11]. The software is copyrighted and distributed under GNU
GPL (General Public License),which requiresthe redistribution of the compiler and its
sourcecode to be free.

4.1.2 GCC 2.0 and Cygnus

In the early 1990, GCC was facing a major challenge. While GCC version 1.x performed
well on CISC madiines sudh as DEC VAX and Intel i386, extra optimization e ort was
neededto support newly emerging RISC platforms, which require much more complex
instruction sdheduling medanisms. Michael Tiemann wrote [11], \With the world transi-
tioning from CISC to RISC, we wert from having hands-davn the best compilerin almost
ewvery regard to a more complexset of tradeo s the customerwould have to ewvaluate. It
was no longer a simple, straightforward sell.”

Another challengecamefrom supporting the C++ language.The GNU C++ compiler
started asa separateproject in the fall of 1987. Although its code was originally basedon
GCC, the dewelopmen of GNU C++ fell behind GCC in terms of stability, asC++ is a
much more complexlanguagethan C. Furthermore, the designof the C++ languagewas
still ewlving throughout late 1980sand most of the 1990s. New and complex features,
sud astemplates, were cortinually beingintroducedto the \draft* standard. It became
obviousthat the old dewvelopmern model (i.e., maintenanceby a small group of enthusiasts)
of GNU was not practical.

To keepthe GNU C and C++ compiler projects moving forward and competitiv e,
various changeswere made to the dewlopmen model of GCC. Cygnus, which usedto
prot by distributing GCC software and providing porting services,teamedwith FSF to

!Someonewas able to port GCC to a new CPU (the 32032from National Semiconductor)in just two
weeks,and still got performancethat was 20 percert faster than NS's proprietary compiler [11]

Architectural Evolution of GCC: A CaseStudy 75

dewelop GCC version 2. FSF still kept the \steering wheel" of GCC, which cortrols the
direction in which GCC should go and how it should be built. In the pre-web age, this
wasan e ective dewelopmen model for open sourcesoftware to obtain necessaryesources
and commitmert. Cygnus cortributed most of the key dewelopers of GCC, and in the
mearwhile making money by selling a value-addedproduct line basedon GCC and other
GNU tools, aswell as providing porting and maintenanceservice.

GCC version2.x, which wasreleasedn February 1992,bundled compilersfor C, C++
and Objective-C into one padkage. GNU C++ was no longer a separateproject. asit
fully mergedwithin GCC. GCC 2.0wasableto generateobject code for 19di erent CPU
architectures, comparedto only 13in GCC 1.42. Most newly supported architectures were
for RISC madines, such asthe HP 9000/800x seriesand IBM RS6000. The new version
also had more e ectiv e optimization and sceduling algorithms.

4.1.3 EGCS and Web-based Software Development

GCC 2.x is not perfect. Its support for \templates”, asintroducedin 1998 ANSI C++
standard, was very poor both in completenessf functionality and e ciency, due to the
limitation in its software architecture design. The STL (standard template library) imple-
mertation that was basedon the designfrom HP is inferior to the onefrom SGI (another
popular STL implemertation). \Exceptions" in C++ are implemerted in g++ without
much optimization. Many innovations in instruction sdeduler designand code optimiza-
tion algorithmsthat emergedduring the 1990shave yet to be incorporatedinto GCC source
code.

Along with the technical issuesthere wasalsotensionbetweenvarious GCC dewelopers.
Traditionally, GCC had been tightly cortrolled by FSF with respect to issuessut as
which new featuresshould be added and how the architecture should be modi ed for the
next release. FSF tended to be consenrative about adding new features. BecauseGCC
is the system compiler for all GNU projects, stability was top priority for them. FSF's
consenative altitude towardsthe ewlution of GCC alsoresultedin the long product release
cycles,an averageoneyear for eat new release(even for bug- x releases)

On the other hand, with the increasingpopularity of GCC and web-basedcooperative
dewelopmern models(pioneeredby Linux kernel), moreand more peoplewith diverseinter-

76 On Navigation and Analysis of Software Architecture Evolution

estshave becomeinvolved in the dewelopmert of GCC. Eadh group hasdi erent interests
in the direction of GCC dewlopmert. Somefocus on the optimization for a particular
architecture, suc asthe Pertium; somewish to include a Fortran front-end or a new C++
library into GCC; somewarnt to port GCC onto embeddeddevices;and somejust want to
try out the newest instruction sdheduler from the IBM researt lab. The diversecollec-
tion of streamsof GCC dewelopmer sloved down the overall processand causedtension
betweenzealousdewelopers and the conserative \steering committee”.

To handle the situation, a group of dewelopers decidedto start a more experimental
dewelopmern project, basedon GCC but running as a parallel developmern systemto the
traditional GCC project. This project was named EGCS (Experimertal GNU Compiler
Systems). The dewelopmen model for EGCS is more \op en" and collaborative. It allows
dewelopers all over the world to have an opportunity to cortribute to the project [11].
Similar to Linux kernel, EGCS hasa very short releasecycle.

The bene t of having two projects active at the sametime is obvious. New features
and improved hardware architecture support could be tested in EGCS without hurting
the stability of GCC. When a feature is debuggedthoroughly in EGCS and proven stable
enough,or a bug found in the old GCC code base,they are passedo the GCC maintainer
at FSF immediately, and vice versa. Linux kernel project has similar dewvelopmer model
that maintains the stable releasesand dewelopmert releasesn parallel.

The EGCS project madeits rst release EGCS1.0,in August 1997. Until March 1999,
sewen versionshad beenreleased1.0.x and 1.1.x). During the sametime, GCC published
their 2.7.x and 2.8.xreleases.

After EGCSrelease$ad beenwidely acceptedby the software developmern commnunity
for over two yearsand proven to be a reliable system, a historical momert occurred in
April 1999. The Free Software Foundation o cially halted developmen on the GCC 2.8.x
compiler and appointed the EGCS project as the ocial GCC maintainers. Also the
meaning of GCC is changedto be the abbreviation of \GNU Compiler Collection". The
most up-to-date GCC versionat the data collection time of this thesiswas 2.95.2released
on October 24, 19995,

2Version 3.0 was releasedon June 2001, after the work for this thesis had beencompleted

Architectural Evolution of GCC: A CaseStudy 77

4.2 Common Software Arc hitecture of GCC Releases

4.2.1 Reference Arc hitecture of Compilers

A compiler is a program that processes set of statemerts written in a particular source
programminglanguage,and translatesit into madine languagethat a computer processor
can execute. A compiler is comprisedof four essetial componerts: a scanner,a parser,a
semarnic analyzer,a code generatorand optimizer [2].

Conceptually, a compiler operatesin phases,eadt of which transforms the sourcepro-
gram from one form of represemation into another. Those phasesas shovn in gure 4.1,
are often grouped into a \front-end" and a \back-end". The front-end consistsof phases
that depend primarily on the sourcelanguageand are largely independen of the target
madine. This includeslexical and syntactic analysis, the creation of the symbol table,
semarnic analysis,and the generationof intermediate code. The front-end can perform a
certain amourt of code optimization aswell. The front endalsoincludesthe error handling
functionality that goesalongwith ead of thesephases.

The badk-end includes the phasesthat depend heavily on the hardware architecture
of the target madciine. Generally the badk-end does not depend on the sourcelanguage,
but instead on the speci cation of the intermediate languageand the architecture of the
target hardware. The badk-end normally includescode optimization and code generation,
together with necessaryerror handling and synmbol table operations.

It hasbeena commonpractice to take the samefront-end of a compiler and rewrite its
asseiated badk endto createnew compilersthat runs on di erent macdines. For example,
IBM VisualAge Smalltalk product family corntains versionsfor many platforms including
Windows, OS2, AlX, Solaris, Netware, HP-UX, and Linux. It is also popular to compile
sewral di erent languagesinto one common intermediate language,and then reusethe
samebadk-end for the particular target. Software architects of a compiler systemneedto
exercisecareful designto balancethe interfacesand dependenciesbetweenfront-end and
badk-end to easecompiler porting

78 On Navigation and Analysis of Software Architecture Evolution

Source Program

v

Lexical Analyzer

/
N N Front-end v /
N Syntax Analyzer Y
AN v /
~ ~ Semantic Analyzer 7
v

~intermediate Code Generator” Error Handler
-~ -
— f -
Code Optimizer
- v ~

~ Code Generator ~
7 # N

Symbol-Table
Manager

Target Program

Figure 4.1: Componerts and Phasesof Compiler

4.2.2 GCC Conceptual Arc hitecture

The conceptualarchitecture of a software systemis the software designer'smenal model
of the overall system structure, including the decomposition of the systeminto subsys-
tems, and the dependencieshetweensubsystems.The conceptualarchitecture provides a
suggestedor idealized systemstructure to help us understand the enormousinformation
provided by the program sourceand extracted low level architectural facts [7]. Concep-
tual models are usually created using the following information: directory structure and
grouping of le names,graph layout, related documenation, build process,organization
structure of project group, and sourcecode commers.

We usedthe discussiornof modern programminglanguagecompiler[2] and existing GCC
documertation [47] to createthe following conceptualarchitecture for a modern portable
multi-target multi-language compiler, in gure 4.2 The major componerts of our GCC
conceptualarchitecture include:

Driver is mainly an interface between GCC and the user. It also coordinates the

Architectural Evolution of GCC: A CaseStudy 79

GCC Distribution GCC Driver GNU Tools

Language | Code
Compiler Generator

Preprocessor

|
|
: Assembler «— Linker
|
|

Figure 4.2: Conceptual Architecture of GCC and its Componerts

execution of various compilation phaseswithin GCC (and later, outside GCC). It
performsthe following tasks:

{ Interprets the commandline parameters.

{ Determineslanguagetype basedon le namesu xes, then choosesappropriate
languagecompiler and utilit y program to run, the parametersto run with, and
initites execution of the compile.

{ Converts commandline parametersaccordingto a formal speci cation language
called\specs". The \specs"languagede nes rules suc as: if gccis called with
option "-x', then call the compiler or utilit y program with option "-y'. This
e ectively createsa uni ed entry point for all languagecompilersin GCC family.

Preprocessor implemerts the preprocessordirectives, sud as include and macra
It also removes commerts. The result is clean source code with line-numbering
directives,which the rest of GCC subsystemsnay usein warning and error messages.

LanguageCompiler includesboth the languagefront-ends and a part of the target
madine badk-end. It performslexical analysis,syntactic analysis,semaiic analysis,
generatingintermediate code as well as someoptimizations at the RTL level.

