ALBA-R: Load-Balancing Geographic Routing Around Connectivity Holes in Wireless Sensor Networks

Chiara Petrioli, Senior Member, IEEE, Michele Nati, Member, IEEE, Paolo Casari, Member, IEEE, Michele Zorzi, Fellow, IEEE, and Stefano Basagni, Senior Member, IEEE

Abstract—This paper presents ALBA-R, a protocol for convergecasting in wireless sensor networks. ALBA-R features the cross-layer integration of geographic routing with contention-based MAC for relay selection and load balancing (ALBA) as well as a mechanism to detect and route around connectivity holes (Rainbow). ALBA and Rainbow (ALBA-R) together solve the problem of routing around a dead end without overhead-intensive techniques such as graph planarization and face routing. The protocol is localized and distributed, and adapts efficiently to varying traffic and node deployments. Through extensive ns2-based simulations we show that ALBA-R significantly outperforms other convergecasting protocols and solutions for dealing with connectivity holes, especially in critical traffic conditions and low density networks. The performance of ALBA-R is also evaluated through experiments in an outdoor testbed of TinyOS motes. Our results show that ALBA-R is an energy-efficient protocol that achieves remarkable performance in terms of packet delivery ratio and end-to-end latency in different scenarios, thus being suitable for real network deployments.

Index Terms—Wireless sensor networks, cross-layer routing, connectivity holes management.

1 INTRODUCTION

Distributed sensing and seamless wireless data gathering are key ingredients of various monitoring applications implemented through the deployment of wireless sensor networks (WSNs). The sensor nodes perform their data collection duties unattended, and the corresponding packets are then transmitted to a data collection point (the sink) via multi-hop wireless routes (WSN routing or convergecasting). The majority of the research on protocol design for WSNs has focused on MAC and routing solutions. An important class of protocols is represented by geographic or location-based routing schemes, where a relay is greedily chosen based on the advancement it provides toward the sink. Being almost stateless, distributed and localized, geographic routing requires little computation and storage resources at the nodes, and is therefore very attractive for WSN applications. Many geographic routing schemes, however, fail to fully address important design challenges, including i) routing around connectivity holes, ii) resilience to localization errors, and iii) efficient relay selection. Connectivity holes are inherently related to the way greedy forwarding works. Even in a fully connected topology, there may exist nodes (called dead ends) that have no neighbors that provide packet advancement toward the sink. Dead ends are therefore unable to forward the packets they generate or receive. These packets will never reach their destination and will eventually be discarded. Many solutions have been proposed to alleviate the impact of dead ends. In particular, those that offer packet delivery guarantees are usually based on making the network topology graph planar, and on the use of face routing [1]. However, planarization does not work well in the presence of localization errors and realistic radio propagation effects [2], as it depends on unrealistic representations of the network, such as a unit disk graph (UDG [3]).

In this paper we propose an approach to the problem of routing around connectivity holes that works in any connected topology without the overhead and inaccuracies incurred by methods based on topology planarization. Specifically, we define a cross-layer protocol, named ALBA for Adaptive Load-Balancing Algorithm, whose main ingredients (geographic routing, load balancing, contention-based relay selection) are blended with a mechanism to route packets out and around dead ends, the Rainbow protocol. The combination of the two protocols, called ALBA-R, results in an integrated solution for convergecasting in WSNs that, although connected, can be sparse and with connectivity holes.

The contributions we provide to WSN research with this paper include the following. (i) We enhance greedy geographic forwarding by considering congestion and packet advancement jointly when making routing decisions. The new relay selection scheme, which implements MAC and routing functions in a cross-layer fashion, achieves performance superior to existing protocols.
in terms of energy efficiency, packet delivery ratio and latency. (b) The Rainbow mechanism allows ALBA-R to efficiently route packets out of and around dead ends. Rainbow is resilient to localization errors and to channel propagation impairments. It does not need the network topology to be planar, unlike previous routing protocols. It is therefore more general than face routing-based solutions, and is able to guarantee packet delivery in realistic deployments. (c) Extensive ns2-based simulation experiments are performed that demonstrate how the unique features of ALBA-R determine its overall performance, and that show its superiority with respect to previous exemplary solutions for geographic-based and topology-based convergecasting, such as GeRaF [4] and IRIS [5]. We have also investigated the performance of Rainbow in sparse networks, where dead ends are likely to occur, with and without localization errors. We show that Rainbow is an effective distributed scheme for learning how to route packets around connectivity holes, achieving remarkable delivery ratio and latency performance. Our simulation results also show better performance than that of two recent proposals for routing around dead ends by Rührup and Stoimenovic [6]. (d) The critical metrics of packet delivery ratio and end-to-end latency are further investigated through experiments in an outdoor 40-node testbed of TinyOS-based sensor nodes. Beside validating our simulation model, the obtained results confirm the effectiveness of ALBA-R in supporting long-lived and reliable wireless sensor networking in practice.

