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Abstract

This article shows how standard errors can be estimated for a measure of the number of excited degrees
of freedom (the correlation dimension), and a measure of the rate of information creation (a proxy for the
Kolmogorov entropy), and a measure of instability. These measures are motivated by nonlinear science and
chaos theory. The main analytical method is central limit theory of U-statistics for mixing processes. This
paper takes a step toward formal hypothesis testing in nonlinear science and chaos theory.
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1. INTRODUCTION

Empirical nonlinear science has enjoyed a boom In economics.

Examples are Brock (1986), Barnett and Chen (1988), Brock and Sayers

(1988), Frank and Stengos (1988a,b,1989), Gennotte and Marsh (1987),

Hsieh (1989), Sayers (1986), Scheinkman and LeBaron (1989a,b) , Ramsey

and Yuan (1989,1990).

Much of the excitement has to do with the potentiality of

quantifying such vague notions as "level of complexity", "degree of

instability", and "number of active nonlinear degrees of freedom".

At a general level nonlinear science has a rich storehouse of ideas

to inspire the field of nonlinear time series analysis, and, vice

versa.

Most of the work to date has relied on diagnostics such as

correlation dimension, Kolmogorov entropy, and Lyapunov exponents.

Expository papers in this area are Brock (1986), Frank and Stengos

(1988b) for economics, and Eckmann and Ruelle (1985), Theiler (1990b)

for natural science. Eckman and Ruelle (1985) is an especially

detailed and comprehensive review of nonlinear science. Brock (1986)

contains some applications to economics and a discussion of some

pitfalls to avoid. Frank and Stengos (1988b) surveys some of the

useful literature and techniques and studies empirical chaos in

economics by using daily rates of return on gold.

Unfortunately no formal theory of statistical inference exists

for the dimension measures and the instability measures of nonlinear

science. Brock, Dechert, and Scheinkman, hereafter, BDS (1987)

developed some statistical theory (discussed below) for the
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correlation integral of GrassbergerjProcacciajTakens (a measure of

spatial nonlinear correlation) and used this theory to formulate a

test of the null hypothesis of independently and identically

distributed (lID) for a univariate series against an unspecified

alternative. This work was extended to the vector case by Baek and

Brock (1988). Brock and Dechert (1988a) provided some ergodic

theorems for the correlation integral and some convergence theorems

for a Lyapunov exponent estimation algorithm.

The new contribution of this paper is to provide some

statistical inference theory for dimension measures and Kolmogorov

entropy. Central limit theorems for weakly dependent stochastic

processes and for U-statistics provide the tools needed for this

paper. They are presented in section two. Asymptotic standard

errors of dimension and Kolmogorov entropy estimates are derived as

applications of the theory. Nuisance parameter problems occuring in

these measures are discussed. In section three we calculate the

correlation dimension estimates, the Kolmogorov entropy estimates,

and their standard errors by using returns on weekly stock market

index studied by Scheinkman and LeBaron (1989a). Final remarks and

conclusions are in section four.

2. THEORY OF STATISTICAL INFERENCE

Let {at}, t=1,2, ... ,T be a sample from a strictly stationary and

ergodic stochastic process which we abuse notation by also denoting
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by {at}' or a deterministic chaos with unique, ergodic invariant

measure as in Brock (1986). This assumption allows us to replace all

limiting time averages by corresponding phase averages. Also the

limiting value of all time averages will be independent of initial

conditions. The data, {at} can be "embedded" in m- space by

constructing "m-futures"

a~ = (at , ... ,at +m_1), t=1,2,oo.,T-m+1.

The correlation integral for embedding dimension m is defined by

(2.1 ) C(€,m,T) =

where Tm=T-m+1, I(x,Yi€)=1 if IIx-yll~€ and 0 otherwise, IIxll denotes

the maximum norm, Le. II xII = max Ix·1 on Rm. The correlation
O~i~m-1 1

integral measures the fraction of total number of pairs (a~,a~) such

h d b m d m. hthat t e istance etween at an as IS no more t an €. In other

words, it is a measure of spatial correlation. Note that C(€,m,T) is

a double average of an indicator function. Hence one expects it to

converge as T~. Denker and Keller (1986, Theorem 1 and (3.9)) and

Brock and Dechert (1988a) show that

(2.2) dC(€,m,T) ~ C(€,m).