80 On Navigation and Analysis of Software Architecture Evolution

Caode Geneiator translates the intermediate code into assenbly code for the target
madine.

Assembleris not part of the GCC distribution, but is is usedby GCC driver \gcc".
It producesrelocatable madine code that can be passeddirectly to linker.

Linker is alsonot part of the GCC distribution, but is usedby GCC driver "gcc".
It species all object les, the location of libraries and links program.

GCC is a large software systemwith half a million lines of commerned code (version
2.7.2.3).In this section,we concelttrate on the architecture of LanguageCompiler subsys-
tem, whoseconceptualarchitecture is shovn in gure 4.3,

Control Flow l
—_—
Parser Repository
Scanner Semantic RTL <«» Optimizer
Analyzer Generator

Figure 4.3: Conceptual Architecture of LanguageCompiler

There are six lower-level subsystemsinside the Language Compiler subsystem. The
scannerreadsthe input le from the preprocessorasa string of characters,and recognizes
a stream of words and symbols, called tokens. The tokens output by the scannerare
input to the parser, which recognizesthe phrase structure of the sourcelanguageand
builds an abstract syntax tree (AST) to passon to the semanic analyzer. Semaric
analyzeraddsattributes to the AST nodesaccordingto the semanic analysisresult. Then
the AST is passedon to the RTL generator. The intermediate languagerepreseted in
RTL format will go through various level of optimization by the optimizer before nally
beginningemitted from LanguageCompiler subsystento Code Generatorsubsystem.Data

Architectural Evolution of GCC: A CaseStudy 81

structures and related operations that implemert token, AST, and RTL are put in the
repository subsystem.

In this chapter, we referto software architecture asthe organization of software system
with program ertities sut assubsystem, le, and function. It alsodescribesthe dependen-
cies(control ow, data reference,and function declaration and de nition) betweenthese
ertities.

4.2.3 Concrete Arc hitecture of GCC

The Concrete architecture shavs the implemertation model of the system structure pro-
vided from software reverseengineeringtools and human interpretation.

The concretearchitecture is GCC is createdin the following steps. First we extract
architecture facts from the sourcecode. Then we abstract the lower level facts to the
architecture level. Evertually the implemertation model is mapped to the conceptual
model sothat we cancomparethe similarities and di erencesbetweenthe designer'smertal
model and the actual systemimplemertation.

The concretearchitecture of GCC version 2.7.2.3shavn in gure 4.4 was generated
using the software comprehensiortool suite PBS. It shows the \calls" relations and \data
reference'relations betweenthe systemcomponerts of GCC in its implemertation.

Driver _—v Driver e« _

Languge

Compiler Core

T
)

,,,,,,,,,,,

/ ¥, \
v / i 3
Code - T
Generator

Code
Generator

Preprocessor &~ / i ~
/

/
x v / Pl X
| Sl ! Languge -7 v
Compiler Core

| e e

! e . t
! v - ¥‘
Y rd -

Configuration/
Utility

!

Configuration/ o -
Utility M Repository 47"

Repository

Major Subsystem Major Subsystem

Call Relation Data Reference
,,,,,,,,,,,,,, >

Figure 4.4: Concrete Architecture of GCC

82 On Navigation and Analysis of Software Architecture Evolution

The concretearchitecture of the LanguageCompiler subsystemis shavn asa call rela-
tion graphin gure 4.5 and a data referencerelation graphin 4.6.

Scanner

Subsystem

Call Relation
B

Figure 4.5: Concrete Architecture of LanguageCompiler - Call Relation

Parser

Semantic
Analyzer

Optimizer

RTL Generator

_——— > Parser - ———
— ~ -
Ve g P AN > ~N
s Y N N
7/ s N AN
» \ 4
\
Scanner w // \\ _ Optimizer
~ - //
5 7~ X 5
~ _ - \
\ / S~ - \ /
Y / _ o= \ /
N Yoo — I | Y
N) %
A SA?QI?/ 22(; ————— —» RTL Generator &

Data Reference

Figure 4.6: Concrete Architecture of LanguageCompiler - Data Reference

Architectural Evolution of GCC: A CaseStudy 83

4.3 Related Research Work on GCC

GCC hasbeenusedas a casestudy in se\eral researt papers, especially by the SWAG
group at the University of Waterloo. In this section, we will summarize some of this
researt, which coversthe GCC sourcecode size growth, its build-time behavior, and its
maintenanceewlution using dominancetree. We discussthesereseart works asthey aid
in understandinghow GCC has ewlved over time.

4.3.1 GCC System Size Growth

Godfrey and Tu studiesthe systemgrowth history of GCC over 10 yearsof releaseqd52].

The major result is that the growth of GCC is increasedby stepsasshown in Figure 4.7.

Within the sameproject branch, the growth is smaoth and slowv. Howewer, betweenproject

branches, for example, between GCC 1.x and GCC 2.x, or between Gcc 2.x and EGCS
1.x, the sizeincreaseddramatically. There are also releasedrom di erent branchesthat

overlap in their releasesdate. For example,the last GCC 1.x release,1.42 was released
seweral months after the o cial releaseof GCC 2.0. GCC 2.8.x was also releasedat the

sametime as EGCS releases.

This meansthat seweral GCC releasesvere deweloped at the sametime. This nding
correspndsto our review of GCC dewelopmer history. Releaseare maintained mainly for
stability and bug xing within releasebranches,while new architecture are experiencedby
creating a new releasebranch sud as GCC 2.x and EGCS.

This nding alsocortrasts with the fastergrowth rate of someother opensourcesystems
sud as Linux kernel and VIM text editor. The dewelopmert of Linux kernel and VIM
adopt a more de-certralized collaborative approad, where one personacts as the project
coordinator (Linus Torvalds for Linux kernel and Bram Moolenaar for VIM), and many
other dewelopersfrom all over the world are cortributing code to the systemcortinuously.
As the result, the time intervals betweennew releasedor thesetwo projects are very short.
On the cortrary, GCC has adopted a more consenative dewelopmert model. The key
dewelopers of GCC are all from Cygnus, and the project is coordinated by FSF. Outside
dewelopmern concenrates mostly on bug nding and compiler porting. This consenrative
approad attributes to the slower system growth rate of GCC within the samerelease

On Navigation and Analysis of Software Architecture Evolution

84

10
-1dy-6T

66
-09Q-9

86
-InC-v¢

L6
-TeN-TT

S6
-10-8¢

arep asea)al

6 €6 16
-unp-GT -uer-1e -des-6T

soba

200 —8— 40 —o—

209

06
-ReN-2

88 /8
-08@-gz -bnv-T1
0
00T
002
00€
oY
00S
009
00L
008
006
000T

sa|npow Jo #

Figure 4.7: SystemGrowth of GCC Releases

Architectural Evolution of GCC: A CaseStudy 85

stream. On the other hand, the parallel developing nature of open sourcesystemattributes
to the suddengrowth of GCC systemsizebetweendi erent releasestreams.

4.3.2 GCC Build-Time Behaviors

GCC exhibits interesting building behavior, including bootstrapping and build-time code
generation,as discussediy Tu and Godfrey [53)].

Bo otstrapping

Compile Completed GCC

Source Code

Compile
Existing C Compiler
“cc" or "gee"

—use

Stage 1 GCC

C Compiler "ccl1" L —use

C Library "libgcc.a"
Driver "xgcc"

Stage 2 GCC

C Compiler "cc1"
C++ Compiler "cclplus”
Object C Compiler "cclobj” ——use—»
C Library "libgcc.a"
Object C Library "libobjc.a"
Driver "xgcc"

Stage 3 (final) GCC

C Compiler "ccl1"
C++ Compiler "cclplus”
Object C Compiler “cclobj”
C Library "libgcc.a"
Object C Library "libobjc.a"
Driver "xgcc"

Figure 4.8: GCC Bootstrapping Build

The build-time behaviour of GCC during bootstrapping is shovn in Fig 4.8 During
the bootstrapping processthreedi erent GCC compilersarebuilt. The rst oneis built by
the default systemC compiler, and the remaining two are built by GCC itself. In all three

86 On Navigation and Analysis of Software Architecture Evolution

builds, the samesource les are compiled. Three copiesof the GCC compiler executables
GCC are createdat di erent time and ead but the last is immediately usedto compile
for the next phase.

Build-time Code Generation

In GCC, the Register Transfer Language(RTL) is an intermediate represemation usedto
represen the target system'scode after parsing, similar to Java byte code. Howeer, unlike
Java bye code, RTL is hardware dependen. The speci cation of RTL and the portion of
sourcecode that operateson RTL are generatedat build time, using macdine description
information and collectedsystemparametersfrom the GNU configure . The main bene t
of having a target-dependert RTL represemation is that we canimmediately generatethe
target madiine language(assumingan in nite number of registers),but in a way that the
compiler can understandand manipulate. Hardware-degenden optimizations alsooperate
on this intermediate format, and only valid instructions for the particular madine are
generatedas the result of all passesf transformation, for RTL has built-in knowledge of

target CPU architecture.

Optimizer

Scanner e

,,,,,,,,,,,,,,,

RTL Generator
Semantic Uinsn-attrh | finsn-config.c |
(> -

Analyzer Uinsn-attr.c Jiinsn»flagsc |

Generated Files at
Subsystem Build-time Call Dependency

Figure 4.9: GCC Build-Time Code Generation- GeneratedCode

Architectural Evolution of GCC: A CaseStudy 87

Figure 4.9 shows a portion of the code architecture view of GCC 2.7.2.3with \holes"
(dashedboxes) that represem the missing sourcecode les. Both the core compiler sub-
systemand code generatorsubsystemcortain the RTL manipulation code that is missing
from the distribution. The internal code architecture of the core compiler subsystemis
illustrated in Fig. 4.9.

The missing les in the corecompiler subsystemare generatedat build-time from code
templates by sourcecode generators® The procedureis explained here and illustrated in
Fig. 4.10with a build view architecture diagram.

genattr.c genflags.c sparc.md Source files come
Code View gencodes.c genconfig.c parc. from GCC
distribution

c compile
) F———use——»|]
Compiler Environment
Parameters

genattr genflags
gencodes genconfig

use——»| depénd

Build View

insn-attr.h insn-flags.h
insn-codes.h insn-config.h

compile/link

C Compiler

Execution View
GCC C Compiler

Figure 4.10: GCC Build-Time Code Generation- Code Generation Procedure

1. First, the (build-time) sourcecode generatorsare compiled;the sourcecode for these
generatorsare cortained within les whosenamesbegin with gen. The result is a
set of executableprograms.

