SOFL: A Formal Engineering Methodology for Industrial Applications

Shaoying Liu, Member, IEEE Computer Society, A. Jeff Offutt, Member, IEEE, Chris Ho-Stuart, Yong Sun, Member, IEEE Computer Society, and Mitsuru Ohba

Abstract—Formal methods have yet to achieve wide industrial acceptance for several reasons. They are not well integrated into established industrial software processes, their application requires significant abstraction and mathematical skills, and existing tools do not satisfactorily support the entire formal software development process. We have proposed a language called SOFL (Structured-Object-based-Formal Language) and a SOFL methodology for system development that attempts to address these problems using an integration of formal methods, structured methods and object-oriented methodology. Construction of a system requires a very expensive initial outlay, which most companies cannot afford given the constraints of schedule, budget, and labor. Although the quality of their systems is important, most companies need to keep time as their primary priority to meet the demands of the market. This view is shared by other researchers in the formal methods community [3] Finally, effective tool support is crucial for formal methods application, but existing tools are not able to support a complete formal software development process, although tools supporting the use of formal methods in limited areas are available [4], [5], [6].

To make formal methods more practical and acceptable in industry, some substantial changes must be made.

1 INTRODUCTION

Formal methods have not been used in industry largely because it is difficult to apply them in practical settings [1], [2]. There are a number of reasons for this. First, the application of formal methods requires high abstraction and mathematical skills to write specifications and conduct proofs, and to read and understand formal specifications and proofs, especially when they are very complex. A software engineer must make a significant commitment to learn and become proficient at the necessary skills. Second, existing formal methods do not offer usable and effective methods for use in well-established industrial software process. Many texts on formal methods focus on notation, but are not well suited for helping practitioners apply the method in a practical development process. With isolated exceptions, formal methods are still largely perceived as an academic invention divorced from real applications. A third problem is expense. Experience has shown that adding formal methods to a development process can incur significant additional costs, but that when formal methods are fully integrated into a development process and costs measured over the full life cycle, costs may actually decrease. However, introduction of radically new processes requires a very expensive initial outlay, which most companies cannot afford given the constraints of schedule, budget, and labor. Although the quality of their systems is important, most companies need to keep time as their primary priority to meet the demands of the market. This view is shared by other researchers in the formal methods community [3] Finally, effective tool support is crucial for formal methods application, but existing tools are not able to support a complete formal software development process, although tools supporting the use of formal methods in limited areas are available [4], [5], [6].

1.1 Adapting Formal Methods for Industry

This paper proposes changes to software process, notation, methodology, and support environments for constructing systems. Fig. 1 illustrates changes in the software process. First, formal methods often assume that a formal specification of the system under development should be completed before it is implemented. This is impractical. Some requirements must be obtained and recorded in the specification before design and implementation, but others are better captured during design and/or implementation. For this reason, we divide user requirements into two parts, to be obtained in different stages. The first part is the user’s primary functional requirements. It is important to have a functional specification reflecting complete primary requirements before designing the software because this serves as a contract between the developer and the user, and as a firm basis for subsequent development. For critical systems, requirements for critical properties such as safety and security are part of the primary functional requirements. Primary requirements should be consistent and unambiguous. The second part is secondary requirements for the system, such as its background tasks, noncritical functions,
verification, but are not able to guide the developer through active design reviews. While most existing review methods tend to focus on error detection in design or programs, such as Parnas and Weiss' phased inspection, Fagan's design and code inspections, Knight and Meyers' active design reviews [7] and Fagan's design and code inspections [8], Knight and Meyers' phased inspection tends to ensure that the product being inspected possesses required properties [9]. Rigorous reviews may not be as convincing as formal proofs for ensuring correctness, but a sound and practical review technique may be automatically supported, thereby reducing time and labor costs. A review should also take into account the risks and costs of failure; and either justify lack of full formal proof; or else advise that formal proof be taken for highly critical specifications. In any case, reviews should be backed up by rigorous testing.

The third process change concerns prototyping and testing activities. These should not be replaced by formal methods, but each should be used as appropriate, for appropriate purposes (more details on this point will be given later). An evolutionary approach is more practical than formal refinement for systems development [10], because the software development process is an engineering activity, rather than a purely mathematical process. Therefore, we need both mathematical and engineering technology to achieve quality and productivity. For example, formal specifications can serve as a foundation to generate test data [11], [12], [13].

Most existing tools and support environments can help reduce the workload of specification construction and formal verification, but are not able to guide the developer through the entire development. This may be because it is hard to give a theoretical foundation for construction of intelligent support environments, or because the formal methods are not sufficiently mature to be supported in that way. However, as formal methods are more difficult to use than informal methods, their acceptance requires intelligent support environments. There are many tools available to support some kinds of manipulation of formal specifications, but most are focused primarily on manipulating the notation rather than intelligent support of real software development processes. Some work has been done in this direction [14].

Initial steps towards tool development for SOFL have been made in our ongoing project FM-ISEE [15]. The most difficult issue is how to develop a sufficient set of rules in a knowledge base for support environments to guide and to assist developers through systems development in general.

With regard to notation, purely mathematical notations do not scale well for large complex systems and are difficult for engineers to read and understand. We suggest that an appropriate graphical notation with precise semantics should be used as a formal notation to help model the high level architecture of systems, because it is more readable and can help indicate the higher levels of structure. Formal mathematical notation may then be used to define components of the system. Notation for connectives should be based on natural language rather than symbols (for example, using and rather than \(\land \), or \(\lor \) rather than \(\lor \)) to enhance readability. This also makes it easier to enter notation using the standard keyboard. Many existing formal notations (such as Z [16] or VDM-SL [17]) use mathematical symbols that cannot be directly entered using the standard keyboard. A support tool can alleviate this problem, but users may still find it inconvenient to have two different notations; one that can be entered from the standard keyboard and another for display of specifications. Natural language should also be a complement to formal notation in specifications to facilitate their interpretation. Effective formal specification requires a balanced mix of graphical notation, natural language, and mathematical notation, as indicated in Fig. 2.

Formal methods alone are not sufficient to cope with the complexity of system development. An appropriate integration of structured methods, object-oriented methodology, and formal methods may combine the advantages of those three approaches to improve the quality and efficiency of the software development process. Since this is one of the most important issues addressed in this paper, it is discussed in detail in Section 1.2.

It is hoped that these changes will mean that formal methods do not need to be limited to safety-critical systems, but can be applied to other complex computer systems as well.

Fig. 1. Changes in the software process.

1. FM-ISEE stands for Formal Methods and Intelligent Software Engineering Environments. This project is an international collaboration among Hiroshima City University and Kyushu University of Japan, The Queen's University of Belfast, United Kingdom, George Mason University, and Queensland University of Technology, Australia.
1.2 Integration of Methodologies

Two approaches have been adopted to integrate formal methods with structured methods. One is to use the Yourdon or the DeMarco approach to construct a data flow diagram and its associated data dictionary, and then to refine the data flow diagram into a formal specification by defining data flows and bottom level processes with the formal notations. The examples of this approach include Semmens and Allen’s work on integrating Yourdon’s method and Z [18], Bryant’s work on Yourdon’s method and Z [19], Fraser’s work on data flow diagrams and VDM [20], and Plat and his colleagues’ integration of data flow diagrams and VDM [21]. The other approach is to incorporate traditional data flow diagram notation into a formal specification language to provide a mechanism for structuring system specifications and a graphical view for the system specification. In this way, data flow diagrams are treated as part of formal specifications. The examples of this approach include Liu’s work on designing the Formal Requirements Specification Method and the Structured and Formal System Development Language in which DeMarco data flow diagrams are combined with VDM [22], [23].

To integrate formal methods and object-oriented methodology, formal methods are usually used to specify the functionality of operations defined in classes. Examples of this approach include VDM++ [24] and Object-Oriented Z [25].