A succinct version of this paper has appeared in [7]. The current version presents a considerably larger set of experiments and comparisons with previous solutions. Supplemental material is available at the publisher web site that provides proof of correctness of the Rainbow mechanism, further simulation experiments and detailed results from testing the deployment of a 40-node network in a vineyard outside of Roma, Italy. Some results on ALBA resilience to localization errors have appeared in [8].

The paper is organized as follows. Section 2 reviews the state of the art on geographic routing and handling dead ends. ALBA-R is described in detail in Section 3 (ALBA) and Section 4 (Rainbow). Section 5 shows the results of an extensive ns2-based performance evaluation of our protocol. It includes a comparison of ALBA-R with geographic (GeRaF) and non-geographic (IRIS) cross-layer routing protocols, and a demonstration of the effectiveness of ALBA-R in efficiently handling dead ends even in presence of localization errors. The section also contains a comparative performance evaluation of Rainbow and Rotational Sweep, a recently introduced set of mechanisms to route packets around connectivity holes. Conclusions are provided in Section 6.

2 RELATED WORK

According to its first and simplest formulation, geographic routing concerns forwarding a packet in the direction of its intended destination by providing maximum per-hop advancement [9], [10]. In dense networks this greedy approach is quite successful, since nodes are likely to find a path toward the sink traversing a limited number of intermediate relays. Conversely, in sparse networks, packets may get stuck at dead ends, which are located along the edge of a connectivity hole, resulting in poor performance. A number of ideas have therefore been proposed to address the problem of routing around dead ends. A first set of approaches stems from the work of Kranakis et al. [11]. WSN topologies are first “planarized” [12]. Geographic routing over planarized WSNs is then obtained by employing greedy routing as long as possible, resorting to planar routing only when required, e.g., to get around connectivity holes. Heuristic rules are then defined for returning to greedy forwarding as soon as next-hop relays can be found greedily. Examples of this approach include [13], [14], [15], [16], [17], [18]. Solutions based on planarization have several drawbacks. First of all, a spanner graph of the network topology needs to be built (and maintained in the presence of node dynamics), and this incurs non-negligible overhead. Planar routing may then require the exploration of large spanners before being able to switch back to the more efficient greedy forwarding, thus imposing higher latencies [19]. Moreover, in realistic settings localization errors and non-ideal signal propagation may lead to disconnected planar graphs or to topology graphs that are non-planar. This is because spanner formation protocols assume that the network topology is modeled by a UDG, and the correctness of the approach cannot be guaranteed when this is not the case, as in most realistic situations. To make planarization work on real networks a form of periodic signaling must be implemented to check that no links cross, as performed by the Cross-Links Detection Protocol (CLDP) [20]. However, this is a transmission-intense solution for WSNs, which eventually affects the network performance. For a comprehensive overview of planar graph routing the reader is referred to the survey by Frey et al. [21].

A different class of solutions for handling dead ends is based on embedding the network topology into coordinate spaces that decrease the probability of connectivity holes. This category includes algorithms using virtual coordinates [22], [23], [24], [25], and those that perform some sort of topology warping [26]. In the former case, the coordinates of each node are the vector of the hop distance between the node and each of a set of beacons. Greedy forwarding is typically performed over the virtual coordinate space. This decreases the occurrence of dead ends, but does not eliminate them. Topology warping schemes are based on iteratively updating the coordinates of each node based on the coordinates of its neighbors, so that greedy paths are more likely to exist. These approaches are referred to as “geographic routing without location information,” as they do not require accurate initial position estimates. Both methods, how-
ever, present a non-negligible probability that packets get stuck in dead ends.

Rotational Sweep (RS) is a recent contention-based protocol presented by Rührup and Stojmenovic to route packets around connectivity holes without requiring planarization [6]. The protocol is designed to complement any greedy forwarding algorithm (including ALBA) by determining a next hop relay through a timer-based contention. The relay is chosen so that a traversal path is found that ensures progress after a greedy failure. Upon receiving a Request-to-Send (RTS), each possible candidate relay starts a timer whose value (called the delay function) is computed based on the relative position of the candidate, the sender and the predecessor of the sender, i.e., the node that selected the sender as relay. Specifically, the candidate selects a delay proportional to the time it takes for being hit by a sweep curve that rotates counter-clockwise hinged at the sender from the starting line between predecessor and sender. (The candidate receives information about predecessor and sender coordinates in the RTS.) RS is based on two delay functions, namely, sweep circle and twisting triangle, providing different lengths for traversing paths, and is shown to achieve guaranteed delivery in UDGs. As such, however, it is not generally applicable, and it can be detrimentally affected by localization errors.