3The build-time sourcecode generatorsshipped with the GCC sourceshould not be confusedwith the
object code generator subsystemof GCC, which is a standard componert of any compiler.

88 On Navigation and Analysis of Software Architecture Evolution

2. Next, thesecode generatorsare executedin sequence.They take madine description
les for the target machine as input. The madine description les are picked by
configure . The output is a collection of C source les. Thesegenerated les have
namesthat begin with insn. TheseC les are usedto Il the \holes" in the code
view of core compiler subsystem.

3. Finally, the source les to build a working GCC are all available. We now compile
the code from the sourcedistribution together with build-time generatedcode, and
link them together to createthe GCC compiler system.

Thus, the build-time architecture shavs how the GCC system\lls in the gaps" of the
code view of the shipped sourcecode that were (intentionally) left by the GCC dewelopers.

4.3.3 Dominance Tree Analysis of GCC Evolution

Burd and Munro usedominancetrees[10] as discussedn Chapter 2 to track the change
in maintainability from GCC v2.5.4to GCC 2.8.0. They usethe perceriage cumulative
changeof strong to the direct dominancerelations againstdirect to the strong dominance
relations as the code maintainability index. They discoreredthat the dominancerelation
index dropped to negative from v2.5.5to v2.7.0, and cortinuing through to version2.7.2.
Then, the index jumped dramatically to positive at version2.8.0. They hypothesizedthat
GCC 2.7.0 added many new features, thus decreasingthe maintainability as dewelopers
were burier writing new code than nding bugsin existing code. On the other hand, GCC
2.8.0was planned as a maintenancerelease which meansfew featuresare added, as most
activity involved xing existing bugs. They later on con rmed thesehypothesisfrom the
interviews with the main dewelopers of GCC.

4.4 Elab oration of Research Questions On GCC Evo-
lution

After we reviewed the GCC project history, and its software architecture, we have some
questionsabout how the software architecture of GCC has ewlved during its long history

Architectural Evolution of GCC: A CaseStudy 89

of 15 years. New programmerswho want to cortribute to the developmen of GCC might
alsofacethesequestions.In this section,we elaborate on thesequestions,and demonstrate
how BEAGLE can be usedto explorethe answers.

The EGCS project played an important role in the life of GCC project. In EGCS,
a brand new architecture was designed. One of the immediately perceiable results
of sud changesis that EGCS has a totally di erent sourcedirectory structure and
naming schemefor source les. Traditional architectural comparisonmethods that
detect new or deleted program ertities or relations acrossreleaseswill fail because
they treat ewery entity and relation in EGCS releasesas new. Since there is no
commonprogram structure betweenclassicGCC and EGCS, they losetrack of what
has not beenchangedfrom GCC to EGCS. Soour rst researt questionis to nd
out how di erent architecturally EGCS really is from GCC, that is, how much of
what appearsto be new is actually just a reformulation or renaming of preexisting
program elemerts.

Rearchitecting activity involves changesto the system structure at the subsystem
level and program level. On the other hand, refactoring is about restructuring pro-
gram sourcecode at the le level and function level. Given the experimertal nature
of EGCS project, we are interestedin knowing how much the EGCS software archi-

tecture haschangedduring its project dewelopmer period. We are alsointerestedin

comparingthis result with that of stable GCC releasessut as GCC 1.x releasesor
GCC 2.x releases.SinceEGCS is an experimertal project, onewould expect that it

would have a di erent changecharacteristicsfrom those of production releasessuc

as the extend of changefor eat new release which subsystemsreceive most of the
changesand what typesof changes.

During the long history of GCC dewelopmert, there had beenmany e orts to rearci-
tect the system,and at lower level, to refactor modules. So our next questionis to
discover those undocumerted rearchitecting or refactoring actives. Refactoring is
one common practice of \p erfective maintenance" at the low level, where modules
are restructured for easier maintenance and comprehension. At the higher level,
rearditecting e orts reorganizethe software structure at the subsystemlevel to add

90

On Navigation and Analysis of Software Architecture Evolution

important new features, or to satisfy other designconcerns.In many Open Source
Software projects, theseactivities are often neglectedin the releasedocumert, which
placesmore emphasison new featuresand bug x.

We discussedgreviouslythat di erent build con gurations will a ect the software ar-
chitecture that is createdby the build processesSinceGCC supports many program
languageswe would like to know how much of thesecompilerssharecommandcode
modules, and how the GCC front-end systemis organizedto support eat language.
To be speci ¢, we would like to comparethe architecture of GCC with only the C
compiler built-in, with those GCC architectures that include support for all of the
GCC compilers(C, C++, Obijective C, Java, Chill, and Fortran asin GCC 2.95.2).

We are also interestedin the distribution of the developmer e ort amongdi erent
subsystemsfor ead releases,and for a particular subsystem,the distribution of
maintenance e ort acrossreleases. This information assistsus to understand the
dewelopmen planning of successfulsoftware project in the past, so that we could
apply what we learnedin planning and budgeting future releases.

In the following sections,we will adopt a tutorial style of presenation to shov how

BEAGLE can be usedto answer the above questions. At the sametime, we will presert
somediscoveriesabout the ewlution of GCC.

441 From GCC 1.0 To GCC 2.0

As we discussedin the sectionson badkground and history of GCC, it was a signi cant
improvemen of GCC to ewlve from versionl.x to 2.x, asa C++ compiler wasintegrated
with the system, a new badk-end that can target more hardware platforms, and many
other Improvemeris weremade. In this section,we will demonstratehow to usethe basic
architecture comparisonfacility provide by BEAGLE to nd changesmadeto the GCC
architecture whenit ewlvedto a new major release.

Architectural Evolution of GCC: A CaseStudy 91

Select Comparison Options

First, we click on the Architecture Evolutionslink in the meru frame on the left of the
screento enter the CompaisonOption window, wherewe would selectwhich GCC releases
to investigate, what is build con guration of thesereleasesand which releaseshould be
usedasthe reference(basepoint of all the comparisons).

In this example,we selectGCC releasel.39asthe represemativ e releasefor GCC 1.x,
and GCC release2.0 asthe rst GCC 2.x releases.To fully understand the architecture
di erences betweenthesetwo releaseswe needto perform two comparisonsin BEAGLE.
In the rst comparison,we set the newer version 2.0 as the reference,so that we could
obsene all the new erities and relations that are added new to GCC 2.x architecture.
In the secondcomparison,we set the earlier version 1.39 as the reference,sothat we can
obsene all the ertities and relations that are to be discardedfrom the older architecture.

Figure 4.11 shows the screenwhere we perform the rst comparison. We choose
GCC 2.0 as the referencerelease,and the \ALL" con guration option that includesall
the supported GCC compilers. For the secondcomparison,we only needto changethe
selectionof shav the software architectureof from newestreleasdo oldestreleaseand we
will have GCC 1.39asthe referencerelease.

Compare Arc hitecture: Overall System

After clicking on the Submitbutton, we examinethe comparisonresult screen. It shows
the architecture di erences betweenthe two selectedreleasesat the subsystemlevel. The
diagram on the top of gure 4.12 shows results for the comparisonwith GCC 2.0 as the
reference.Red ertities and relation arrows are uniqueto GCC 2.0, which meansthey were
addedto the newer architecture. Greenentities meansthe componerts themsehesexist in
both releasesand they cortain newly added ertities inside. Cyan color ertities are those
that remain unchangedin GCC 2.0.

The diagram at the bottom of gure 4.12showsthe query result whenwe selectedGCC
1.39asthe referencerelease.The blue ertities and relation arrows are uniqueto GCC 1.39,
which meansthey will be deleted from the newer GCC 2.x architecture. Green ertities
exist in both releasesand they contain subcomponerts that are alsodeletedlater in GCC
2.0too. Cyan coloredertities are thosethat remain unchanged.

92 On Navigation and Analysis of Software Architecture Evolution

Figure 4.11: Architecture of GCC 2.0 Comparingto GCC 1.39- SelectionScreen

By comparing the two diagrams, we get the initial impressionthat GCC 2.0 added
marny more new program erities and relations comparingto GCC 1.39than the ertities
and relations that wereremoved. This nding agreeswith the generalbelief that software
always grows larger in size. GCC 1.39 contains 70 source les, while GCC 2.0 has 126
source les. The systemalmost doubledin size.

Comparing Subsystem Arc hitectures: Parser

Now we want to zoom into the compiler subsystemto seehow its architecture haschanged.
Click on the Compiler.ss icon to expand its branch in the system structure tree, all
the secondlevel subsystemscortained in compiler subsystemwill be shavn, along with
their changestatus. The architecture landscape frame alsoupdatesto display the current
subsystem.Becausethe compiler subsystemdoesnot directly cortain any source les, we
cortinue to zoom into the Parsersubsystemunderneathto seehow it has changed.

The screenshoton the top of gure 4.13shows the architecture landscape of GCC 2.0
comparingto the referencereleasev1.39. It highlights the componerts and relations that
are new to the architecture, and those cortaining new sub-compnerts.

Architectural Evolution of GCC: A CaseStudy

Figure 4.12: Architecture Comparisonof GCC 2.0 and 1.39- Top Subsystems

93

94 On Navigation and Analysis of Software Architecture Evolution

From the summary displayed in the information frame, we can seeout of 21 les con-
tained in Parser subsystem,17 of them are new. From the structure tree frame on the
left, we can obsene that most \red" les have \c", \cp”, or \objc" assux. Recallthe
history of GCC, we know that GCC 2.0is the rst releasethat integrated three language
compilers| C, C++ and Objective C | into one GCC distribution. As a consequence,
GCC dewelopers designeda new Parser subsystem,where modules that handle di erent
languagesare di erentiated by the su x in their le names.

The screenshotat the bottom of gure 4.13 shows the architecture of GCC 1.39com-
paredto referencaeleasev2.0. It highlights the componerts and relationsthat weredeleted
from the new GCC 2.x architecture, and those cortain sub-compmnerts that becameob-
solete. Only one le, c-parse.tab.c will be deletedfrom parsersubysystem. Two other
les, c-decl.c and fold-const.c also have functions that no longer exist in the newer
release.