The above research attempts to make structured methods, object-oriented methodology and formal methods more usable. However, to the best of our knowledge, no previous effort has been made to integrate all three approaches. We believe that they are complementary approaches to systems development, and that all three should be integrated for maximum benefit.

To support the changes in formal methods and to overcome the deficiencies mentioned above, we propose a language called SOFL (Structured-Object-based-Formal Language) and the SOFL methodology. SOFL integrates structured methods based on extended and formalized data flow diagrams, object-oriented methodology, and VDM-SL formal notation. The motivation for SOFL is that existing languages are not well suited to support our proposed changes to the software process, notation, and methodology, and that existing approaches for integrating different methodologies do not give a consistent and systematic combination of the different kinds of notations that can be used to help understand, refine, verify, and implement specifications.

SOFL supports the use of structured methods for requirements analysis and specification in two ways. First, by providing appropriate abstraction and functional decomposition facilities. Second, by providing a usable mechanism for communication between the developer and the user to validate the specification. It can help a project team distribute tasks, increasing software productivity. On the other hand, when class hierarchies and inheritance are used appropriately, they increase information hiding and component reusability.

This is different from the classical object-oriented approach in which data structures are designed to reflect real world objects. There are three difficulties with using an object-oriented approach for requirements analysis. First, it can be difficult to identify useful objects when the developer is not familiar with the application domain. Some graphical notations exist [26], but they only help to express classes, objects and their relations, not to identify objects and classes. Second, even if objects are identified in early stages, the specific demands from the rest of the system may still be unclear, so it may not be clear exactly what are appropriate methods and how they should be defined. Structured methods provide a way to help identify useful objects and their necessary methods by decomposing and evolving high level specifications to lower level specifications. Another difficulty concerns communication between the developer and the user. Users often prefer to think in terms of tasks rather than objects (especially if not well trained in object-oriented methodology).

SOFL uses structured methods for requirements analysis and specification and an object-based approach for design and implementation. During both the structured and object-based development of the system, formal methods can be applied to provide high quality specifications and verifications of various levels of the system. SOFL is intended to allow flexibility in the completeness of specifications, thereby allowing system developers to balance the benefits that can be obtained by using formal methods and the convenience that can be gained by using informal approaches (within the SOFL framework). For example, if developers cannot write a complete specification for a component (such as a process in a data flow diagram) at one level, they can partially specify the component by giving incomplete precondition and/or postcondition (in an extreme case, both precondition and postcondition of the component might be true) with details to be given more completely at a lower level of specification.

The application scope of SOFL proposed in this paper is limited to nonconcurrent software. Although there are parallel constructs in the extended data flow diagrams used in SOFL, they are treated as a nondeterministic ordering rather than concurrency. Extensions to deal with concurrent and real-time systems development is under way in another joint project.

The major contributions of this paper are to:

1) Establish the SOFL methodology based on changes to software process, notation and methodology, with guidelines for developing a software system from the beginning.
2) Define and improve the SOFL language from its initial description [27] by describing its syntax and informal semantics.

3) Present a case study of a system for managing residential suites to demonstrate the capability and usability of SOFL.

4) Propose important topics for future work in the field.

The remainder of the paper is organized as follows. Section 2 describes the software process using SOFL. Section 3 describes the SOFL methodology for building software systems, illustrated with the Residential Suites Management System case study. In Section 4, we evaluate SOFL in the light of the case study. Finally, Section 5 gives conclusions and outlines for future research.

2 Software Process Using SOFL

Software process is an area that has received much attention from many researchers [28]. The software process advocated for SOFL is a specialized Waterfall development model [29], as shown in Fig. 3. The essence of this process is that software system development using SOFL consists of two phases: static development and dynamic development. Each phase includes capturing of requirements. Static development refers to the activities that produce a program, and dynamic development refers to the activities that improve the program until it satisfies user requirements. For this software process to work, the architecture derived in the static phase must be able to accommodate changes made in the dynamic phase.

Static development is divided into four stages: preliminary requirements analysis, formal requirements specification, design, and implementation.

The first activity of static development captures user requirements as completely as possible. Usually such requirements are written in natural language, possibly coupled with special terminology of the application domain used in an informal manner. Once the developer reaches a general understanding of the problem, static development proceeds to formal requirements specification. In this stage more detailed requirements analysis is carried out by building a formal specification (shown as Requirements specification n in Fig. 3). This specification reflects the primary user requirements derived through successive evolutions, each of which transforms an abstract specification to become more concrete (e.g., Requirements specification 1, Requirements specification 2). Evolution steps may involve the usual notion of formal refinement, and may also involve introducing additional constraints required in the final solution. Hence, a specification during the evolution process is considered to provide functional constraints on the final concrete specification rather than a complete description.

The third stage of static development is design, which transforms the final formal requirements specification to a design specification. The design is reached by successive evolutions that transform an abstract design to a more concrete one.

The final stage of static development is implementation, in which a program is constructed to realize the design. This involves realization of the major executable components, definition of the concrete data structures, and implementation of any minor auxiliary structures or functions that may be assumed in the design.

It is important to verify the design and program against the requirements specification and design through rigorous reviews.

Fig. 3. Static and dynamic development process.
Dynamic development is a process of discovering dynamic features of the system, verifying the system against the user’s actual needs and acquiring more requirements by means of prototyping and testing. Prototyping is effective for elucidating the user’s requirements for features that cannot easily be obtained by formal analysis, such as the human-computer interface and timing requirements. Formal methods can be useful to identify what should be prototyped under what constraints in a system. Prototyping can also be used for risk analysis as in the Spiral model [30], but the use of formal methods can improve the quality of prototypes.

Testing should be conducted to verify the system against both the informal user requirements (system testing) and the end-user (acceptance testing). It helps narrow the gap between the informal user requirements and the formally implemented system and the gap between the informal user requirements and the user’s actual needs.

Static development and dynamic development may interact with each other in practice. That is, when static development reaches a certain level, some parts of the current system specification can be prototyped and tested, possibly in parallel with further static development of the rest of the current specification. Also, after some parts of the specification are prototyped and tested, it may be necessary to capture more requirements and design more specification components, which leads to further static development.

3 SOFL METHODOLOGY FOR BUILDING SOFTWARE SYSTEMS

Constructing a formal software system using SOFL consists of three separate activities: requirements specification, design, and implementation. Requirements specifications and designs are described using the SOFL specification language, while implementation realizes the design using the SOFL implementation language.

A SOFL specification is a hierarchical condition data flow diagram that is linked with a hierarchy of specification modules, as shown in Fig. 4. The diagram describes data flow between components, and constrains the flow of control by the data flow operational semantics [31]. The specification modules precisely define the functionality of the components in the diagram.

The implementation is a hierarchy of implementation modules (or i-modules for short), as illustrated in Fig. 5. An i-module is a collection of declarations of constants, types, classes, state variables, procedures, and functions. A SOFL program always has an initial i-module called program that must contain a procedure main from which the entire program starts execution.

When using the SOFL methodology, engineers construct the initial condition data flow diagrams and specification modules, then use decomposition, evolution, and transformation to construct an object-based design from the structured requirements specifications, and finally transform the design to programs.

3.1 Background of Case Study

A case study involving an actual Residential Suites Management System has been conducted by Shaoying Liu. It is used to illustrate the SOFL methodology.

A local Residential Suites company manages various businesses and resources. The business includes front desk services, room services, telephone services, report services, sports club services, finance, and security. The resources include 500 apartments (200 single, 100 double, 100
twin, 30 deluxe, 50 suite, and 20 maisonette), two shops, two restaurants, and a swimming pool. The company uses computers to support the activities at the front desk, but there is no computerized system to support the entire management. The manager of the Residential Suites cooperated with us in developing a specification of a software system.