It is worthwhile to give some intuition into the measure C(€,m).
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Fm(xO,x1,· .. ,xm_1) "Prob{at~xO,at+l~xl,· .. ,at+m_l~xm_l} 

Prob{a~~x}. Then C(f,m) is given by

(2.3) C(f,m) = f f m I(x,y;f)dF (x)dFm(y)·
Rm R m

For example, look at C(f,l)

(2.4) C(f,l) = fRf R I(xO'YO;f)dF1(xO)dF1 (yO)

= fR [F1 (xO+f) - F1(xO-f)]dF1(xO)'

m-l
= IT F1(x.), hence, by (2.3) we have

. 0 11=

(2.5) C(f,m) = [C(f,l)]m.

In general C(f,m) measures the concentration of the joint

distribution of m consecutive observations, a~. It describes the

mean volume of a ball of radius f. The elasticity of C(f,m)

describes the mean percentage of new neighbors of the center of a

ball of radius f that are captured as the radius of the ball

increases by one percent. The measure C(·) is an example of a gauge

function (Mayer-Kress (1987)). Its elasticity is a measure of

dimension which is discussed below.
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The information dimension (Eckmann and Ruelle (1985)) is

estimated by measuring, for each embedding dimension m, the slope of

log(C(E,m,T)) plotted against log(E) in a zone where the slope

appears constant (Ramsey and Yuan (1989,1990), Scheinkman and LeBaron

(1989a)).1 One then looks to see if these estimated dimensions

become independent of m as m increases. An alternative 'measure of

dimension is the point elasticity d[log(C(E,m,T))]/d[log(E)] =
C'(E,m,T)E/C(E,m,T) where C'(E,m,T) is the derivative of C(E,m,T)

with respect to E. We will focus on the point elasticity here

because it (cf. (2.18) below) can be written as a function of

U-statistics. If {at} is lID the correlation integral takes a simple

form. A useful nonparametric test of the null hypothesis of lID,

which uses the correlation integral and which illustrates the methods

to be used in this paper is in Brock, Dechert, and Scheinkman (1987).

BDS (1987) proved

Theorem 2.1: Let {at} be lID and assume V>O in (2.7) below, then

(2.6) T1/ 2 [C(E,m,T) - [C(E,l,T)]m] ....!, N(O,V), as T------lw.

Here "....!,N(O,V)" means "convergence in distribution to N(O,V)" and

N(O,V) denotes the normal distribution with mean °and variance V

where

(2.7) V = 4[Km + 2
m
;;\m-iC2i + (m_1)2C2m _ m2KC2m- 2],

i=l
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[
1 if lai-aj I~£

o otherllise

IIhere Ixl is the absolute value of the real number x,

This theorem lias used by BDS to build a nonparametric test for

lID that had good size and pOller characteristics (especially against

deterministic chaos) in comparison to some other popular tests for

independence (cf. Hsieh and LeBaron (1988a,b)). The proof of Theorem

2.1 uses the theory of U- statistics. U- statistics are a type of

generalized time average. C(£,m,T) is an example. They behave

enough like simple time averages that a central limit theory exists

for U-statistics that parallels the central limit theory for simple

time averages like the sample mean.