Comparing Subsystem Arc hitectures: RTL Generator

The RTLGenerator subsystembelongsto the Compiler subsystem.In theory, it shouldbe
the last stageof compiler front-end, as the output of this stage of compilation should be
the intermediate represemation in RTL format. Howewer, in practice, this subsystemalso
contains a small portion of the compiler badk-end, becausehe RTL format usedby GCC
is partially CPU architecture dependen. As mertioned before, all three parsersin GCC
(C, C++, and Objective C) generatetheir intermediate code in RTL format, sowe expect
very little changewill be madeto the old GCC 1.x code that generatesand manipulates
RTL code from the parsetree. On the other hand, becauseGCC 2.x is designedto provide
better support for RISC CPUs, we alsoexpect somenewcodeto be addedto this subsystem
sothat RTL code can be generatedand then optimized at early stageby consideringthe
special characteristicsof RISC architecture.

The screenshofat the top of gure 4.14 shows what has beenaddedto GCC 2.0. As
we expected, few completely new les were added. Someof them are specic to C++
compiler, sudh as cp-expr.c and cp-init.c . The majority of the additions occurred at
the function level, as many new functions are introduced. We believe thesenew functions
extendsthe way RTL code is generated,so that GCC 2.x can generatecode for a much

Architectural Evolution of GCC: A CaseStudy

Figure 4.13: Comparisonof GCC 2.0and 1.39- Parser

95

96

On Navigation and Analysis of Software Architecture Evolution

Figure 4.14: Comparisonof GCC 2.0and 1.39- RTL Generator

Architectural Evolution of GCC: A CaseStudy 97

broaderrange of CPU platform.

The screenshoiat the bottom of gure 4.14shaws all source les within the RTLGen-
erator subsystemfrom older GCC 1.x are still keptin GCC 2.0. Howewer, marny les have
obsoletefunctions deletedfrom the older architecture.

Comparing Subsystem Arc hitecture: Code Generator

The Code Generatorsubsystemis oneof the mostimportant badk-end subsystems.Assem-
bler code that is speci c to target CPU is emitted at this stage. Since GCC 2.0 supports
many target CPUs, we expect this subsystemin GCC 2.0 architecture will have many new
les. Figure 4.15veri ed our expectation, asthe number of les in this subsystemalmost
doubledin GCC 2.0, and only two les gnulib.c and gnulib2.c are moved out of the
system. Our investigation suggestedthat the removal of thesetwo les is related to the
new way in which GCC 2.0 handlescommandlibraries. It doesnot meanthe removal of
major featuresfrom the subsystem.

442 From GCC 2x To EGCS 1.x

There are many di erences betweenGCC releasesand EGCSreleasesFor example,EGCS
releasegeorganizedtheir sourcedirectory structure, and alsoadopted a new naming con-
vertion for the source les. These changesmake corvertional architecture comparison
methods, which identify changed and unchanged program ertities by comparing their
namesand directory location in both releasesno longer applicable. Thesemethods rst
chooseonereleaseasreferenceand then all ertities in the other releasethat have di erent
nameand location in the sourcedirectory are treated aschangescompareto the reference.
If the two releasesunder comparisonhave very di erent sourcestructure, corvertional
methods will treat everything in the later releaseas new ertities.

Figure 4.16 shows the comparisonresults by selectingArchitectureEvolutionfrom the
main meru, which is a \name and location based" comparisonmethod as usedin our
previous comparisonof GCC 2.x and GCC 1.x. As we can see,every programenity (le
and function) in the systemstructure tree and landscape diagramis red, which meansthey
are falselyidentied as\new" in EGCS 1.0.

98

On Navigation and Analysis of Software Architecture Evolution

Figure 4.15: Comparisonof GCC 2.0 and 1.39- Code Generator

Architectural Evolution of GCC: A CaseStudy

Figure 4.16: Comparisonof EGCS 1.0and GCC 2.7.2.3

99

100 On Navigation and Analysis of Software Architecture Evolution

On the other hand, with Origin Analysis we can analyzewhether a particular function
has a correspndert from the previousrelease,or it is newly written for the later release.
If there a correspnding function is found in the previous releasethat either has similar
featuresor similar dependencieswith this function, we can related thesetwo functions, as
it demonstrateshow this particular function hasbeenmoved inside the program structure
asthe software architecture ewlvesinto the new release.

We can alsoperform Origin Analysis at the le level. This will examineewery function
de ned in a given le, then court how many functions already exit in the previousrelease,
asGCC 2.7.2.3in this example,and how marny functions are newin EGCS. If majority of
the functions camefrom a single le in GCC 2.7.2.3,we can concludethat this new le in
EGCS 1.0 are inherited from that le in GCC 2.7.2.3.

Figure 4.17showsthe result of a sampleOrigin Analysis requeston le gcc/c-decl.c
Among 70 les de ned in this le, 41functions canbe traced bad to their origin functions
de ned in the previous GCC releaseby using Bertil lonageAnalysis With no exceptions,
all the original functions werede ned in le c-decl.c of GCC 2.7.2.3.

Starting from EGCS 1.0, many source les that directly cortribute to the building
of the C/C++ compiler were moved to a new subdirectory called /gcc. To analyzethe
architecture changeat this magnitude (from GCC to EGCS), Bertil lonage Analysis has
beendemonstratedto be more e ectiv e than DependencyAnalysis DependencyAnalysis
assumeghat when we analyzea \new" function, its callersand calleesfrom both current
releaseand the previous releaseshould be relatively stable, which means most of the
functions that have dependencieson this particular function should not also renamedor
related in the newer release. Howeer, this is not the casewhen completely di erent
software architecture is adoptedin EGCS 1.0 comparingthat of GCC 2.7.2.3,and most of
the les and functions are either renamedor related in the directory structure.

In our casestudy, we have performed Origin Analysis on ewvery source le of EGCS
1.0, which attempts to located possible\origins” in its immediate previousreleaseof GCC
2.7.2.3. The goal is to understand what portions of the old GCC architecture is carried
over to EGCS, and what portion of EGCS architecture represes the new design. This
test takes 3 days to run on a Dual Pertium |1l 1GHz workstation. Here we presern the
result for two represeting subsystemsof GCC: Parserand Code Generator. One is from

Architectural Evolution of GCC: A CaseStudy 101

Figure 4.17: Origin Analysison EGCS 1.0

102 On Navigation and Analysis of Software Architecture Evolution

compilerfront-end, and anotherfrom the badk-end. Both of them areessetial to the EGCS
software architecture, sotheir ewlution story is represemation of entire EGCS system.

There are 30 les in the parser subsystem. Half of them are header les, or very
short C les that de ned macros. We will not considerthese les in the analysis. Of the
remaining 15 les, we have three les consideredto be old GCC le carried over from
v2.7.2.3. We sa les are \old" if more than 2/3 of functions de ned in the le have
\origin" in the previousrelease,on the other hand, \new" les should have lessthan 1/3
of carried over functions. In the parsersubsystem,we have sewen of sud \new" les. All
the other les are consideredas\half-new, half-old", which numbered v e. Overall, out of
848functions de ned in the parsersubsystemof EGCS 1.0, 460are consideredinew”, and
388 are considered\old”. The \new" functions courted as 56 percern of total functions.
For a new releaseof compiler software, this perceriage of newly designedcode is really
high, esp. for a subsystemthat is basedon mature techniquessud programminglanguage
parser. Table 4.1 lists the completeresult.

File Name Total Func | New | Old | ChangeType Origin
gcc/c-aux-info.c 9 0 9 Mostly Old | c-aux-info.c
gcc/fold-const.c 44 15 29 Mostly OIld | fold-const.c

gcc/objc/objc-act.c 167 17 | 150 | Mostly Old objc-act.c
gcc/c-lang.c 16 14 2 Mostly New c-lang.c
gcc/cp/decl2.c 57 50 7 Mostly New cp/decl2.c
gcc/cplerrfn.c 9 9 0 Mostly New None
gcc/cplexcept.c 25 20 5 Mostly New | cp/except.c
gcc/cp/method.c 30 26 4 Mostly New | cp/method.c
gcclepl/pt.c 59 57 2 Mostly New cp/pt.c
gccl/except.c 55 52 3 Mostly New | cp/except.c
gcc/c-decl.c 70 29 41 Half-Half c-decl.c
gcc/cpl/class.c 61 31 30 Half-Half cp/class.c
gcc/cp/decl.c 134 84 50 Half-Half cp/decl.c
gcc/cplerror.c 31 16 15 Half-Half cplerror.c
gcc/cp/search.c 81 40 41 Half-Half cp/search.c

Table 4.1: Origin analysisresultson EGCS1.0| parser

Table 4.2 lists the result of the Origin Analysis on the Code Generator subsystem.

Architectural Evolution of GCC: A CaseStudy 103

Out of the v e les that cortain function de nitions, three les are sonsidered\new" by
the analysis, and the rest two are considered\old”. Overall, 84 percert of the functions
de ned in Code Generator subsystemare newly written. This percertage is much higher
than the Parser subsystem. From these results, we can concludethat EGCS 1.0 has a
signi cant portion of the sourcecode that were newly deweloped comparingto the GCC
releasethat it is supposeto replace,especially for badk-end subsystems.

File Name Total Func | New | Old | ChangeType Origin
gcc/cplus-dem.c 36 36 0 Mostly New None
gcc/certstuff.c 5 5 0 Mostly New None

gccl/insn-output.c 107 95 12 | Mostly New | input-output.c
gccffinal.c 33 20 13 Half-Half final.c
gcclregelass.c 20 12 8 Half-Half regclass.c

Table 4.2: Origin analysisresultson EGCS1.0| code generator

4.4.3 Stable Releases vs. Development Releases
GCC Evolution During EGCS 1.x Releases

To comparethe di erent ewlution patterns of GCC stablereleaseand EGCSexperimertal
releaseswe rst issuea query to BEAGLE asshowsin Figure 4.18

From the main meru, we choosethe selectionof ArchitectureEvolution and then from
the query frame on the right, we selectthe radio button Compae Multiple ReleasesSince
we are goingto view the ewlution history of the EGCS project, we selectall of the EGCS
releasedrom EGCS 1.0 down to EGCS 1.1.2, which cortains seen releasedan total. We
want to seehow ertities and relations have beenadded to the system, so we selectthe
option Shav the landscap of nevest release Then click on the Submitbutton to execute
the query.