Specification started with an interview with the Residential Suites manager to establish the user requirements. This initial contact was to gain a basic understanding of the business and some relevant documents on the management system. The manager has no knowledge of programming, but understands the management system (the application domain). After preliminary requirements analysis, an abstract high level agreement was reached on the function of the potential management system. The major functions of the software system are: Reservation, Check in and check out, Room services, Telephone services, Report services, Finance, Sports club services, and Security.

Through the analysis, it was found that the Residential Suites management has significant differences from a normal hotel. For example, the front desk personnel can only allow customers to check in if they have made a reservation in advance. Additionally, security requires that this reservation must be made through a contracted organization. Also, customers must stay for at least seven days and no more than one year. Daily room services are not provided unless specifically requested by customers, and if they are, an additional charge is levied. The Residential Suites management system can be thought of as being between a normal hotel system and an apartment rental system.

3.2 Construction of Condition Data Flow Diagrams and Specification Modules

3.2.1 Condition Data Flow Diagrams

A condition data flow diagram (CDFD) is a directed graph consisting of data flows, data stores, and condition processes. A data flow is labeled with a typed variable that represents a packet of data transferred between condition processes. A data store is a variable of a specific type to represent data at rest. A condition process is like a process in DeMarco data flow diagrams [32], but with pre and post-conditions that specify its functionality. Fig. 6 shows the major components used in CDFDs, and Fig. 7 explains the meanings of condition processes with various combinations of input and output data flows.

Fig. 8 shows the top level CDFD for the Residential Suites Management System. The information manager accepts requests for reservations from customers (res-req), requests for reports (rep-req), and check-out requests from customers (room-no). It produces daily reports for the manager (d-req), and bills for customers (check-out-bill).

There are four important distinctions between CDFDs and DeMarco and Yourdon data flow diagrams:

1) A CDFD has an operational semantics [31]. It not only describes how components are statically connected, but also how they dynamically interact with data flows. Consider the condition processes Manage-Information and Check-Out-Customer of the CDFD in Fig. 8. By the operational semantics, the condition process Manage-Information can fire given any one of the inputs res-req, rep-req and room-no; and may generate either a d-req, check-out-bill or nonoutput (indicated by the output port with no data flow). Firing of condition process Check-Out-Customer requires data on the flow check-out-bill, and either does not generate output or generates a room-no.

2) A classical data flow diagram represents the static structure of the system and a given process appears only once in a strictly nested hierarchy, while a CDFD represents the dynamic structure of the system and an appearance of a process in the CDFD represents a use of the process. The same process may be used in different parts of a specification to process different data.

3) In classical data flow diagrams, a data flow only transfers data from sources (e.g., process, external process, or data store) to destinations (similar). In CDFDs, a data flow indicates both data transfer and system control.

4) CDFDs may use conditional nodes (analogous to diamond in flowcharts) to express alternative data flows depending on the values in a data packet. They also use connecting points to avoid crossing of data flows, as shown in Figs. 9 and 10. Classical data flow diagrams have no such nodes.

Drawing a CDFD helps to describe an overall picture of the system structure. It provides a foundation for defining components in the associated specification module (called an s-module), and for improving structure during the formal development. The s-module and the CDFD are complementary in three respects:

1) the CDFD describes the relation between condition processes in terms of data flows while the module describes the precise functionality of the condition processes in terms of their inputs and outputs,

2) the CDFD describes the dynamic structure of the system while the module provides a static definition of all its components, and

3) the CDFD provides a graphical view of the system at the current level while the module supplies the details of the system in a textual form.

3.2.2 Specification Modules

One important issue is how to define the s-module associated with a CDFD. We use the following four rules.

RULE (1). Each data flow, except those between data stores and condition processes, and each data store in the CDFD corresponds to a state variable in the module. State variables are introduced with the keyword var.

Data stores will be accessed directly from condition processes as external variables, and hence no separate variable is needed to hold data in transition to or from a store; however data in transition between processes will be held in a data flow variable.
Fig. 6. The components of CDFDs.

(1) Condition process:

(2) Data flows

(3) Store

Fig. 7. Condition processes with input and output data flows.

Fig. 8. The top level CDFD of the requirements specification.

Fig. 9. Conditional and diverging data flows.

Fig. 10. An example of a connecting point.
The predicate useful value, but appearance. The variable flows, since they are linked to the diagram by their order of process.

The syntax for parameter lists is intended to reflect the structure of inputs and outputs given in the diagram.

- The input ports (respectively, output ports) from top to bottom in the graphical condition process are defined from left to right in the input (respectively, output).
- Different ports are separated by the symbol \(\) or \(\).
- Each connection to an input (or output) data flow in the graphical notation is defined as a (formal) parameter with the appropriate type. The order of parameters in the textual specification corresponds to the top to bottom ordering in the graphical notation.
- A port with no associated data flow is supplied with a dummy variable that has a special type void. Such a variable can be defined or undefined; although when defined it has no useful value.

For example, the definition of condition process Manage-Information in Fig. 8 is outlined as follows:

```c-process
Manage-Information( res-req: Reservation | rep-req: ReportRequest | room-no: nat)
pre
PManage-Information (res-req, rep-req, room-no)
post
PostManage-Information (res-req, rep-req, room-no, d-rep, check-out-bill, dummy)
decomposition ...
comment ...
end-process;
```

where Reservation, ReportRequest, DailyReport, and CheckoutBill are types defined in the specification module of the CDFD in Fig. 8, given later in this section, and nat is a built-in type representing natural numbers.

The parameters res-req, rep-req, room-no, d-rep, and check-out-bill can have different labels from the data flows, since they are linked to the diagram by their order of appearance. The variable dummy represents the empty port of the graphical condition process. Preconditions and postconditions are predicates. A precondition can refer only to variables corresponding to input data flows and input external variables, and postconditions can refer to all variables.

SOFL uses a VDM style semantics, where variables can be bound to a value of their type, or else they can be nil, which is the generic value meaning unavailable or nonvalue.

The predicate bound(x) is true when x is bound to any useful value, but bound(nil) is nil.

Here are some possible preconditions for the condition process Manage-Information in Fig. 8:

- true. This indicates no specific precondition at all.
- bound(res-req) or bound(rep-req) or bound(room-no). This means that either res-req, rep-req or room-no has a value. This precondition is guaranteed by the operational semantics.

The postcondition can also have many forms. A true postcondition asserts nothing about the values output by the process. A more interesting postcondition is

```c-process
if bound(res-req)
then P2(rep-req, d-rep)
else if room-no > 5
then P2(room-no, check-out-bill)
else bound(dummy)
```

If rep-req is available, then d-rep is generated and will satisfy P1(rep-req, d-rep). If room-no is available and greater than 5 then check-out-bill is generated and will satisfy P2(room-no, check-out-bill), and otherwise the dummy variable is bound, indicating activation of the port with no outgoing data flow. Since dummy is a variable of type void, the only thing that can be said about it is whether or not it is bound.

Note that complete description of pre and postconditions also requires consideration of the port structure of a process. For example, it is an implicit precondition of the process Manage-Information that only one of res-req, rep-req, and room-no will be bound. This cannot be expressed directly since VDM predicates are monotonic, meaning that they cannot assert that a value is unbound. However, if P (res-req, rep-req, room-no) is the explicit precondition, then the full precondition is P(res-req, nil, nil) or P(nil, rep-req, nil) or P(nil, nil, room-no). Similar rules apply for the postcondition.

The sample preconditions and postconditions given are well formed in the sense that taking into account the port structure does not alter the meaning of the predicates. A check for consistency between conditions and port structures is usually straightforward, and so we will not consider this subtlety further in this paper.

RULE (3). Define a store as an rd (read only) external variable for a condition process if there is a data flow from the store to the condition process but no data flow from the condition process to the store in the CDFD.

Define a store as a wr (write and read) external variable for a condition process if there is a data flow from the condition process to the store in the CDFD.