3 The Adaptive Load-Balancing Algorithm (ALBA)

The protocol we propose in this paper, ALBA, is a cross-layer solution for convergecasting in WSNs that integrates awake/asleep schedules, MAC, routing, traffic load balancing, and back-to-back packet transmissions. Nodes alternate between awake/asleep modes according to independent wake-up schedules with fixed duty cycle d. Packet forwarding is implemented by having the sender polling for availability its awake neighbors by broadcasting a Request-to-Send (RTS) packet for jointly performing channel access and communicating relevant routing information (cross layer approach). Available neighboring nodes respond with a Clear-to-Send (CTS) packet carrying information through which the sender can choose the best relay. Relay selection is performed by preferring neighbors offering “good performance” in forwarding packets. Positive geographic advancement toward the sink (the main relay selection criterion in many previous solutions) is used to discriminate among relays that have the same forwarding performance. Every prospective relay is characterized by two parameters: The queue priority index (QPI), and the geographic priority index (GPI). The QPI is calculated as follows. The requested number of packets to be transmitted in a burst (back-to-back transmissions) is \( N_B \), and the number of packets in the queue of an eligible relay is \( Q \). The potential relay keeps a moving average \( M \) of the number of packets it was able to transmit back-to-back, without errors, in the last \( \kappa \) forwarding attempts.\(^1\) The QPI is then defined as

\[
QPI = \min \left\{ \left( \frac{Q + N_B}{M} \right), N_q \right\}
\]

where \( N_q \) is the maximum allowed QPI. The QPI has been designed so that congested nodes (with a high queue occupancy \( Q \) ) and “bad” forwarders (experiencing high packet transmission error, i.e., with a lower \( M \) ) are less frequently chosen as relays. The selection of relays with low QPI therefore aims at decreasing latency at each hop by balancing the network load among good forwarders.

Based on positioning information (as provided to a node by GPS, or computed through some localization protocol [27, 28]), and on the knowledge of the location of the sink, each node also computes its GPI, which is the number of the geographic region of the forwarding area of the sender where a potential relay is located. The numbering of GPI regions ranges from 0 to \( N_r - 1 \). Numbers are assigned so that the higher the number of the region, the further from the sink are the nodes it contains, i.e., nodes in region 0 provide the maximum advancement toward the sink. An example of QPI and GPI assignment is provided in Figure 1. The sender \( S \) is represented by a black circle, while crosses and white circles denote asleep and awake neighbors, respectively. Awake nodes are the only ones available at the time the RTS is broadcast. The forwarding area is colored light gray, and the GPI regions are delimited by arcs centered at the sink (not shown in the figure). In this example, the source \( S \) wants to send a burst of \( N_B = 2 \) packets. Among the awake nodes, \( A \) has an empty queue, but also a bad forwarding record \( M = 1 \), hence its QPI is 2. Nodes \( B \) and \( C \) have both \( M = 4 \). However, \( B \) has a smaller queue and therefore its GPI is 1, whereas that of \( C \) is 2. A sender node queries neighbors in increasing order of QPI. The sender performs channel sensing prior to packet transmission, in order to make collisions with ongoing handshakes unlikely. After channel sensing, the sender proceeds as depicted in Figure 2. It broadcasts a first RTS, asking eligible forwarders to compute their QPI and GPI and inviting answers from nodes whose QPI is 1. The RTS contains all the information required by the relays to compute their QPI and GPI, namely, the location of the sender, the location of the sink, and the length of the data burst \( N_B \). Only nodes with

\(^1\) In our implementation, the computation of \( M \) is made easier by having the receiver acknowledge separately every packet of the burst.
QPI = 1 are allowed to answer the first RTS with a CTS packet. If nobody answers, other RTS packets are broadcast calling for answers by nodes having a higher QPI. If a single node answers, it is immediately sent the data packets, which it ACKs one by one. In case more nodes with the same requested QPI respond, ties are broken via the GPI. In order to select the node with the best GPI, a new RTS packet is broadcast calling for answers only from nodes whose QPI is 0, i.e., from nodes providing the highest advancement. If no nodes are found, successive RTS are broadcast calling for nodes with progressively higher QPI. Further ties from multiple nodes replying with the same (QPI,GPI) pair are broken by a binary splitting tree collision resolution mechanism. This relay selection process can fail in two cases: (i) If no node with any QPI is found, or (ii) if the contention among nodes with the same QPI and GPI is not resolved within a maximum number of attempts \( N_{\text{MaxAtt}} \). Both situations cause the sender to back off. If the sender backs off more than \( N_{\text{Boff}} \) times, the packet is discarded.