Figure 4.19 and Figure 4.20 showv the query results. Figure 4.19 preserts the EGCS
ewlution history for Optimizer subsystemand Code Generator subsystem,both of which
are essetial componerts for GCC compiler badk-end. Figure 4.20 shows the ewlution

104 On Navigation and Analysis of Software Architecture Evolution

Figure 4.18: Evolution of EGCS Releases Make Query

patterns for Parser subsystem,which is one of the most important subsystemof compiler
front-end.

In gure 4.19 we can obsene that in the Code Generator subsystem,there was only
one new le gcc/frame.h (in red icon) added at EGCS 1.0.1 during the ertire EGCS
project, and there are four les (greenicon) having new functions de ned within it. In the
Optimizer subsystem,there are three new les addedat various releasesas gcc/gcse.h
added at EGCS 1.1, gcc/global.c added at EGCS 1.0.1, and gcc/haifa-sched.c in
EGCS1.1. Many other les cortain new functions inside of them, aswe can seeeight les
are shown in greenicon in the subsystem.

From the les branched out from Optimizer subsystem we can obsene that there were
many new les addedduring the life of EGCS. This nding is expected,as EGCS project
emphasizedrying out many state-of-art optimization and madine instruction sceduling
algorithms, thus this will certainly introducenew les and newfunctionsto this subsystem.

Figure 4.20 shows the detailed ewlution information for the Parser subsystem. Com-
paring to the ewolution history of Optimizer and Code Generatorsubsystemsthere are no
new les addedto the Parsersubsystemduring the life of EGCS project. Howewer, many
of the les had new functions de ned within it.

Architectural Evolution of GCC: A CaseStudy 105

Figure 4.19: Evolution of EGCS Releases Code Generatorand Optimizer

106 On Navigation and Analysis of Software Architecture Evolution

Figure 4.20: Evolution of EGCS Releases Parser

Architectural Evolution of GCC: A CaseStudy 107

The reasonfor this nding is obvious if we understandthe history badkground of GCC
and EGCS.When EGCSproject started, the languagefront-end of GCC compilerhad been
very mature. The extra featuresneededat languagefront-end included support for new
ANSI C++ features,which canbe achieved easilyby de ning new functions inside existing
source les. This explains why in the Parser subsystem,the number of new functions
dominatesthe number of new les. Howewer, this is not the casefor compiler bak-end,
suc as Code Generatorsubsystem,and Optimizer subsystem.New optimizing techniques
and new sctheduler algorithms were usedextensiwely in EGCS releases.This meansextra
optimization cyclesare neededat the badk-end. With pipe-and- ler architecture style, one
processingstep always correspnds to one code module [46]. As the result, new source
code modules(les) are addedat the badk-end subsystemdo support the extra optimizing
cycles.

BEAGLE alsoallows usto investigatethe changehistory of individual les or functions.
In the information frame, if we scroll the pagedown, we can seethe comparisonmetrics
for selection le or function. If we click on the link view le histay or viewfunction histay,
BEAGLE will shaw a table listing the ertire history of selectedle or function in term of
its major metrics. By observingthe changepattern of its metrics, we will have someidea
about how this le or function hasbeenewlved during its ertire life.

Table 4.3 shavs the ewlution history of le gcc/combine.c from Optimizer subsystem
during EGCS releases.From the table, we can obsene that the sizeof this le increased
three times during EGCS project at 1.0.1, 1.1, and 1.1.2. The reasonfor secondsize
increaseat EGCS 1.1 is causedby new functions de ned within this le. The functions
within the le had not changedmuch structurally, asthe averagecyclomatic complexity
and averagefan-out metric for all de ned function remainedconstart.

Table 4.4 shaws the ewlution history of a selectedfunction "add_-method” in EGCS
releases.This function is de ned in le class.c and part of the C++ compiler. Its job
is to add a methodto the type that de ned by the current class. We can obsene that
this function kept the sameduring EGCS 1.0.x releasesthen there is a major changeat
EGCS 1.1, and later remain unchangedthroughout EGCS 1.1.x releases.The changeitself
is very interesting, as the length of the function decreaseby 16 lines, as well as all other
complexity metrics decreasan value. After we have investigatedthe sourcecode of this

108 On Navigation and Analysis of Software Architecture Evolution

EGCS Release| Code | Commert | Func | Avg. Cycl. | Avg. Fan-out | MI
1.0 7279 2740 58 28 23 -30
1.0.1 7281 2742 58 28 23 -30
1.0.2 7281 2742 58 28 23 -30
1.0.3 7281 2742 58 28 23 -30
1.1 7532 2799 59 28 23 -30
111 7532 2799 59 28 23 -30
1.1.2 7569 2814 59 28 23 -31

Table 4.3: Changehistory of le gcc/combine.c

function by following the links provided in the web page, we found out that in EGCS

1.0.x, one of the function parameter method (de ned as a pointer to data type tree) is

not useddirectly in the function body. At the beginning of the function, more than 10

lines of code is consumedto make a copy of data structure pointed by methodto decl.

According to the commen, the purposeof this stepis to \b e surethat we have exclusiwe

title to this method's DECLCHAIN After this point, all the referenceto methodis replaced
by decl. In EGCS 1.1.x, this extra copy procedureis eliminated, and all the references
to decl are changedbadk directly to the function parametermethod We suspectedit was

causedby changesmadeto other parts of the system,especially to the tree data structure.

This explainsthe shrinkagein the code size of this function in EGCS 1.1x comparing to

EGCS 1.0.x. Also becausereferenceso local variable and function parameter generate
di erent result in the calculation of many composite complexity metrics, we have di erent

S-Complex,Albrecht and Kafura metric valuesfor thesetwo function de nitions.

GCC Evolution During GCC 2.x Releases

Now that we have examinedthe ewlution of experimertal EGCS releases|et us compare
it with those of stable production releaseof GCC from 2.0to 2.7.2. Our goalis to com-
pare the di erent ewlution strategy adopted by the project planner, and how they treat
experimertal releasesand stable releasedi erently.

Figure 4.21shows the ewlution history of GCC from 2.0to 2.7.2. In this particular
screen,only new ertities are preserned. For Optimizer subsystem,we obsene that only

Architectural Evolution of GCC: A CaseStudy 109

Figure 4.21: Evolution of GCC 2.x Releases Code Generatorand Optimizer

110 On Navigation and Analysis of Software Architecture Evolution

EGCS Release| Code | Commert | Cycl. | SComplex | DComplex | Albrecht | Kafura
1.0 106 16 11 144 5.4 408 24336

1.0.1 106 16 11 144 5.4 408 24336
1.0.2 106 16 11 144 5.4 408 24336
1.0.3 106 16 11 144 5.4 408 24336

1.1 90 13 10 121 5.5 381 20736

111 20 13 10 121 55 381 20736
1.1.2 90 13 10 121 5.5 381 20736

Table 4.4: Changehistory of function add_ method

one le was introduced new during the long releaseperiod. All other addition happened
beneath le level. It corirasts to the pattern of EGCS releasedhat we just investigated,
wheremarny new les are introduced.

For the RTL Generator subsystem,the situation is a little di erent. Many new les
were introduced at di erent releasesin this period. When we pay closer attention to
the lenames of thesenew les, we discover that many of them are header les, sud as
bytetype.h , bi-run.h , and bc-typecd.h which de ne seweral macrosand data structures
sudh asC struct and union.

Figure 4.22shawsthe ewlution history of the Parsersubsystemduring GCC 2.x stable
releaseperiod. We can seemany new les were introduced, esgecially those les related
to C++ compiler and Objective C compiler. We can attribute these additions to the
continuous e ort of GCC dewelopmen to support three languagesfrom the C family in
one system, and have them work together harmoniously Also during this long period,
the languagestandardsthemselesare kept ewlving, soit is natural to cortinually change
the languagefront-end to keepthe parser up-to-date. When the EGCS project started,
all three languageswere nally standardized,sothere was no more needto changeparser
elemen dramatically.

By comparing the ewlution pattern of GCC stable releasesvith EGCS experimertal
releaseswe concludethat exceptsomeother factors, most new code is addedto the stable
releasesn the form of new functions within existing les, while for experimertal releases,
they tend to be in the form of new les.

Architectural Evolution of GCC: A CaseStudy 111

Figure 4.22: Evolution of GCC 2.x Releases Parser

112 On Navigation and Analysis of Software Architecture Evolution

4.4.4 Build Con gurations and GCC Arc hitecture

In this section, we comparethe architecture of GCC 2.7.2under two di erent build con-
gurations. The rst onebuilt only the essetial C compiler, and the other con guration
will build all the compilersthat GCC supports.

In GCC, ewery languagecompiler generatesits intermediate code in RTL format, so
they sharethe samebadk-end subsystemsncluding RTL Generator, Code Generator,and
Optimizer. At the front-end, they ead have their own scannerand parser subsystem.
Eadch parsercreatesa syntax tree directly into the tree format, and later is processedy
the sematicanalyzer. This tree format is identical for all the program langaugesupported
in GCC. The partial treesare then passedrom time to time to routinesthat belongsto the
RTL Generatorsubsystemto convert the syntax tree to the RTL format. Soewven though
ead langaugecompiler hasits own scannerand parser, all the parserscreate parsetree
using the samedata structure asde ned in the tree.h , tree.c , and tree.def . Joadim
Nadler and Tim Joslingthoroughly discussedhe proceduresto write a new compiler front-
endfor GCC that reuseshe standard parsertree data structure and badk-end componerts
of GCC in [39].

Figure 4.23shows the di erence betweentwo builds of the Parsersubsystem.All red
icons represen les unique to the complete build comparing to the C only build. The
purposeof these les is to support programming languagesother than C. In GCC 2.7.2,
they are C++ and Objective C. By examinethe lenames of theseextra le, we nd out
that they all contain special sux. For example, textttcp are commonsu x for C++
compiler les, and textttob jc are sux for Objective C compiler. All other les that do
not have languagespeci ¢ su x sud asoptions.h andfold-const.c and core les for C
compiler suth asc-decl.c and c-parse are sharedbetweenthe two build con gurations.

For the badk-end subsystemssud sourcesharing is much more common, as compiler
badk-endsare usually program languageindependen. In gure 4.24that shows the Opti-
mizer subsystemunder two di erent build con gurations, all the les are sharedbetween
the two build con gurations (white color le icons). The only di erences are dependency
links that are initiated from modulesin other subsystems.