For example, the condition process A and B in Fig. 11 are defined in the s-module as follows:

```c-process
A( )
ext wr s: Type
pre PreA(s)
post PostA(‘s, s)
end-process;
c-process B( )
ext rd s: Type
```
where \(s\) and \(s'\) represent the value of \(s\) before and after firing (execution) of condition process \(A\).

Rule (4). An omitted precondition or postcondition is taken to be true.

Condition processes without input (or output) data flows can be used to represent an interface between the software system and its external operating environment.

```
pre \(P_{B}(s)\)
post \(P_{B}(s')\)
end-process;
```

By applying the above four rules, we construct a specification module for the CDFD in Fig. 8 as follows:

```
s-module Residential-Suites-System : Figure 8;

type Reservation = composed of
  name: string
  address: string
  telephone: nat
  period: Period
  room-type: RoomType
  date: Date
end;

Period = Date*Date; /* check-in day, check-out day */
Date = nat*nat*nat; /* day, month, year */
RoomType = {SINGLE, DOUBLE, DELUXE, SUITE, MAISONETTE}
DailyReport = composed of
  shift-report: ShiftReport
  income-report: IncomeReport
  events-report: string
end;

ShiftReport = map Name to (Time * Time); /* associate name with (start time, end time) */
Name = string;
Time = nat*nat; /* hour, minute */
IncomeReport = composed of
  total: real
  income-list: map string to real; /* string is for the description of reasons for charge, real is for the amount of the charge. */
end;

CheckOutBill = composed of
  way-of-payment: string /* e.g., Cash, Visa, MasterCard */
  room-no: nat
  check-out-date: Date
  remarks: string
  signature: string
end;

ReportRequest = (SHIFT, INCOME, EVENTS, ALLREPORT);

var
  res-req: Reservation;
  rep-req: ReportRequest;
  check-out-bill: CheckOutBill;
  d-rep: DailyReport;
  room-no: nat;

inv
  forall [x] inset Reservation | diff(x.period(1), x.date) <= 1 and diff(x.period(2), x.period(1)) >= 7
    and diff(x.period(2), x.period(1)) <= 366);
/* Any reservation must be made at least one day before check in and any customer must stay at the Suites at least seven days and no more than one year. */
```

![Fig. 11. Condition processes connected to a store.](image-url)
function diff(day1: Date, day2: Date): nat
 == undefined /* A precise definition of this function is left for design or implementation. */
end-function;

post Customer() res-req: Reservation

comment A reservation request output by this condition process must provide
 at least a name, address and period of intended stay.
end-process;

c-process Manage-Information(res-req: Reservation | rep-req: ReportRequest | room-no: nat)

post if bound(rep-req)
 then bound(d-rep)
else if bound(room-no)
 then bound(check-out-bill)
else true

comment The input rep-req is used to produce the output d-rep; room-no is
 used to produce check-out-bill; and res-req is used to produce nothing. More detailed definition of the functionlity cannot be
 properly expressed at this level due to the lack of information.
end-process;

end-module;

3.3 Decomposition

3.3.1 Decomposition Rules

A complete specification is a structured hierarchy of CDFDs, in which a condition process at one level is decomposed into CDFDs at a lower level. The decomposition of a condition process defines how its inputs are transformed to its outputs. The decomposition must conform to the constraints given by the high level condition process specification. Such a decomposition is not only a definition of the high level condition process, but also a possible extension in functionality. This allows SOFL to support functional abstraction at high levels and detailed implementation at lower levels.

There are three important distinctions between SOFL decomposition rules and those for classical Data Flow Diagrams.

Distinction 1. A lower level CDFD must have all the input and output data flows of its higher level condition process, but it is also allowed to have additional input and output flows.

Any additional data flows in the lower level CDFD are considered to be internal state variables of the high level condition process. These additional data flows have one open end; the other end is not given. An advantage of this feature is that a developer can concentrate on the most important issues and leave the job of determining the exact source or destination to design or implementation. For example, condition process Manage-Information in Fig. 8 has input and output data flows res-req, rep-req, room-no, d-rep, and check-out-bill, but its decomposed CDFDs in Figs. 12 and 13 and have the additional input and output data flows change-reg, cancel-reg, personal-inf, income-inf, shift-inf, events-inf, shift-rep, income-rep, and events-rep.

Experience in the case study suggests that this rule is more effective than Yourdon’s rule [33] in obtaining abstraction and encapsulation of data and condition processes. An engineer is able to focus on the most important problems at each level, which reduces the complexity of each level of the hierarchy.

Distinction 2. A condition process may be decomposed into a number of lower level CDFDs.

This is especially useful when a condition process has to be decomposed into a lower level disconnected CDFD. In that case, a sensible way to organize the disconnected CDFD is to treat each connected part as one CDFD and to...
build their corresponding s-modules separately. For example, the condition process Manage-Information in the top level CDFD in Fig. 8 is decomposed into three CDFDs. Two of these are given in Figs. 12 and 13, respectively, and another one is omitted for brevity. The s-module for the CDFD in Fig. 12 is given in Appendix A.

Distinction 3. CDFDs can directly use the constants, types, classes, and variables declared in the higher level s-modules they are derived from. In other words, the scope of the constants, types, classes, and variables declared in an s-module is the module itself and all its descendant s-modules. This reduces unnecessary duplication of the declarations of the same constants, types, classes, or variables in the hierarchy of CDFDs.

3.3.2 How to Use Decomposition

There are two useful approaches to constructing the hierarchy of CDFDs and their s-modules. One is module-first and the other is CDFD-first.

In module-first decomposition, a designer draws a CDFD, then defines all components of the CDFD in its s-module. This has several advantages.

1) It helps clarify possible ambiguity of data flows, data stores, and condition processes in the CDFD.
2) Defining an s-module may lead to improved understanding and consequent improvements to the CDFD before proceeding further.
3) It helps to identify which condition processes need decomposition.

SOFL offers the following criteria for choosing the process to be decomposed.

- If the functionality of a condition process is too complex to be specified by preconditions and postconditions, then it should be decomposed.
- If no clear relation can be given between input values and output values of a condition process (that is, pre and postconditions are not clearly known), then it should be decomposed.
- If the relation between input values and output values is not functional (that is, giving a unique output for a given input), then it is useful to consider decomposing this condition process.

Of course, in practice it can be useful to work with incomplete specifications, either because a nondeterministic solution is satisfactory or because of practical constraints of time and/or cost. Hence this criterion should be tempered with flexibility based on the situation and the developer’s engineering judgment.

Experience on the case study suggests that the module-first approach is especially effective when the developer is not familiar with the application domain. Formalizing the components of the CDFD forces the developer to gain more understanding of the CDFD. However, a disadvantage of this approach is that the developer does not get a full picture of the overall system before formalization, and may therefore do some unnecessary work that needs to be repeated once more understanding is gained.

In CDFD-first decomposition, after drawing a CDFD the designer decomposes those processes that will require further detail. This approach has the advantage of helping the developer obtain an overall picture of the system and the relations between components within and between levels before proceeding with the full formal definition. However, it can be difficult to decide which condition processes should be decomposed. Our experience shows that this approach is effective when the developer knows the application domain well, or has experience developing software systems for similar application domains.

Both approaches were used in this case study as deemed appropriate, and we consider both approaches to be necessary in development of a complex system.

3.4 Evolution

In addition to decomposition, development of the CDFD hierarchy requires evolution. Evolution refers to changes in the structure or functionality of a condition process or CDFD.

- A condition process is decomposed by constructing a corresponding lower level CDFD to refine the process. Evolution of a condition process or a CDFD changes its structure or functional definition to make a new version of the current specification.
Decomposition extends a specification in a top-down fashion while evolution improves it in a horizontal direction, as shown in Fig. 14.