Let us assume that node B is awake and that it is the only available relay whose QPI is 1 after the first RTS (upper part of Figure 2; all other neighbors are asleep). Node B replies to S with a CTS and is selected as a relay. In the case when B is asleep (lower part of Figure 2), only A, C and D would be available. In this case, no node with QPI equal to 1 exists, so that the first RTS is not answered. Both A and C answer the second RTS, as both have the QPI equal to 2. The second phase (best GPI search) is then started, which terminates with the selection of node A, whose GPI is equal to 0.

Once a relay is selected, a burst of data packets is immediately sent the data packets, which it ACKs one by one. In case more nodes with the same requested QPI answer the second RTS, the best GPI search starts, and the set of eligible forwarders is frozen (no node that wakes up after this time can enter the contention). This choice has been made to favor a fast relay selection once a region with active neighbors has been found.

**Figure 2. ALBA handshakes.**

In this section we describe Rainbow, the mechanism used by ALBA to deal with dead ends. The basic idea for avoiding connectivity holes is that of allowing the nodes to forward packets away from the sink when a relay offering advancement toward the sink cannot be found. In order to remember whether to seek for relays in the direction of the sink or in the opposite direction each node is labeled by a color chosen among an ordered list of colors, and searches for relays among nodes with its own color or the color immediately before in the list. Rainbow determines the color of each node so that a viable route to the sink is always found by applying rules for packet forwarding between colored nodes when a greedy path does not exist. Hop by hop forwarding then follows the rules established by ALBA.

More formally, let \( x \) be a node engaged in packet forwarding. We partition the transmission area of \( x \) into two regions, called \( F \) and \( F^C \), that include all neighbors of \( x \) offering a positive or a negative advancement toward the sink, respectively (Figure 3).

When \( x \) has a packet to transmit it seeks a relay either in \( F \) or \( F^C \) according to its color \( C_x \), selected from the set of colors \( \{ C_0, C_1, C_2, C_3, \ldots \} \). Nodes with even colors \( C_0, C_2, \ldots \) search for neighbors in \( F \) (positive advancement). Nodes with odd color \( C_1, C_3, \ldots \) search for neighbors in \( F^C \) (negative advancement). Nodes with
color $C_k$, $k \geq 0$, can volunteer as relays only for nodes with color $C_k$ or $C_{k+1}$. Nodes with color $C_k$, $k > 0$, can only look for relays with color $C_{k-1}$ or $C_k$. Finally, nodes with color $C_0$ can only look for relays with color $C_0$. The nodes assume their color as follows. Initially, all nodes are colored $C_0$, and function according to the standard ALBA rules (Section 3). If no connectivity holes are encountered, all nodes remain colored $C_0$, and always perform greedy forwarding. Since the nodes on the boundary of a hole cannot find relays offering positive advancement, after a fixed number $N_{hsk}$ of failed attempts they infer that they may actually be dead ends, and correspondingly increase their color to $C_1$. According to Rainbow, $C_1$ nodes will send the packet away from the sink by searching for $C_0$ or $C_1$ nodes in region $F^C$. If a $C_1$ node cannot find $C_1$ or $C_0$ nodes in $F^C$, it changes its color again (after $N_{hsk}$ failed forwarding attempts), becoming a $C_2$ node. Therefore, it will now look for $C_2$ or $C_1$ relays in $F$. Similarly, a $C_2$ node that cannot find $C_2$ or $C_1$ relays in $F$ turns $C_3$ and starts searching for $C_3$ or $C_2$ nodes in $F^C$. This process continues until all nodes have converged to their final color. Note that, at this point, any node that still has color $C_0$ can find a greedy route to the sink, i.e., a route in which all nodes offer a positive advancement toward the sink. In other words, once a packet reaches a $C_0$ node, its path to the sink is made up only of $C_0$ nodes. Similarly, packets generated or relayed by $C_k$ nodes follow routes that first traverse $C_k$ nodes, then go through $C_{k-1}$ nodes, then $C_{k-2}$ nodes, and so on, finally reaching a $C_0$ node. As soon as a $C_0$ node is reached, routing is performed according to greedy forwarding. A sample topology where 4 colors are sufficient to label all nodes is given in Figure 4. In the figure, the numbers in the nodes indicate the color they assume. Higher colors are rendered with darker shades of gray. A proof of the correctness of the Rainbow mechanism is given in the supplemental material document. That proof, including convergence of the coloring mechanism in finite time and the loop-freedom of the determined routes, is performed through mathematical induction on the number $h$ of changes of color in the route from a node to the sink. ALBA-R correctness is not affected by the presence of localization errors or by the fact that the topology graph is not a UDG, showing that our protocol is robust to localization errors and realistic propagation behaviors.