Architectural Evolution of GCC: A CaseStudy 113

Figure 4.23: CompareC-Only and All Build Con guration - Parser

114 On Navigation and Analysis of Software Architecture Evolution

Figure 4.24: CompareC-Only and All Build Con guration - Optimizer

Architectural Evolution of GCC: A CaseStudy 115

4.4.5 Refactoring and Rearc hitecting

In this section,we will demonstratehow to useOrigin Analysis assupported by BEAGLE
to discover undocumerted refactoring and rearditecting activity in GCC 2.0.

First we click on link AnalyzeChangesn the main meru, then we chooseGCC 2.0 from
the pull-down list, and then click on Submitbutton. The origin analysisis performed at
both the le level and the function level. If the userselectsa le, BEAGLE will perform
Bertillonage analysison all functions that are de ned within that le. It will alsoapply
dependencyanalysison the source le to detect its possibleorigin le from the previous
release.If the userselectsa function, both Bertillonage analysisand dependencyanalysis
are performedon the selectedfunction.

In Figure 4.25 we selectthe le function.c from the systemtree of GCC 2.0, and
the analysisresults are displayed in the frame on the right. This screentells us that there
are 49 functions de ned in this le; Bertillonage analysisreturns sewen positive matches,
and no matchesfor the remaining 42 functions. This result revealsthat there are even
instancesof refactoring e orts put into this le, where functions are moved from their
original location to this le. In this particular example,they are all from same le stmt.c
in GCC 1.42.

Tables4.5 shaws the result of Bertillonage analysison function assign _parmsthat is
de ned in le function.c

Function File Subsystem
1 | build_binary_op_nodefault c-typedk.c | Semariic Analyzer
2 assign_parms stmt.c RTLGenerator
3 recog_5 insn-recog.c RTLGenerator
4 store_one_arg expr.c RTLGenerator
5 gen_mulsi3 insn-emit.c RTLGenerator

Table 4.5: Bertillonage analysison function assign _parms

Bertillonage analysis correctly nds the original function. The origin function has
the samename as the \new" function, and it ranks secondin Bertillonage distance. For
dependencyanalysis,we are given no result by caller analysis. Howewer, we get good results
from calleeanalysis,as shown in table 4.6.

116 On Navigation and Analysis of Software Architecture Evolution

Figure 4.25: File Level Origin Analysis Example One

Architectural Evolution of GCC: A CaseStudy 117

The best candidate function from table 4.6 is "assignparms" in le stmt.c from
subsystemRTL Generator. In this example, the Bertillonage analysis and dependency
analysisprovide consisten results. Although this is not the casefor every analysis,we still
can obserne many positive results on di erent new functions.

Callee Function

Caller Functions Unique In Previous Version

build_pointer_type

Datatype

max_reg_num

assign_parms,save_for_inline

move_block from_reg

assign_parms

Bzero

strength_reduce, assign_parms, cse_main

reg_mentioned_p

copy_rtx_and_substitute

int_size_in_bytes

assign_parms

convert_to_mode

expand_inline_function

gen_rtx wipe_dead_reg, assign_parms
tree_last assign_parms
get_last_insn emit_jump_if reachable

Bcopy save_string, assign_parms
expand_expr assign_parms, expand_asm_operands
list_length Commorntype, symout_types
emit_move_insn emit_unop_insn

build_decl implicitly_declare

Table 4.6: Calleeanalysison function assign _parms

Figure 4.26 is another example that gives good results. We look at a \new"

"enquire.c"in the Con guration subsystem.Bertillonage analysison all the functions de-
ned in this le revealsthat among62 functions, 13 functions have be found to have origins
in le hard-params.c from the previousrelease,sud as function bitpattern , ceil _log
and efprop . Function fprop is very interesting. Even though the code feature distance
betweenthis function and its origin from le hard-params.c is aslarge as 12519800pur
detection algorithm is still capableto pick them up as perfect match. The remaining 49
functions sud asbasic and check defines do not have origin functionsthat provide good
match results. It meansthesefunctions are possiblenewly written for this release.

For dependency-based@nalysis,the caller analysisdoesnot provide correctresult. This
is understandablesinceonly 13 out of 62 functions are from another le. The percenage of

118 On Navigation and Analysis of Software Architecture Evolution

relocated functions are not large enoughto generatethe usual dependencychangepattern
to its caller functions that we can useto detectits origin le. Howewer, when we analyze
its callees,we get very good result as shovn in table 4.7 two out of v e callee les of
enquire.c , which are regclass.c andrtl.c , list hard-params.c as one of the missing
les that no longer have call dependencywith them. This nding agreeswith the result
from the previous Bertillonage analysis.

Callee le Caller Files Unique In Previous Version
"regclass.c" "hard-params.c"

"ccep.c” "integrate.c", " combine.c”

"rtl.c" " ow.c", "loop.c", "print-tree.c", "hard-params.c"
"toplev.c" "symout.c", " c-parse.y"

"gcc.c" " ow.c", "c-decl.c"

Table 4.7: Call analysison le enquire.c

4.4.6 Distribution of Evolution E ort

In chapter 3, we introduced the technique of using code feature distance (rst proposed
by Kontogiannis to detect function cloning) in our Bertillonage analysisto match similar
function from the previousreleasdo \new" function in the currert releaseasits \origin”. In
this chapter, we introducethe experimert results of usingthe sametechnique in measuring
the quantied dierence between consecutie releasesof GCC, and the distribution of
the quarti ed di erences amongdi erent subsystemsof GCC, especially the distribution
betweenfront-end componerts and bad-end componerts. We beginwith an introduction
of the idea, followed by the experimenrt result by measuring29 releasesof GCC for over 10
years. Finally, we discussthe feasibility of this approad and possibleimprovemeris.

The code feature distance betweentwo consecutie releasef GCC is measuredin the
following manners:

If afunction (identi ed by its cortaining le directory location, lename, and function
name) existsin both releasesthe code feature distance betweenthe two version of
the function is calculatedasthe Euclideandistancebetweentheir ngerprint metrics.

Architectural Evolution of GCC: A CaseStudy 119

Figure 4.26: File Level Origin Analysis Example Two

120 On Navigation and Analysis of Software Architecture Evolution

If afunction (identi ed by its cortaining le directory location, lename, and function

name)existsin only onereleasethe codefeaturedistanceis calculatedasthe absolute
Euclidean distance betweenits ngerprint metrics and a imaginary function, whose
ngerprint metrics are all zero.

If a le (identied by its directory location and lename) existsin both releasesthe
code feature distance betweenthe two versionsis the sum of all the distancevalues
betweenthe functions de ned in the le.

If a le only existsin onereleasethe code feature distanceis calculated as the sum
of all functions de ned in this le, which meansthey are all comparedto a null le
with null functions de ned.

The overall code feature distance between two releasesof GCC is the sum of all
distancevaluesof their source les.

The code feature distancegive us a rough ideaabout how much di erence exits between
the sourcecode of two consecutie release®of GCC usinga singlenumerical value. Herewe
presen someresultsaswe appliedthis measureto GCC history releases.The measuremen
is performedin two dimensions.

The rst dimensionis the distribution of code distance amongdi erent subsystems.
Which subsystemare changedmost for a particular release?This questionis commonly
asked by software project leaderto budget his limited resourcesfor deweloping the next
releaseof software system.

Figure 4.27 is a code feature distance chart for GCC release2.0. From the chart,
we can seeat this ewlutionary release,subsystemssuc as RTL Generator, Parser, and
Optimizer are most di erent from those peersin the previous release. Major changesto
RTL Generatorand Optimizer correspnd to oneof the two major new featuresintroduced
in GCC 2.0: better RISC CPU support. A much changed Parser is the direct result of
the other new feature of GCC 2.0, which is the integration of support for C, C++ and
Objective C into one compiler system.

GCC 2.8.0is mainly a maintenancerelease. At the time it was released,the EGCS
project, which was basedon the GCC 2.7.2.3, had already started, so no new features

121

Architectural Evolution of GCC: A CaseStudy

walsAsgns

0

00009

~00000T

~0000ST

~00000¢

-0000S¢

-00000€

-0000S€E

9due]si alnjead 9p0D JO uonnginsiag :0'c 009

Figure 4.27: Distribution of Code Distance Across Subsystems GCC 2.0

On Navigation and Analysis of Software Architecture Evolution

122

walsAsqgns
73] <0 (N
T %, Ss, %,
Y, 4 S, 10, Y. "S5 79, S
e, Oy, Yy, sy 00 20, e Uy, To g O, O
Uy Yo Ry SOy, Ny, 05, O Yoy s My, U, S S

9oue)sIg ainyead apoY Jo uonnguisid :0°'8'z D09

0

~ 00009

~ 000001

~ 0000ST

~ 00000¢

~ 0000S¢

- 00000€

~0000S€E

Figure 4.28: Distribution of Code Distance Across Subsystems GCC 2.8.0

Architectural Evolution of GCC: A CaseStudy 123

were added into GCC 2.8.0. Most dewelopmern e ort of 2.8.0was in code cleaningand
bug- xing. In gure 4.28 we can seeParser, RTL Generator, Repository, and Optimizer
received most of the changesin their sourcecode.

The seconddimensionof our measuremetis along di erent releases.For a particular
subsystem at what stageof the product life doesit exhibit mostactive ewolution activities?
Specic to GCC system, we expect the scannerand parserto ewlve fast in the early
releases,and then stabilize. For badk-end subsystem,sud as the optimizer and code
generator, we expect to seetheir cortinuous ewlution, especially at later stage of the
project releasehistory. Also, we expect lesscode feature distance betweenminor releases,
while much more distance betweenbetweenmajor releases.

Figure 4.29shavs how the dewvelopmert of Code Generatorsubsystemhasbeenchanged
along the history of GCC releases.GCC 2.0, EGCS 1.0, EGCS 1.1, and GCC 2.95are
four major milestonereleasesvherethere were signi cant changesto the Code Generator
subsystem. GCC 1.42, GCC 2.7.2,GCC 2.8, EGCS 1.0.2,and EGCS 1.1.2 are someof
the maintenancereleaseghat also changethe internal structure of the Code Generator
subsystemsigni cantly.

From these charts, we can obsene that this method is more suitable to measurethe
changesbetweensoftware releasesvhenit is in stable stage. The condition to usethis met-
ric relieson the assumptionthat very few program entitles (function, le, and subsystem)
are added or deletedfrom the systemduring the period that the code feature distanceis
measured.For example,the data is more meaningfulfor GCC releasesrom 1.37.1to 1.42,
and from GCC 2.0to GCC 2.8.1. When GCC experiencedmajor changesto its funda-
mental systemstructure, like the casein EGCS 1.0 and GCC 2.95, this method generate
meaninglesgesults, becauseevery function of the releaseis actually being comparedwith
a null function that doesnot exists.