The following approach is an effective way to use evolution and decomposition when constructing a specification:

- Decomposition and evolution are interleaved, but decomposition usually comes first and then evolution steps are made if necessary.
- When decomposition of a condition process reveals the need for a change to the condition process itself, then an evolution of the condition process and/or the associated CDFDs needs to be carried out. The result of the evolution is another hierarchy of CDFDs that properly reflects the decomposition relation between high level condition processes and their decomposed CDFDs.

By carrying out decomposition and evolution, we transform the top level CDFD to a final specification consisting of the CDFDs in Figs. 8, 12, 13, and 15 (other parts of the specification are omitted for brevity).

3.5 Transformation from Structured Requirements Specifications to Object-Based Design

To derive a design from the requirements, software engineers must develop algorithms and a software architecture. They should help achieve quality attributes such as reliability, readability, reusability, information encapsulation, and maintainability. This is necessarily a creative process, but one that can be supported by appropriate guidelines. The SOFL methodology offers the following four guidelines:

Guideline 1. Design the system as a hierarchy of CDFDs by following the hierarchy of CDFDs in the requirements specification.

This does not necessarily mean there should be a strict one-to-one correspondence. Some changes may be advisable to improve the quality of design. There may also be processes in the requirements specification that represent real world entities rather than parts of the software system, such as Customer in Fig. 8. In many cases several levels of CDFDs in the requirements specification correspond to one level of design. For example, the CDFD in Fig. 16 in the design specification of the Residential Suites Management System is derived from the CDFDs in Figs. 8 and 12 in the requirements specification.

Guideline 2. If a condition process in the requirements specification is directly used in the design, then its formal specification (by preconditions and postconditions) should be a refinement of its formal requirements specification (i.e. they satisfy the laws of refinement [34]).

Guideline 3. If several condition processes access or change some data stores and provide services for these stores, then use a class declaration that includes those data stores as its attributes, and implement the condition processes as methods on this class. If condition processes accessing other stores need to use either the data stores defined as attributes or condition processes defined as methods on the current class, then a subclass of the current class can be created to include those other data stores as its attributes and those condition processes accessing the data stores as its methods.

Experience with the case study shows that using the structured method for requirements specification helps to identify what condition processes need to access or change what data stores, and to identify the relations between different data stores and between the condition processes that access or change those stores. A thorough understanding of these relations can facilitate the building of class declarations and a class hierarchy in the design. This class hierarchy aids data and function encapsulation, but the foundation of design remains the CDFD hierarchy. Condition processes may then use the services (methods) provided by the classes.

The CDFD in Fig. 12 demonstrates this. The condition processes Reserve, Cancel, and Change access the two data stores rlist and/or rooms, while Check-In accesses both rlist and customer-list. Condition process Check-Out also uses the same data stores as Check-In, but in addition it generates an output data flow check-out-bill. By considering this situation and applying the above guideline, we create a class hierarchy in the design specification module Top-Design, that consists of three classes: CustomerReservation, CheckInCustomers, and CheckOut-Customers, where CheckInCustomers is a subclass of CustomerReservation and CheckOutCustomers is a subclass of CheckInCustomers.

By considering these class declarations and the requirements specification, the top level CDFD is constructed in Fig. 16, and its associated s-module Top-Design in the de-
Design specification is given below. Note that condition process Reserve-Services takes an object r-object of class CustomerReservation as its input and generates a new object r-object of the same class. Other condition processes like Check-In-Service and Check-Out-Service also process objects (e.g., ci-object, co-object) of other classes. The dashed directed lines represent control data flows that carry no real data for condition processes to consume, but can cause firings of condition processes.

We must also consider the user interface. There are no specific requirements for the layout of the interface in the primary requirements because this is not part of the functional requirements. However, it is an important part of the system to the users, and they will probably make suggestions for improvement after seeing a prototype. Requirements for functions like interface in Fig. 16 can be considered secondary requirements.

Guideline 4. If several condition processes access or change data stores and provide services for these stores, then another object-based design technique can be used, creating a class declaration for each data store. The store declaration in the requirements specification becomes a class declaration in the design. Some of the condition processes can be implemented as methods on each class. This approach usually requires further changes to the structure of condition process specifications, making the external variable representing a store into an input and output parameter of the process. Choosing which approach to use for generating classes is a design judgment made for each application.

Fig. 16. Top level CDFD of design.

```plaintext
s-module Top-Design : Figure 16;

... type

class CustomerReservation;
   rlist: ReservationList;
   rooms: Rooms;

   method Reserve(res-req: ReservationRequest)
      ext wr rlist: ReservationList
      wr rooms: Rooms
      pre PreReserve(res-req, rlist, rooms)
      post PostReserve(res-req, ~rlist, ~rooms, rlist, rooms)
      comment ...

   method Change(change-req: ChangeRequest)
      ext wr rlist: ReservationList
      wr rooms: Rooms
      pre PreChange(change-req, rlist, rooms)
      post PostChange(change-req, ~rlist, ~rooms, rlist, rooms)
      comment ...

   ... end-class;

class CheckInCustomers / CustomerReservation; /* CustomerReservation is a super class of CheckInCustomer */
   customer-list: CustomerList;

   method Check-In(personal-inf: PersonalInformation)
      ext rd rlist: ReservationList
      wr customer-list: CustomerList
      pre PreCheck-In(personal-inf, rlist, customer-list)
      post PostCheck-In(personal-inf, ~customer-list, rlist, customer-list)
```
3.6 Transformation from Designs to Programs

As described in the beginning of Section 3, a SOFL implementation is a hierarchy of i-modules. I-modules interact with each other by procedure, function, or method calls; and also by shared data stores. An i-module that calls another i-module must include the signatures of procedures, functions or methods that are used. This structure is similar to that of C++ programs, but SOFL programs are at a higher level of abstraction, since the same abstract data types (sequences, sets, maps, composite objects, etc) are used in i-modules and in specifications. This facilitates the transformation from design to program, and the verification of the program against its design.

From the SOFL point of view an implementation is a program because it is executable (given a suitable compiler); but it can also serve as a detailed design for guiding implementation in a lower level programming language like C or C++.

Two approaches can be used to carry out the transformation. One is direct transformation and the other is object-oriented transformation. The two approaches share most of the rules, but differ in how they organize the declarations of procedures that are derived from condition processes in the design.

3.6.1 Direct Transformation

Direct transformation means that the hierarchy of CDFDs and associated s-modules is mapped to an equivalent hierarchy of i-modules. The specific guidelines are:

1) Transform the top level s-module to the start i-module program and every other s-module to an i-module.
2) Implement the top level CDFD of the top level s-module as the main procedure in the start i-module.
3) Transform each condition process specification to a procedure declaration and each function specification to a function declaration. The following rules map input and output data flows of a condition process to procedure parameters:
 - Map an input data flow to a value parameter of the procedure.
 - Map an output data flow to a var parameter of the procedure.
 - If an input has the same name and type as those of an output data flow, then map both flows to one var parameter of the procedure.

4) Transform design classes and methods directly to implementation classes and methods. If there is no create method explicit in the design, also supply a create method to create the initial object of the class.

The semantics of a method in the specification is slightly different from the corresponding method in the implementation. The former is a function that returns a new object of the same class, but is implemented as a method that changes the state of a given object.

5) For each open input and output data flow of a CDFD, create a procedure to obtain or to output the corresponding values at the program interface (for example, by using read and write statements within the procedure).

6) For a condition process that is not further decomposed, declare a procedure in the i-module that corresponds to the CDFD in which the process is used. Otherwise, declare a corresponding procedure whose body is derived from its decomposed CDFD.

7) If a condition process is decomposed into a number of CDFDs, merge all those CDFDs to one before transforming it to an i-module.