5 PERFORMANCE EVALUATION

5.1 Simulation scenarios and metrics

All investigated protocols have been implemented in the ns2 simulator [29]. We used the simulator Friis propagation loss model. The transmission power has been set to achieve successful delivery to nodes within a distance equal to the selected transmission range. The MAC layer is based on CSMA/CA with energy levels and packet reception thresholds typical of carrier sensing. We consider networks with $n$ nodes, where $n$ ranges in $\{100, 200, 600\}$. The sensors are randomly and uniformly deployed in a square area of size $320 \times 320$ square meters. The node transmission range is set to 40m. Therefore, the average degree of a node ranges between 5 and 30 nodes, which spans a wide range of realistic values. Nodes go to sleep and wake up according to independent awake-asleep schedules with a fixed duty cycle $d = 0.1$. The energy consumption when transmitting, receiving and when in sleep mode follows the first order energy model described in [30]. The energy $E_{RX}$ consumed for receiving a bit is constant, while the energy consumed for transmitting a bit is $E_{TX}(r) = E_{TX_0} + E_{TX_x}(r)$, where $E_{TX_0}$ is the energy needed by the transmitter circuitry (and is set equal to $E_{RX}$). $E_{TX_x}(r) = \varepsilon_a \cdot r^2$ models the energy required to cover the transmission range $r$. We choose the value of $\varepsilon_a$ as in [30]. The energy cost when in sleep mode is a very low, non-zero value, that we set equal to $1/1000$ of the energy spent for receiving. According to this energy model, $E_{TX_x}(r) > E_{TX_0}$ for $r > 22.5$m. Data traffic is generated according to a Poisson process of intensity $\lambda$ packets per second over the whole network. Each packet is randomly and uniformly assigned to a source.
excluding nodes that are one hop from the sink. The chosen source queues the assigned packets and transmits them as soon as possible. The maximum queue length per node is set to 20 packets. A newly generated packet is accepted by the source only if its buffer is not full. The traffic rate $\lambda$ varies from 0.25 to 6 packets per second. Data packets are all 250B long. The length of control packets is 25B. The channel data rate is 38.4kbps.\(^5\) ALBA parameters $\kappa$ and $M_B$ have been set to 5.

All our results have been obtained by averaging the outcomes of 100 simulations, each running for 30000s, each time on a different connected topology. The resulting confidence interval of our results has a width within 5% of the value shown. Since we are interested in steady-state performance, all metrics have been collected after 1200s from the start of each simulation run.

We have investigated the following metrics: The normalized node energy consumption, defined as the ratio between the total energy consumed by all nodes over a given time and the energy that the nodes would consume by strictly following the duty cycle, if there were no packets to transmit and receive; The per packet energy consumption, defined as the average amount of energy spent by all nodes to successfully deliver a packet to the sink; the packet delivery ratio, defined as the fraction of packets that are successfully delivered to the sink; and the end-to-end latency, defined as the time from packet generation to its delivery to the sink. The latter metric is computed only for successfully delivered packets.

We perform three sets of experiments. The first set concerns moderately high density network scenarios, where dead ends do not occur (higher density results are shown in the supplemental material document). In this setting we compare the performance of ALBA to that of other cross-layer protocols specifically designed for high density WSNs (Section 5.2). The effectiveness of Rainbow in dealing with connectivity holes is demonstrated on scenarios with dead ends (sparse networks) in Section 5.3. In Section 5.4, we compare Rainbow with Rotational Sweep, the dead end handling mechanisms presented in [6]. We implemented both delay functions Sweep Circle and Twisting Triangle. Finally, Section 5.5 discusses the performance of ALBA-R in networks affected by localization errors.

### 5.2 ALBA vs. GeRaF and IRIS

We compare ALBA with two protocols that are exemplary of cross layer routing in dense WSNs, i.e., in networks where dead ends do not likely to occur. The first protocol is GeRaF, one of the first cross layer protocols based on geographic greedy forwarding [4]. The other protocol is IRIS [5], which performs convergecasting based on a hop count metric and on a local cost function.

\(^5\) These values are those of the EyesIFX ver. 2 motes, developed by Infineon Technologies, a typical representative of TinyOS-based sensor nodes operating in the 868 MHz band. ALBA-R was initially implemented and tested on these platforms.
0, being ALBA-R where nodes cannot change color after reaching color $C_h$, and ALBA-R$_\infty$ being ALBA-R as described.

Results refer to scenarios with 100 and 200 nodes. Each node has a limited number of neighbors (sparse networks), dead ends occur, and greedy forwarding has been shown to fail often. For example, with 200 nodes, only about half of the nodes are colored $C_0$ and can therefore greedily deliver packets to the sink. This percentage falls to 10% in topologies with 100 nodes.