One possibleimprovemen to this simplied model is to create a linear model that
incorporates all factors sud as code feature distance, AST (Abstract Syntax Tree) and
LOC in calculating the single-\alue code distance between two releasesof the software
system. When a function is detectedin both releasescode feature distance cortributes
more to the calculation. If the function is newly added, or deletedfrom onerelease,LOC
and AST should cortribute more to the calculation. To create sudh model, extensive

124 On Navigation and Analysis of Software Architecture Evolution

Distribution
Releases

Code Generator Subsystem: Code Feature Distance

35000
30000
25000
20000
15000
10000

5000

Figure 4.29: Distribution of Code Distance AcrossReleases Code Generator

Architectural Evolution of GCC: A CaseStudy 125

empirical study is neededto nd the ideal coe cient of all the cortributing factors.

4.5 Summary of Observ ations

In our casestudy, we have successfullyinvestigatedthe ewlutionary history of the GCC
systemusing the BEAGLE platform and methodologiesintroducedin chapter 3. We are
able to answer many questionson the history of GCC system, esgecially those concerned
the high level structural changesmade to the GCC during se\eral historical milestone
releaseof GCC and its dewelopmer branch, EGCS.

We have demonstratedthe e ectivenesof our methodology of integrating the ewlution
metrics with visualization techniquesin the processof answering thesequestions. First we
selectthe history releasesof GCC that we are interested in compare. Then BEAGLE
will presen the comparisonresultsin a web browserwith three di erent views. The tree
view summarizedthe ewlution status of di erent program componerts at all levels of
abstraction. The landscape view shows the ewlution detail of specic GCC subsystem
including the changesof relations betweeninternal subsystemsand modules. The metric
view provides further information about the complexity and structure change history of
speci c le or function by listing the history valuesof represeting ewlution metrics.

The new naming schemeand sourcedirectory structure adoptedby EGCS| the ex-
perimertal releasebranch of GCC | justify the needfor Origin Analysis that we have
deweloped and integrated in BEAGLE. Origin analysis reveals the connectionsbetween
ertitles in the new software architecture of EGCS and thosein the traditional GCC archi-
tecture. It canalsobe usedto discorer undocumerted refactoring activities as part of the
sourcecode maintenancee ort in many GCC releases.

Our casestudy alsorevealedsomeinteresting ewlution patterns of GCC system. Pro-
duction releasessud asGCC 2.0to GCC 2.7.2.3,follow a slow but steadyewlution path,
where new modules are added to the system gradually. Experimertal releases,sud as
EGCS 1.x, took a more aggressie ewlution path by rewriting almost half of the system
modules and also adopting a new sourcedirectory structure. Dierent GCC subsystems
also exhibit distinct ewlution patterns. Subsystemsin the compiler front-end sud as
scannerand parserewlved quickly in the early stage,whenthere were signi cant changes

126 On Navigation and Analysis of Software Architecture Evolution

in the program languagestandard supported by GCC, and alsowhen additional program
languagecompiler was integrated in GCC. The badk-end subsystemssud as code genera-
tor and optimizer tend to stabilize during, but experiencedquick ewolution in experimertal

releasesand alsowhen new CPU architectures are supported by GCC.

Chapter 5

Summary and Future Work

5.1 Summary

The main cortribution of this thesis is to propose an integrated approad to studying
software ewlution, with emphasison the ewlution of software architecture and internal
structural changesof program componerts. The goal is to automate the history data
collection, interpretation, and represemation processesso that researters can conduct
more e ective empirical studies on software ewlution histories. A researt platform is
designedand implemerted to incorporate ewlution metrics, software visualization, and
structural ewlution analysistoolsinto a uni ed ernvironment: the BEAGLE system.

In the beginning of this thesis, we comparethe similarities betweensoftware ewolution
and biological ewlution. Then we discussedthe motivation for studying software ewlu-
tion, and the needfor an integrated platform and new methods to analyzethe structural
changesof software system. In the next chapter, we reviewed the existing works on related
topics, including the \laws" for software ewlution, ewlution models basedon software
metrics, and visualization techniquesthat represem the changehistory of software system
in graphics. Then we proposeda framework that includes an integrated researt plat-
form and specialized analysis methods for software architectural ewlution to overcome
shortcomingsfound in existsreseart approades.

Our approad starts with the selectionof appropriate data sourcefor software ewlu-
tion study. We choseprogram sourcecode and the extracted architecture facts from the

127

128 On Navigation and Analysis of Software Architecture Evolution

sourceasthe primary ewlution data source,supplemened by ewlution metrics and ver-
sion cortrol database.We store thesearchived data in a relational database,which senes
as the data repository for BEAGLE. A query interface, implemerted in SQL statemerts,
is provided for applications to accesgthe information stored in the data repository, and
perform architecture comparisonand other analysis. Userscan comparethe di erences
betweenreleasesand investigate ewolution patterns in a web-baseduser interface.

We alsodiscussedhe conceptof Origin Analysis Origin analysisis atechniqueto relate
\new" program ertities sud asfunctions and source les found in the morerecer release
with those ertities that existedin the previous release,but are no longer preser in the
later release. Theseertities have very similar code featuresand dependencieswith other
program ertities. Thesetypes of changesare usually causedby system rearditecturing
and code refactoring activities. We demonstratedtwo methods that match \new" program
ertities with their \origins" in the previous release,if they do exit. The rst method
comparesthe code feature of candidate functions, and choosesthe one with the shortest
distance betweenthe two code feature vectors. The secondmethod analyzesthe change
patterns of functions that have dependencieswith the \new" program ertities to nd out
their \origins".

We believe our approad is helpful for the software developer whois interestedin under-
standing the ewlution history of a software system. The BEAGLE platform demonstrates
that an integrated ervironmen is invaluable tool for answering many questionsrelated to
the ewlution of software system,as shown in our casestudy using the ewlution of GNU
Compiler Collection asexample. For instance,we discoveredthat GCC exhibited di erent
ewlution pattern in its experimertal releasestream (EGCS 1.x and 2.x) comparingto its
production releasestream (GCC 1.x and 2.x). BEAGLE is alsoableto tell uswhat portion
of the EGCS 1.0releasesourcecode can be traced bad to the previous GCC releaseand
what portion is complexly newly deweloped for this release.

The main cortributions of this thesisis summarizedas follows:

We provided an integrated ervironmernt for researbersto conduct empirical stud-
ies on the ewlution of software systems. It o0 ers many researt capabilities sud
as ewlution metrics, visualization of sourcecode change history, peer or group re-
leasecomparison,structural changeanalysis,aswell asa power query and browsing

Summary and Future Work 129

interface.

We also deweloped an analysistechnique that tracks the structural changesof the
software code architecture when its directory structure and/or naming sdeme for
les and functions are changedin the newer release. This technique assistsus in
understanding the architectural di erences and relations between traditional GCC
releasesand the experimertal EGCS releaseswherethe nave name-basedcompari-
sontechniquespreviously failed to handle.

5.2 Future Work

In our approad, we have deweloped a web application that allows usersto accessthe
guery and analysisfacility provided by BEAGLE from any client macdine connectedto
the Internet. On the other hand, many open sourcesoftware projects are using web-based
CVS toolsto managesourcecode ched-in and chedk-out. One of the possibleextensionsto
BEAGLE is to integrate it with web-basedsourcecortrol system,sothat when new code
is cheded in, the architecture facts will be automatically extracted from the new source
code and stored in the BEAGLE's data repository. The submitter could able then view
the changesto the systemarchitecture shortly after shesubmitted the new code.

We presened two methods for origin analysisin this thesis. We have also examined
their e ective using many examplesfrom GCC history releases.Howewer, to be able to
provide more accurate analysisresults, it is essetial to nd out more analysis methods.
By combining more than one origin analysisresults will de nitely improve the analysis
accuracy

In order to further examine our BEAGLE platform, and to collect more rst hand
information on the architectural ewlution of large-scaldong-life software systems,it would
be usefulto useBEAGLE to analyzemore software systems. Possiblecandidatesare those
open sourcesoftware systemswhoseextracted architecture have beenstudied using PBS
or other reverseengineeringtools, suc asthe Linux kernel, VIM editor, Netscape Mozilla,
and Linux Nautilus le managersystem. The BEAGLE systemwill enableusto expandour
knowledgeon software ewolution through e ective empirical studieson large and successful
software projects.

Bibliograph y

[1] http://www.csst-tec hnologies.com/genericieesoftware maturity_metric.html. Web-
site.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Reading,MA, U.S.A., 1986.

[3] T. Ball and S. G. Eick. Software visualization in the large. IEEE Computer, 29(4),
April 1996.

[4] L. Bass,P. Clemeris, and R. Kazman. Softwae Architecture in Practice. Addison-
Wesley Reading,MA, U.S.A., 1998.

[5] A. Binkley and S. Schad. Validation of the coupling dependencymetric asa predictor
of runtime failures and maintenance measures. In Proc. of the 20th International
Conferene on Softwae Engineering, 1998.

[6] I. Bowman and R. Holt. Software architecture recovery using conway's law. In Proc.
of CASCON'98, 1998.

[7] 1. Bowman, R. Holt, and N. V. Brewster. Linux asa casestudy: Its extracted software
architecture. In Proc. of Intl. Conf. on Software Engineering (ICSE'99), 1999.

[8] Ivan Thomas Bowman. Architecture recovery for object-oriented systems. Master's
thesis, University of Waterloo, 1999.

130

Summary and Future Work 131

[9] E. Burd, S.Bradley, and J. Davey. Studying the processof software change: An anal-
ysis of software ewolution. In Proc. of the 7th Working Conf. on ReverseEngineering
(WCRE'00), 2000.

[10] E. Burd and M. Munro. An initial approat towards measuringand characterizing
software ewolution. In Proc. of the Sixth Working Conference on ReverseEngineering
(WCRE'99), 1999.

[11] Edited by Chris DiBona, Sam Ockman, and Mark Stone. Open
Sources: Voices from the Open Soure Revolution. read at
http://www.or eilly.com/catalog/opensources/book/tiemans.html. O'Reilly and

Assciates, Cambridge, MA, U.S.A., 1999.