For example, we transform the top level CDFD in Fig. 16 and its s-module to the top level i-module (giving just an outline for brevity) as follows:
In the procedure main, Algorithm(Reserve-Service(...), Check-In-Service(...), Check-Out-Service(...), Report-Service(...)) denotes an algorithm in which procedures Reserve-Service, Check-In-Service, Check-Out-Service, and Report-Service may be called. procedure Report-Service(...) / RS-module at the end of the module is a specification of the procedure Report-Service (at program level) and its detailed declaration is given in another i-module called RS-module (details omitted).

3.6.2 Object-Oriented Transformation

In object-oriented transformation, the object-based structure of the design is transformed to a hierarchy of classes (with some auxiliary procedures such as the main procedure). The transformation rules are as for the direct transformation, with the following differences:

- For each CDFD in the design, create a class that defines all the state variables in the CDFD as the class attributes.
- Transform each condition process used in the CDFD to a method in the class created from the CDFD.
- If a condition process is decomposed into a lower level CDFD, then the body of its transformed method should be an implementation of the lower level CDFD by calling the methods that are defined on the class of the lower level CDFD.

Let us again take the top level CDFD in Fig. 16 and its s-module as an example of this approach. It is transformed to the program:

```plaintext
i-module program;
type...
class CustomerReservation;
  list: ReservationList;
  rooms: Rooms;
  method create();
  ...
  method Reserve(res-req: ReservationRequest);
  ...
  method Change(change-req: ChangeRequest);
  ...
  method Cancel(cancel-req: CancelRequest);
  ...
end-class;
class CheckInCustomers / CustomerReservation;
  customer-list: CustomerList;
  method create();
  ...
  method Check-In(personal-inf: PersonalInformation);
  ...
end-class;
class CheckOutCustomers / CheckInCustomers;
  bill: CheckoutBill;
  method create();
  ...
  method Check-Out(room-no: nat);
  ...
end-class;
procedure main
  ...
  /* declarations */
  Algorithm(Reserve-Service(...),
            Check-In-Service(...),
            Check-Out-Service(...),
            Report-Service(...))
end-procedure;
...
procedure Reserve-Service(...);
...
procedure Check-In-Service(...);
...
procedure Check-Out-Service(...);
...
procedure Report-Service(...) / RS-module
end-module;

In the procedure main, Algorithm(Reserve-Service(...), Check-In-Service(...), Check-Out-Service(...), Report-Service(...)) denotes an algorithm in which procedures Reserve-Service, Check-In-Service, Check-Out-Service, and Report-Service may be called. procedure Report-Service(...) / RS-module at the end of the module is a specification of the procedure Report-Service (at program level) and its detailed declaration is given in another i-module called RS-module (details omitted).

3.6.2 Object-Oriented Transformation

In object-oriented transformation, the object-based structure of the design is transformed to a hierarchy of classes (with some auxiliary procedures such as the main procedure). The transformation rules are as for the direct transformation, with the following differences:

- For each CDFD in the design, create a class that defines all the state variables in the CDFD as the class attributes.
- Transform each condition process used in the CDFD to a method in the class created from the CDFD.
- If a condition process is decomposed into a lower level CDFD, then the body of its transformed method should be an implementation of the lower level CDFD by calling the methods that are defined on the class of the lower level CDFD.

Let us again take the top level CDFD in Fig. 16 and its s-module as an example of this approach. It is transformed to the program:

```plaintext
i-module program;
type...
class CustomerReservation;
 list: ReservationList;
 rooms: Rooms;
 method create();
 ...
 method Reserve(res-req: ReservationRequest);
 ...
 method Change(change-req: ChangeRequest);
 ...
 method Cancel(cancel-req: CancelRequest);
 ...
end-class;
class CustomerReservation;
 ...
 method Reserve-Service(...);
 ...
 method Check-In-Service(...);
 ...
 method Check-Out-Service(...);
 ...
 method Report-Service(...);
 subtype: RS-class;
 Algorithm(substate.create(...), ...)
end-method;
end-class;
class CustomerReservation;
 ...
 method Reserve-Service(...);
 ...
 method Check-In-Service(...);
 ...
 method Check-Out-Service(...);
 ...
 method Report-Service(...);
 Algorithm(substate.create(...), ...)
end-module;

In the procedure main of this top level i-module, we declare a variable state of class ResidentialSuites and use its methods in the body of main, i.e.:

Algorithm(state.create(...), state.Reserve-Service(...), state.Check-In-Service(...), state.Check-Out-Service(...), state.Report-Service(...)).

Condition process Report-Service in the CDFD in Fig. 16 is decomposed into the CDFD in Fig. 17, which is transformed to the class RS-class. Thus, a variable substate of class RS-class is declared and its potential methods are used in the body of method Report-Service, i.e.:

Algorithm(substate.create(...), ...).

The direct and object-oriented transformation approaches are not necessarily the only possible ways to transform a design into an implementation. Some applications may not need to use any classes at all, depending on the particular application and the judgment of the developer. The SOFL constructs are flexible enough to support a range of strategies.
CDFDs alone are not sufficient to convince him that we understand the diagrams with our explanation. Of course, with the manager and found that it was easy for him to CDFDs (without formalization yet), we had an interview level requirements analysis and drawing the high level awareness of the management system. After carrying out a high has no knowledge about programming at all, but he is fully user for validation. The manager of the Residential Suites texts alone, because they clearly show how data flows be- become more comprehensible than either informal or formal mation becomes larger and more complex. specifications. A specification need not be in a strict hierarchy of CDFDs, although this is recom- mended. The developer can model data and functions in a real world system by drawing and specifying each CDFD separately. This may help avoid artificial abstraction and decomposition that do not appropriately reflect the situation in the real world system. This may also facilitate communication between the developer and the user for validation of the specification. This experience is also shared by Hall [35].

Fourth, the CDFDs and class constructs in specification modules make the SOFL language capable of supporting an object-oriented approach from the very beginning of requirements specification. If the developer has experience in using object-oriented methods to model real world systems in similar application domains, then taking this approach from the very beginning may have benefits. In that case, object-oriented analysis and specification can be done as follows. Try to identify useful objects first (which is assumed not to be difficult for an analyst experienced in the application domain) and then for each object, build a CDFD in which internal data flows and stores and condition processes are treated as attributes and methods, as in Fig. 12. Communications between objects are through method references. If a condition process (or method) needs to use other condition processes in a different CDFD corresponding to another object, then this condition process is decom- posed into a subdiagram of that CDFD that includes only those condition processes and their connections to be used be in a strict hierarchy of CDFDs, although this is recom- mended. The developer can model data and functions in a real world system by drawing and specifying each CDFD separately. This may help avoid artificial abstraction and decomposition that do not appropriately reflect the situation in the real world system. This may also facilitate communication between the developer and the user for validation of the specification. This experience is also shared by Hall [35].

Fourth, the CDFDs and class constructs in specification modules make the SOFL language capable of supporting an object-oriented approach from the very beginning of requirements specification. If the developer has experience in using object-oriented methods to model real world systems in similar application domains, then taking this approach from the very beginning may have benefits. In that case, object-oriented analysis and specification can be done as follows. Try to identify useful objects first (which is assumed not to be difficult for an analyst experienced in the application domain) and then for each object, build a CDFD in which internal data flows and stores and condition processes are treated as attributes and methods, as in Fig. 12. Communications between objects are through method references. If a condition process (or method) needs to use other condition processes in a different CDFD corresponding to another object, then this condition process is decom- posed into a subdiagram of that CDFD that includes only those condition processes and their connections to be used by the high level condition process (or method).

Finally, SOFL facilitates transformation from require- ments specifications in a structured style to designs in an object-based style and from designs to programs in the appropriate style. This is due to the CDFDs and their s- modules, which provide a guide, traceability, and precision for design; and because the requirements specification gives a clear picture of the entire system, including data and operations and their relationships. For example, transforming the CDFD of the requirements specification in Fig. 8 and 12 to the CDFD of the design in Fig. 16 has benefited from these features.