Figure 7 depicts the average packet delivery ratio, the end-to-end packet latency, the normalized energy consumption per node, and the normalized overhead incurred by ALBA-R$_h$, for $h = 0, 1, \infty$. For $h = \infty$, all packets are delivered to the sink (except at very high load, due to congestion). However, from Figure 7a we note that a few colors suffice to greatly improve the packet delivery ratio: 99% (74%) of the generated traffic is correctly delivered when $n = 200$ ($n = 100$), and $h = 1$. By way of contrast, in ALBA-R$_0$ this percentage decreases to 85% (48%) or less. It may seem counterintuitive that the percentage of the packets discarded by ALBA-R$_0$ is higher than the average percentage of non-$C_0$ nodes. This is because $C_0$ nodes may send some of their packets to nodes leading to dead ends; such packets will ultimately get stuck, since in ALBA-R$_0$ no node coloring (and subsequent packet rerouting) takes place.

The better packet delivery ratio observed in Figure 7a for greater $h$ suggests that an increasingly larger fraction
of nodes can correctly route their packets back to $C_0$ nodes, and from there to the sink. As expected, the end-to-end latency increases in this case, because farther nodes send their packets to the sink through longer routes. It is therefore more interesting to comment on the end-to-end latency experienced by the packets generated by $C_0$ nodes, as $h$ increases. This comparison is shown in Figure 7b, where we observe that ALBA-R$_\infty$ and ALBA-R$_1$ better packet delivery ratios translate into higher but reasonable end-to-end latency for the packets of $C_0$ nodes (the curves of ALBA-R$_\infty$ and ALBA-R$_1$ are hard to distinguish in the $n = 200$ case as they basically overlap). The limited latency increase shows that, despite the larger amount of traffic coming from the farther portions of the network (bridged by node coloring), ALBA QPI-based relay selection can still successfully balance traffic among nodes. The main drawback is a longer average route length, which is reasonable in light of the advantage yielded by load balancing. For example, for networks with 200 nodes, the length of routes through $C_0$ nodes is up to 5.5% (5.3%) for $h = \infty$ ($h = 1$) higher than for $h = 0$. When $n = 100$ the increase is up to 22.4% (21.8%) for $h = \infty$ ($h = 1$).

A separate study on the routing performance of re-routed packets (i.e., originated by non-$C_0$ nodes) is provided in tables 1 and 2, which list the average number of traversed hops and the end-to-end latency of such packets in the case $h = \infty$. For example, around 14.8 hops are required in topologies with $n = 100$ nodes at $\lambda = 1$. The average length of purely $C_0$ routes is 7.5 hops in the same scenario: This corresponds to the latency increase from 9.5s to about 21s observed in Figure 7b at $\lambda = 1$.

Despite the increased traffic, the amount of energy consumption and overhead is smaller in ALBA-R$_1$ and in ALBA-R$_\infty$ than in ALBA-R$_0$ (see figures 7c and 7d). Nodes no longer waste time and energy searching for relays where packets will ultimately get stuck and discarded. It is also interesting to note that the overhead in sparse networks decreases with increasing traffic for any number of colors used, as observed in Figure 7d. The reason is that the growing traffic causes the average node queue length to increase, which in turns triggers back-to-back packet transmissions more often. Sharing the relay selection overhead among multiple packets ultimately results in lower overhead per packet, as observed in denser networks.

### 5.4 Comparison with Rotational Sweep

We have compared Rainbow with a recently proposed mechanism for handling dead ends in WSNs, namely, Rotational Sweep (Rührp and Stojmenovic [6]). Both path traversal schemes of Rotational Sweep, i.e., Sweep Curve (SC) and Twisting Triangle (TT), have been implemented in ns2 and run on top of ALBA. We consider sparse topologies (networks with 100 and 200 nodes). Results are displayed for $\lambda = 0.25$. All other parameters are set as listed above.

We compare the three schemes with respect to the following metrics: Packet delivery ratio (PDR), end-to-end (E2E) latency, per packet energy consumption and stretch factor. Results, reported in Table 3, show that Rainbow is able to successfully deliver all generated packets while Rotational Sweep traversal schemes suffer a packet loss ranging from 2% to 19%. This is essentially due to Rotational Sweep higher congestion, which results from its longer routes and from a less effective data packet aggregation into bursts. When recovering from a dead end, SC and TT select the next hop relay based on the position of the predecessor of the sender from which the packet is received. Packets received by the sender from different predecessors are therefore likely to be forwarded to different relays, making the back-to-back transmissions of ALBA less effective. Rainbow is also able to deliver packets successfully to the sink with much shorter routes than those of Rotational Sweep. The reason is that the stretch factor of Rotational Sweep degrades when the best relays cannot be picked because they are asleep. Rainbow instead selects among relays that are awake based on their color, which ensures a limited route length increase independently of the nodes that are currently awake. The effectiveness of Rainbow in delivering all packets to the sink pays off also in terms of energy consumption per delivered packet. Rainbow energy consumption per packet is 38% lower than that of Rotational Sweep in the most critical case ($n = 100$). The improvement is 5% in networks with 200 nodes. Compared to Rotational Sweep, the packet transmission in burst and the shorter routes produced by Rainbow result in an overall reduction of the per packet energy consumption, well justifying the overhead required by the coloring phase.