[12] S. Demeyer, S. Ducasseand M. Lanza. A hybrid reverseengineeringapproad com-
bining metrics and program visualization. In The 6th Working Conference on Reverse
Enginesring (WCRE'99), 1999.

[13] S.G. Eick, T. L. Graves,A. F. Karr, J. S. Marron, and A. Mocku. Doescode decy/?
assessinghe evidencefrom changemanagemendata. IEEE Transactionson Softwae
Engineering, 27(1), January 2001.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discover-
ing likely program invariants to support program ewlution. IEEE Transactionson
Softwame Engineering, 27(2), February 2001.

[15] Understandfor C++ from Scieni ¢ Toolworks. http://www.scito ols.com/ucpp.itml.
Website.

[16] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling basedon product
releasehistory. In Proc. of the Intl. Conf. on Softwae Maintenanee (ICSM'98), 1998.

[17] H. Gall, M. Jazayeri, R. Kloesd, and G. Trausnmuth. Software ewlution obsena-
tions basedon product releasehistory. In Proc. of the 1997 Intl. Conf. on Softwae
Maintenance (ICSM '97), 1997.

132 On Navigation and Analysis of Software Architecture Evolution

[18] H. Gall, M. Jazayeri, and C. Riva. Visualizing software releasehistories: The use of
color and third dimension.In Proc. of the IEEE Intl. Conf. on Softwale Maintenance
(ICSM99), 1999.

[19] M. Godfrey and Q. Tu. Growth, ewlution, and strctural changein open source
software. In International Workshopon Principles of Software Evolution (IWPSE'01),
2001.

[20] M. W. Godfrey and Q. Tu. Evolution in open sourcesoftware: A casestudy. In Proc.
of the Intl. Conf. on Software Maintenance (ICSM'00), 2000.

[21] T. L. Graves,A. F. Karr, J.S. Marron, and H. Siy. Predicting fault incidenceusing
software change history. |IEEE Transactionson Softwae Engineering, 26(7), July
2000.

[22] R. Holt and J.Y. Pak. Gase: visualizing software ewlution-in-the-large. In Proc. of
the 3rd Working Conf. on ReverseEngineering (WCRE'96), 1996.

[23] R. C. Holt. An introduction to ta: The tuple-attribute language. Website
http://sw ag.uwvaterloo.ca/pbs/papers/ta.html.

[24] F. P. BrooksJr. The Mythical Man-Month: Essayson Softwake Enginesring. Addison-
Wesley Reading, MA, U.S.A., 1995.

[25] J. P. D. Keast, M. G. Adams,, and M. W. Godfrey. Visualizing architectural ewolution.
In Proc. of ICSE'99 Workshopon Software Changeand Evolution (SCE'99), 1999.

[26] C. F. Kemererand S. Slaughter. An empirical approad to studying software ewolution.
IEEE Transactionson Software Engineering, 25(4), July/August 1999.

[27] T. M. Khoshgoftaarand R. M. Szalo. Improving code churn prediction during the sys-
tem test and maintenancephases.In Proc. of the Intl Conf. on Software Maintenance
(ICSM'94), 1994.

[28] K. Kontogiannis. Evaluation experimerts on the detection of programming patterns
using software metrics. In Working Conference on ReverseEngienesring (WCRE'97),
Amsterdam, Netherlands 1997.

Summary and Future Work 133

[29] O. Kwon, G. Shin, C. Boldyre, and M. Munro. Maintenancewith reuse: An inte-
grated approat basedon software con guration managemeh In Proc. of 6th Asia-
Paci ¢ Softwae Engineering Conferenee (APSEC'99), 1999.

[30] B. Lagu, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl. Assessinghe bene ts of
incorporating function clonedetection in a developmert process.In Proc. of the Intl
Conf. on Software Maintenancee (ICSM'97), 1997.

[31] M. M. Lehman. Programs, life cyclesand laws of software ewlution. In Proc. IEEE
Srecial Issueon Software Engineering, pages1060{1076,1980.

[32] M. M. Lehman. Metrics and laws of software ewlution - the nineties view. In Proc.
Metrics 97 Symp 1997.

[33] M. M. Lehman. Quartitativ e studiesin software ewlution - from 0s/360to feast. In
Workshopon ProcessMOdelling and Empirical Studiesof Software Evolution, 1997.

[34] M. M. Lehman, D. Perry, and J. Ramil. On evidencesupporting the feasthypothesis
and the laws of software ewlution. In Proceedings of Metrics 98, 1998.

[35] P. Lindsey, Y. Liu, and O. Traynor. A genericmodel for ne grained con guration
managemehincluding versioncortrol andtraceability. In Proc. of Australian Software
Engineering Conferenee (ASWEC'97), 1997.

[36] M. Mattsson and J. Bosd. Obsenations on the ewlution of an industrial OO frame-
work. In Proc. of the IEEE Intl. Conf. on Softwae Maintenance (ICSM'99), 1999.

[37] A. Mockus, S. G. Eick, T. Graves,and A. F. Karr. On measuremet and analysisof
software changes.Tednical report, Bell Labs, Lucent Tednologies,1999.

[38] S. Muthanna, K. Kontogiannis, K. Ponnanbalam, and B. Stacey A maintainability
model for industrial software systemsusing designlevel metrics. In Working Confer-
ence on ReverseEngieneering (WCRE'00), 2000.

[39] J. Nadler and T. Josling. Writing a compiler front end. online manual.

134 On Navigation and Analysis of Software Architecture Evolution

[40] M.C. Ohlssonand C. Wohlin. Identi cation of green,yellow and red legacy compo-
nerts. In Proc. of Intl. Conf. on Softwae Maintenance (ICSM'98), 1998.

[41] D. E. Perry. Dimensionsof software ewlution. In Proc. of the 1994 Intl. Conf. on
Software Maintenance (ICSM'94), 1994.

[42] D. E. Perry, A. A. Porter, and L. G. Votta. Empirical studiesof software engineering:
aroadmap. In ICSE - Future of Software Engineering Track pages345{355,2000.

[43] J. F. Ramil and M. M. Lehman. Metrics of software ewlution ase ort predictors- a
casestudy. In Proc. of the Intl. Conf. on Software Maintenance (ICSM'00), 2000.

[44] E. Raymond. The Cathalral and the Bazaar. O'Reilly and Assciates, Sebastol,
CA, U.S.A., 1999.

[45] 1. Robertson. Evolution in perspective. In Proc. of the Intl. Workshopon the Principles
of Software Evolution, 1998.

[46] M. Shav and D. Garlan. Software Architecture: Perspective on an Emerging Disci-
pline. Prentice-Hall, 1996.

[47] R. Stallman. Using and porting the gnu compiler collection. online manual, 2001.

[48] T. Systa, P. Yu, and H. Mller. Analyzing java software by conbining metrics and
program visualization. In Conferene on Software Maintenance and Reenginesring
(CSMR'99), 2000.

[49] L. Tahvildari, R. Gregory, and K. Kontogianni. An approad for measuring soft-
ware ewlution using sourcecode features. In Proc. of Sixth Asia Pacic Softwae
Engineering Conferene (APSEC'99), 1999.

[50] E. Thomsen.OLAP solutions: Building Multidimensional Information Systems John
Wiley and Sons,New York, U.S.A., 1997.

[51] J. B. Tran. Software architecture repair asa form of preveniv e maintenance.Master's
thesis, University of Waterloo, 1999.

Summary and Future Work 135

[52] Q. Tu and M. Godfrey. Exploring structural change and architectural ewlution.
http://plg.u waterloo.ca/ migod/pap ers/beagle-csermg001.ppt.

[53] Qiang Tu and Michael W. Godfrey. The build-time software architecture view. In
Proc. of Intl. Conf. on Softwae Maintenance (ICSM 2001), Florence, Italy, 2001.

[54] A. von Mayrhauser,J. Wang, M.C. Ohlsson,and C. Wohlin. Deriving a fault archi-
tecture from defect history. In Proceedings of the 10th International Symmsium on
Software Reliability Engineering, 1999.

[55] M. Wein, S.A. MacKay, D.A. Stewart, C.A. Gauthier, and W.M. Gertleman. Evo-
lution is essetial for software tool dewelopmen. In Proc. of the Second Working
Conferene on ReverseEnginesring (WCRE'95), 1995.

[56] C. Wohlin and M. C. Ohlsson. Reading between the lines: An archival study of
software from nine releases.In Proc. of ICSE'99 Workshopon Softwae Changeand
Evolution (SCE'99), 1999.

	Software Evolution: An Introduction
	Overview of Thesis
	Biological Evolution and Software Evolution
	Biological Evolution
	Software Evolution
	Software Evolution and Software Maintenance

	Description of Research Problems
	Our Approach To the Problems
	Software Evolution Browser
	Analysis of Architectural Evolution

	Major Contributions
	Organization of Thesis

	Related Research On Software Evolution
	Software Evolution: A Discipline of Software Engineering
	Lehman: Laws of Software Evolution
	Perry: Dimensions of Software Evolution Environment

	Software Evolution Metrics
	Evolution Metrics From Program Source Information
	Metrics From Version Control Management Information
	Comparison of Evolution Metrics

	Visualization of Software Evolution
	GASE Tool and KAC System
	Gall: Software Evolution in Color and 3-D
	Comparison of Evolution Visualization Techniques

	Empirical Studies of Software Evolution
	Review of Software Evolution Empirical Studies
	Conclusion of Related Work

	BEAGLE: An Integrated Platform for Studying Software Evolution
	Challenges to Software Evolution Research
	Discussion of Methodologies
	History Data Repository
	Navigation of Evolution Information
	Analysis of Software Structural Changes

	BEAGLE: An Integrated Environment
	Database Tier
	Application Logic Tier
	User Tier

	Conclusion

	Architectural Evolution of GCC: A Case Study
	Background and History of GCC Project
	Origin of GCC
	GCC 2.0 and Cygnus
	EGCS and Web-based Software Development

	Common Software Architecture of GCC Releases
	Reference Architecture of Compilers
	GCC Conceptual Architecture
	Concrete Architecture of GCC

	Related Research Work on GCC
	GCC System Size Growth
	GCC Build-Time Behaviors
	Dominance Tree Analysis of GCC Evolution

	Elaboration of Research Questions On GCC Evolution
	From GCC 1.0 To GCC 2.0
	From GCC 2.x To EGCS 1.x
	Stable Releases vs. Development Releases
	Build Configurations and GCC Architecture
	Refactoring and Rearchitecting
	Distribution of Evolution Effort

	Summary of Observations