Despite the above advantages of SOFL, we find that lack of effective tool support for SOFL may be a barrier for its application to large scale projects. During specification and design, it becomes critically important for assurance of system quality and productivity that developers are able to efficiently draw and modify CDFDs, write specification modules, and check their consistency. It is necessary to investigate how SOFL can be applied to improve manage- ment, cost estimation, risk analysis, and communication in a software project.
5 CONCLUSIONS

5.1 Contributions

This paper makes two major contributions. The SOFL language and methodology are proposed, with attendant changes to the software process; and some guidelines for developing a software system are provided. To demonstrate the capability and features of SOFL, we present a case study of an industrial system for managing Residential Suites and evaluate the result.

The SOFL methodology includes two major components: a software development process and a specific method for building software. Software development is divided into two phases: static development and dynamic development, and each phase involves capturing different kinds of requirements.

Static development is divided into four stages: preliminary requirements analysis, requirements specification, design, and implementation. Preliminary requirements analysis extracts high level informal requirements from the user, while requirements specification formalizes and develops the requirements. Formalization is an iterative evolutionary process, with evolution making an abstract specification more concrete. In the design stage, the final formal requirements specification is transformed into a formal design through successive evolutions. Implementation is a transformation from the final design (specification) to a program written using SOFL implementation modules. Such a program can serve for prototyping and as a detailed design for the user, and that cannot be effectively obtained via formal methods. Testing and inspection are practical approaches for verification and validation.

The specific method for building software system includes: 1) the construction of condition data flow diagrams and associated specification modules, 2) decomposition, 3) evolution, 4) transformation from structured requirements specifications to object-based designs, and 5) transformation from designs to programs. It emphasizes that structured methods can be effective for requirements specification while object-based methods can be used for design and implementation. It also gives guidelines for each of these five activities.

5.2 Active and Future Research

We are actively pursuing further research in several directions: 1) application of SOFL to a more complex system in industry, 2) rigorous review techniques, 3) program testing based on formal specifications, 4) automated transformation from CDFDs and condition process specification to programs, and 5) development of an intelligent support environment for SOFL based on an existing graphical prototype.

Application of SOFL to complex industrial systems can provide further data on the effectiveness of the SOFL methodology, and address open questions. How can SOFL be used by a project team in the industrial environment? How does the use of SOFL impact project management and communication? How does SOFL affect software validation, verification and maintenance? The first author is currently cooperating with a local electric corporation to investigate how SOFL is applied to develop a railway crossing controller.

We have already started research on rigorous review techniques, and have two ongoing projects. The first is to generate test data for inputs and outputs to and from a condition process. If a situation is found where the precondition is true but the postcondition is false for all the test data, then it implies that some bugs may exist in the specification (although it is not certain). The results of tests can also be used for validation purposes, to confirm whether the specification is consistent with the user requirements. Also, the process of developing tests can help identify inefficient specification definitions or expressions.

The second approach is to provide relations between different parts of the specification and proof obligations for the developer to check. This checking activity cannot be fully automatic, but can be supported by a software tool. For example, when checking whether a CDFD is consistent, we need to ensure that the precondition of any condition process is implied by the the postcondition of preceding condition processes. When checking whether a CDFD is consistent with its high level condition process specification, we need to show some implication relations between the pre and postconditions of the CDFD and those of its high level condition process. These proof obligations can be automatically provided by a tool, but the checking of the obligations has to be done by the developer.

In addition to rigorous review techniques, we are conducting research on program testing based on SOFL specifications [13]. We generate test data from logical expressions (preconditions and postconditions) using established rigorously defined criteria. We have made progress on test data generation rules and criteria, but have not yet provided tool support.

Automated transformation of CDFDs and condition process specification into programs is another interesting research area. We have investigated techniques for automatically transforming implicit pre and postconditions to programs [36]. Since it is generally impossible to construct a system that will transform all formal specifications into an executable program, we take a semi-automatic approach in which specifications are automatically transformed to abstract programs that contain some unexecutable operations, and the unexecutable operations are manually transformed to lower level programs under the support of a tool.

The final project is trying to develop an intelligent software engineering environment to support the SOFL language and methodology. The main concept is to build a knowledge base that contains rules for guiding the developer to conduct activities such as constructing CDFD, decomposing, and transforming [15]. We have developed a prototype in C under X Windows and Unix on Sun workstations that provides a graphical user interface and basic support for the construction of SOFL specifications. The prototype includes services for drawing condition process...
boxes and data flows between condition processes, re-

drawing diagrams, deleting components of diagrams, re-

sizing diagrams, moving components, generating an out-

line specification module for each CDFD, and accessing precon-

dition and postconditions of each condition process by mouse clicks on the corresponding boxes in the diagram. Fig. 18 shows the layout of the graphical user interface and a simple CDFD with the precondition and postconditions of the condition process CP3 given in its associated specifi-

cation module. We are improving the graphical user interface and support tool, and expanding it to support syntax and type checking of specification modules.

APPENDIX A

The specification module for the CDFD in Fig. 12:

\[\text{s-module Manage-Information-Decoml : Fig. 12; type}
\]

\[\text{ChangeRequest = composed of name: string address: string period: Period room-type: RoomType end;}
\]

\[\text{CancelRequest = composed of name: string address: string end;}
\]

\[\text{PersonalInformation = composed of name: string age: nat arrival-date: Date address: string nights-of-stay: string nationality: string passport-no: nat end;}
\]

\[\text{CustomerList = map PersonalInformation to CustomerStatus;}
\]

\[\text{CustomerStatus = composed of room-no: nat room-type: nat deposit: nat rate: nat check-in-out: \{IN, OUT\} end;}
\]

\[\text{ReservationList = map Reservation to Rooms;}
\]

\[\text{Rooms = set of Room;}
\]

\[\text{Room = composed of room-no: nat room-type: RoomType end;}
\]

\[\text{var}
\]

\[\text{change-req: ChangeRequest;}
\]

\[\text{cancel-req: CancelRequest;}
\]

\[\text{personal-inf: PersonalInformation;}
\]

\[\text{room-no: nat;}
\]
rlist: ReservationList;
customer-list: CustomerList;
rooms: Rooms;

\[\text{c-process Reserve}(\text{res-req: Reservation}) \]
\[\text{ext} \]
\[\text{wrlist: ReservationList} \]
\[\text{rd rooms: Rooms} \]
\[\text{pre} \]
\[\text{res-req notin dom}(\text{rlist}) \text{ and} \]
\[\text{is-possible(res-req.room-type, res-req.period, rlist, rooms)} \]
\[\text{post} \]
\[\text{let} r = \text{obtain}(\text{res-req, rlist, rooms}) \text{ in} \]
\[\text{rlist = override} (\text{rlist, } \{\text{res-req} \to r\}) \]
\[\text{decomposition} \]
\[\text{i-module} \]
\[\text{comment} \]
\[\text{This condition process takes a new reservation request and makes a} \]
\[\text{reservation if the required room is available for the required period.} \]

end-process;

\[\text{function is-possible(room-type: RoomType, period: Period, rlist: ReservationList, rooms: Rooms): bool} \]
\[\text{== exists} \]
\[\text{r inset rooms} \text{ | r.room-type = room-type and} \]
\[\text{not exists} \[\text{c inset dom}(\text{rlist}) \text{ | is-overlapped (c.period, period} \]
\[\text{and rlist(c) = r}] \]
\[]
end-function;

\[\text{function obtain}(\text{res-req: Reservation, rlist: ReservationList, rooms: Rooms}) \text{rm: Room} \]
\[\text{pre} \]
\[\text{is-possible(res-req.room-type, res-req.period, rlist, rooms)} \]
\[\text{post} \]
\[\text{let} \text{vacancy} = \{y : \text{Room} \mid y\text{.room-type = res-req.room-type and} \]
\[\text{not exists} \[\text{c Inset dom}(\text{rlist}) \text{ | is-overlapped(c.period, res-req.period) and} \]
\[\text{rlist(c) = r}} \}
\[\text{in} \]
\[\text{rm inset vacancy} \]