### 5.5 Resilience to localization errors

We have tested the impact of localization errors on the performance of Rainbow. To this purpose we have run simulations in networks with 100, 200 and 300 nodes, at traffic $\lambda = 0.25$, where the estimated coordinates of each node have been obtained by randomly and uniformly selecting a point in the circle centered at the node real coordinates with radius $r_{E_{\text{max}}}$. In our simulations $E_{\text{max}}$ ranges between 0.1 and 2 (so that the error ranges from

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Route length for re-routed packets [hops], $h = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 0.25$</td>
<td>$\lambda = 0.5$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>13.36</td>
</tr>
<tr>
<td>$n = 200$</td>
<td>12.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Latency for re-routed packets [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 0.25$</td>
<td>$\lambda = 0.5$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>25.05</td>
</tr>
<tr>
<td>$n = 200$</td>
<td>10.96</td>
</tr>
</tbody>
</table>
one tenth to twice the node transmission range $r$). While neighbors relationships (i.e., the network topology) are determined by real coordinates, each node identifies the neighbors closer to the sink (and therefore its color) based on its own and the neighbors estimated position (i.e., the position estimated through a localization protocol affected by error).

Results displayed in Figure 8 show that ALBA-R can successfully deliver all generated packets to the sink, even in case of high localization errors. The only impact on the performance is a limited increase in route length. Specifically, Figure 8a shows that increasing the localization error decreases the number of nodes colored $C_0$, requiring a larger number of packets to go through longer routes. The impact on the performance is however very limited. For instance, when $n = 100$, the ratio between the average route length and the shortest path (stretch factor) is 1.19. When $E_{\text{max}} = 1$ (2) the stretch factor increases only slightly, to 1.22 (1.23). Figure 8b, Figure 8c and Figure 8d investigate the performance of ALBA-R in the same scenario, in terms of end-to-end latency, per-packet energy consumption and packet delivery ratio, respectively. Figure 8b confirms the increase in latency experienced by packets routed by ALBA-R in presence of higher localization errors. All other metrics are, however, basically unaffected. In particular, Figure 8d displays ALBA-R packet delivery ratio, which is always 100%. This is by no means a straightforward result: the performance of a typical georouting protocol such as GeRaF (also shown in the figure), instead, is significantly degraded by high localization errors. When $E_{\text{max}} = 2$, for instance, GeRaF is able to successfully deliver no more than 10% of the generated packets, suffering also a noticeable increase in energy consumption.

### 6 Conclusions

In this paper, we have proposed and investigated the performance of ALBA-R, a new cross-layer scheme for convergeccasting in WSNs. ALBA-R combines geographic routing, handling of dead ends, MAC, awake-asleep scheduling and back-to-back data packet transmission for achieving an energy-efficient data gathering mechanism. To reduce end-to-end latency and scale up to high traffic, ALBA-R relies on a cross-layer relay selection mechanism favoring nodes that can forward traffic more effectively and reliably, depending on traffic and link quality. Results from an extensive performance evaluation comparing ALBA-R, GeRaF and IRIS, show that ALBA-R achieves remarkable delivery ratio and latency, and can greatly limit energy consumption, outperforming all previous solutions considered in this study. The scheme designed to handle dead ends, Rainbow, is fully distributed, has low overhead, and makes it possible to route packets around connectivity holes without resorting to the creation and maintenance of planar topology graphs. Rainbow is shown to guarantee packet delivery under arbitrary localization errors, at the sole cost of a limited increase in route length. Comparison with Rotational Sweep, a set of recently proposed mechanisms for avoiding connectivity holes, shows that Rainbow provides a more robust way of handling dead ends and better performance in terms of end-to-end latency, energy consumption and packet delivery ratio. Testbed experiments have validated our simulation model, and we have confirmed ALBA-R to be an energy-efficient protocol with remarkable throughput and limited latency, which makes it suitable for real-world applications.

### References

Figure 8. Comparison of ALBA-R and GeRaF in sparse networks with localization error.