end-function;

\[\text{function is-overlapped(p1: Period, p2: Period)re: bool} \]
\[\text{pre} \]
\[\text{true} \]
\[\text{post} \]
\[\text{if} \text{day(p2(1))} \geq \text{day(p1(1)) and} \]
\[\text{day(p2(2))} \leq \text{day(p1(2)) or} \]
\[\text{day(p2(2))} \geq \text{day(p1(1)) and} \]
\[\text{day(p2(2))} \leq \text{day(p1(2))} \]
\[\text{then} \text{re} = \text{true} \]
\[\text{else} \text{re} = \text{false} \]

end-function;

\[\text{function day(p1: nat)re: bool} \]
\[\text{== undefined} \]
end-function;

\[\text{/* The function day is undefined here and is left for implementation */} \]

\[\text{c-process Change}(\text{change-req: ChangeRequest}) \]
\[\text{ext} \]
\[\text{wrlist: ReservationList} \]
\[\text{rd rooms: Rooms} \]
\[\text{pre} \]
\[\text{exists} \[r \text{ inset dom}(\text{rlist}) \mid r\text{.name = change-req.name and} \]
\[r\text{.address = change-req.address} \text{ and} \]
\[\text{is-possible(change-req.room-type, change-req.period, rlist, rooms)} \]
\[\text{post} \]
\[\text{let} x = \text{get}(\text{change-req.name, change-req.address, rlist}) \text{ in} \]
\[\text{rlist = override}(\text{rlist, } \{x} \to \text{ ~rlist(x)}) \]
\[\text{decomposition} \]
\[\text{i-module} \]
\[\text{comment} \]
\[\text{The precondition requires that the person to make a change on the reserva-} \]
\[\text{tion must exists on the reservation list and there is vacancy as well.} \]
\[\text{The postcondition describes that a required change is made on the reser-} \]
\[\text{vation list.} \]

end-process;

\[\text{function get(name: string, address: string, rlist: ReservationList)re: ReservationList} \]
\[\text{pre} \]
\[\text{true} \]
\[\text{post} \]
\[\text{let} \text{r : dom}(\text{rlist}) \mid \text{r.name = name and r.address} = \text{address in} \]
\[\text{re} = \text{r} \]
end-function;

\[\text{c-process Cancel}(\text{cancel-req: CancelRequest}) \]
acknowledgments

we thank professor m. clint and d. crookes of the queen’s university of belfast, united kingdom, for their constructive comments on the initial version of this paper, and to research student glenn evans for the implementation of the prototype of the SOFL graphical user interface. we also express our gratitude to three anonymous referees for their critical and constructive comments and suggestions on the revision of this paper. this work was supported, in part, by the ministry of education of japan under joint research grant-in-aid for international scientific research FM-ISEE (08044167) and by hiroshima city university under hiroshima city university grant for special academic research (international studies) SCS-FM (A440). this work was also supported by a visiting research fellowship (for shaoying liu) and a NiDevR grant (for yong sun) from the Queen’s university of belfast of the United Kingdom, and by the national science foundation under grant No. CCR-93-11967 (for a. jeff offutt). the authors thank these organizations for their support.

references

Shaoying Liu holds a BSc and an MSc degree in computer science from Xi’an Jiaotong University, the People’s Republic of China, and a PhD in formal methods from the University of Manchester, United Kingdom. He is an associate professor in the Computer Science Department at Hiroshima City University. Dr. Liu worked as an assistant lecturer and a lecturer at Xi’an Jiaotong University: a research associate at the University of York; and a research assistant at the Royal Holloway and Bedford New College of the University of London, respectively, before 1994. He was a visiting research fellow, by invitation, at The Queen’s University of Belfast from December 1994 to February 1995. His research interests include formal methods, software development methodology, software evolution, software testing, software engineering environments, formal languages, and safety critical systems. Dr. Liu received an Outstanding Paper Award at the Second IEEE International Conference on Engineering of Complex Computing Systems (ICECCS’96) and has been published in more than 30 refereed journals and international conference proceedings. He recently served as general chair of the First International Conference on Formal Engineering Methods International Conference on Engineering of Complex Computing Systems (ICECCS’97). He is a member of the IEEE Computer Society and IEICE Japan.

A. Jeff Offutt received the PhD degree in computer science from the Georgia Institute of Technology. He is an associate professor of information and software systems engineering at George Mason University. His current research interests include program testing and automatic test data generation, software reliability, module and integration testing, formal methods, and change impact analysis. He has published more than 45 research papers in refereed computer science journals and conference proceedings. He previously held a faculty position in the Department of Computer Science at Clemson University. Dr. Offutt is a member of the ACM, the IEEE, and the IEEE Computer Society; Dr. Offutt’s home page URL is http://isse.gmu.edu/faculty/offut.

[27] E. Yourdon’s Z: An Introduction to Formal Methods was published in 1991.

A. Jeff Offutt received the PhD degree in computer science from the Georgia Institute of Technology. He is an associate professor of information and software systems engineering at George Mason University. His current research interests include program testing and automatic test data generation, software reliability, module and integration testing, formal methods, and change impact analysis. He has published more than 45 research papers in refereed computer science journals and conference proceedings. He previously held a faculty position in the Department of Computer Science at Clemson University. Dr. Offutt is a member of the ACM, the IEEE, and the IEEE Computer Society; Dr. Offutt’s home page URL is http://isse.gmu.edu/faculty/offut.

Chris Ho-Stuart received the PhD degree in automated theory from Monash University, Australia. Dr. Ho-Stuart is a lecturer in the School of Computing Science at the Queensland University of Technology, Brisbane. His current research interests include formal methods for real-time systems, rule extraction from trained neural networks, and semantics for software specification methods. He has been published in more than 20 papers in refereed computer science journals and conferences; previously worked as a research assistant at the University of York, United Kingdom; and as a visiting research fellow at Uppsala University, Sweden.
Yong Sun received the BSc degree in software engineering from Peking University, Beijing, Peoples Republic of China, in 1982; an MSc degree in distributed computing systems from the Institute of Computing Technology, Chinese Academy of Sciences, Beijing, in 1985; and the PhD degree in foundation of computer science from the University of Edinburgh, United Kingdom, in 1992, respectively. Dr. Sun is a lecturer in the Department of Computer Science, The Queen's University of Belfast, Northern Ireland.

His current research interests includes formal aspects of computing, artificial intelligence (e.g., intelligent tutoring systems and intelligent data analysis), semantics of programming, and distributed systems. He has published over 20 research papers in refereed journals and conference proceedings. Previously, he held a research assistant position in the Institute of Software, Chinese Academy of Sciences, Beijing; a research associate position in the Department of Computer Science, University of York, UK; and a lecturer position in the Department of Mathematics and Computer Science, University of Leicester, United Kingdom. He is a member of the IEEE Computer Society, the ACM, and the European Association of Theoretical Computer Science (EATCS).

Mitsuru Ohba received the MS and BS degrees from Aoyama Gakuin University, Tokyo, in 1973 and 1971, respectively. Ohba has been a professor in the Computer Science Department at the Hiroshima City University since 1994. Ohba was a co-founder of the Software CALS national project of Japan that aimed to establish a new framework for international collaborations using the Internet. He developed his 20-year professional career with IBM. His experience with IBM involved the study of software reliability analysis, study of design notation and specifications, development of a double-byte based virtual machine operating system, development of a high-speed Prolog compiler, study of software testing practices, and development of software test tools; URL: http://www.sel.cs.hiroshima-cu.ac.jp/