Chiara Petrioli [S'96-M'98-SM'06] received the Ph.D. degree in computer engineering from the Università di Roma “La Sapienza,” Rome, Italy, in May 1998. She is currently an Associate Professor in the Computer Science Department, Università di Roma “La Sapienza.” Her research interests focus on the design, evaluation, and testing of novel telecommunications systems, focusing on energy-efficient communications, terrestrial and underwater sensor networks, mobile and wireless networks, and the next-generation Internet. She has published over eight dozens papers in prominent international journals and conferences. Dr. Petrioli is a member of the steering committee and an Associate Editor of the IEEE TRANSACTIONS ON MOBILE COMPUTING, a member of the steering committee of the ACM Conference on Embedded Networked Sensor Systems (ACM SENSYS), and an Associate Editor of the ACM/Springer Wireless Networks journal. She has been a member of the executive committee of ACM SIGMOBILE, and has been Program Co-Chair of leading conferences in the field such as the ACM Annual International Conference on Mobile Computing (ACM MobiCom) and the IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE SECON). She was a Fulbright scholar.

Michele Nati [M’08] is currently Research Fellow at the Centre for Communication System Research (CCSR), University of Surrey, where he coordinates the research activities of the SmartCampus testbed. He received a M.Sc. degree in Computer Engineering (2003) and a Ph.D. in Computer Science (2008), both from the University of Rome “La Sapienza.” During his Ph.D. course, he spent one year as visiting researcher at the ECE Dept. of Northeastern University, Boston. Before moving to Surrey in 2010, he was post-doc researcher at the Consorzio Ferrara Ricerche (CFR) and research engineer at NEXSE/WLAB, a company based in Rome. His main research interests concern the design, analysis, evaluation and implementation of efficient cross-layer protocols for WSNs, with particular emphasis on real deployments. He published a number of reviewed articles and he has been involved in EU funded projects, such as e-SENSE, SENSEI, SmartSantander for which he contributed with solutions for WSNs protocols.

Michele Zorzi [F’07] received his Laurea and PhD degrees in electrical engineering from the University of Padova in 1990 and 1994, respectively. During academic year 1992-1993 he was on leave at UCSD, attending graduate courses and doing research on multiple access in mobile radio networks. In 1993 he joined the faculty of the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy. After spending three years with the Center for Wireless Communications at UCSD, in 1998 he joined the School of Engineering of the University of Ferrara, Italy, where he became a professor in 2000. Since November 2003 he has been on the faculty of the Information Engineering Department at the University of Padova. His present research interests include performance evaluation in mobile communications systems, random access in mobile radio networks, ad hoc and sensor networks, energy constrained communications protocols, and underwater communications and networking. He was Editor-In-Chief of IEEE WIRELESS COMMUNICATIONS from 2003 to 2005 and Editor-In-Chief of the IEEE TRANSACTIONS ON COMMUNICATIONS from 2008 to 2011, and serves on the Editorial Board of the Wiley JOURNAL OF WIRELESS COMMUNICATIONS AND MOBILE COMPUTING. He was also guest editor for special issues in IEEE PERSONAL COMMUNICATIONS (“Energy Management in Personal Communications Systems”) and IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (“Multimedia Network Radios” and “Underwater Wireless Communications and Networking”). He served as a Member-At-Large of the Board of Governors of the IEEE Communications Society from 2009 to 2011.

Stefano Basagni [S’96-M’03-SM’06] is associate professor at the Department of Electrical and Computer Engineering at Northeastern University, in Boston, MA. He holds a Ph.D. in electrical engineering from the University of Texas at Dallas (December 2001) and a Ph.D. in computer science from the University of Milano, Italy (May 1998). Dr. Basagni’s research interests concern research and implementation aspects of mobile networks and wireless communications systems, radio and acoustic sensor networking, definition and performance evaluation of network protocols and theoretical and practical aspects of distributed algorithms. Dr. Basagni has published over six dozens of refereed technical papers and book chapters that are highly cited (his h-index is currently 27, with over 5000 citations to his works). He is also co-editor of three books. Dr. Basagni serves as a member of the editorial board and of the technical program committee of ACM and IEEE journals and international conferences. He is a senior member of the ACM (including the ACM SIGMOBILE), a senior member of the IEEE (Computer and Communication societies), a member of ASEE (American Society for Engineering Education) and of CUR (Council on Undergraduate Research).

Paolo Casari [M’08] received the PhD in Information Engineering in 2008 at the University of Padova, Italy, where he is currently a postdoctoral research fellow. He has been actively researching cross-layer protocol design for MIMO ad hoc networks and wireless sensor networks. After spending a period at the Massachusetts Institute of Technology in 2007, he started working on underwater acoustic networks, which is currently his main focus. He has been the technical manager of the Italian projects WISE-WAI and NAUTILUS, and is currently involved in several efforts funded within the European Community’s FP7 program, and related to underwater acoustic networking. He served in the organizing committee of several conferences, and has been guest editor for the Hindawi Journal of Electronics and Computer Engineering special issue on “Underwater Communications and Networking.” His research interests include many aspects of underwater communications, such as channel modeling, network performance evaluation, cross-layer protocol design and at-sea experiments.