U- STATISTICS

Ve lIill folloll Sen (1972), Serfling (1980), and Denker and

Keller (1983). A measureable function h:nn~R is called a kernel

for B=Eh if it is symmetric in its n arguments. Typically n=Rk for

some positive integer k. A U-statistic for estimating B"is given by
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*where E is taken over 1~t1< ... <tn~T, Tn is the number of n-subsets of

{l, ... ,T}, and {at} is a strictly stationary stochastic process with

values in n. U-statistics are interesting because (i) they have many
T

of the desirable properties of the simple time average uT = Eat/T,
t=l

including central limit theorems and laws of large numbers, (ii) in a

certain context they are minimum variance estimators of 0 in the

class of all unbiased estimators of 0 (Serfling (1980, p. 176)),

(iii) they converge rapidly to normality (Serfling (1980, p. 193,

Theorem B)), and (iv) many useful statistics can be written in

U-statistic form (Serfling (1980, Chapter 5)). We will only use the

case n=2. So from now on n is fixed at 2. Before going on we stress

that {at} can be an Rk valued stochastic process in the general

theory below.

The projection method of Hoeffding is applied by Denker and

Keller (1983) to obtain the decomposition

(2.11) UT = 0 + (2/T)E{h1(at )-O} + R(T), if n=2

E runs from 1 to T, and R(T) is a remainder that goes to ° in

distribution when multiplied by yT as T~w. Let us denote by

(2.12) 2
~
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the exact variance of the leading term in the above decomposition.

Let us denote by

(2.13)

its asymptotic variance, provided the sum converges absolutely. In

this case

(2.14) ~2 = lim ~T2/T.
T-itD

We state part of one of Denker and Keller's theorems below.

Theorem 2.2: (Denker and Keller (1983, p. 507))

d(2.15) T/(2~T)[UT - 0] ~ N(O,l), as T~oo,

2Let ~ >0, then,

provided that the following condition is satisfied: The strictly

stationary stochastic process {at} is absolutely regular with

coefficients Pt satisfying

(2.16)

r.P
t
0/ (2+0) <00, for some r>O, ~2>0, and s [E{lh(a a )1 2+0}]<u v up t, ... ,t 00.

1 n
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Here the "sup" is taken over 1~t1< ... <tn<T. "Absolutely regular"

asks that

(2.17) 1\ = sup E[sup{IP(A[G(1,s))-P(A) I IAEG(S+t,m)}]

tends to zero as t--l(D. Here the outside "sup" is taken over s in

{1,2, ... } and the inside "sup" is taken over A in G(s+k,m). The

symbol "G(s,v)" denotes the sigma algebra generated by {atls~t<v}

(1~s,v~m). Other mixing conditions besides (2.17) including two by

Denker and Keller yield similar results. The point is that we need

some type of condition on the rate of decay of dependence over time,

i.e. a mixing condition, in order to get the central limit theorem

for dependent processes. Condition (2.17) seems as useful as any.

In the applications to follow we use Theorem 2.2 and the delta

method (Serfling (1980, p. 124)) to obtain central limit theorems for

differentiable functions H(z1(T), .. "zk(T)) of the k-vector of

U-statistics z(T)=(z1(T), ... ,zk(T)) where each zi(T) has symmetric

kernel function hi(at,as)=hi(as,at)' Here is the basic method. Let

z=Ez(t). Provided H(x) has non-zero derivative at z and the

component U statistics have nondegenerate asymptotic distributions

then we know from the delta method (Serfling (1980, p. 124)) that

T1/ 2(H(z(T)) - H(z) has the same limit law as T1/ 2(DH(z).(z(T)-z))

where DH(z) is the derivative of H evaluated at z and "." denotes

scalar product. Put g(a1,a2)=DH(z).(h(a1,a2)-z), g1(a) =
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E{g(at,as)lat=a}. Then the formula (2.13) can be used to calculate

the asymptotic variance of the limit distribution and Theorem 2.2

applies. Vith this background turn now to applications.

APPLICATIONS

In the applications below we will assume {at} is lID to simplify

calculations of asymptotic variances from (2.13). But the methods

apply to any general process to which Theorem 2.2 applies.

(1) STANDARD ERRORS OF DIlENSION ESTIIATES

The statistical properties of dimension calculations are

investigated by Ramsey and Yuan (19S9,1990) and Theiler (1990a). As

Ramsey and Yuan point out the point estimate of correlation dimension

is typically derived from ordinary least squares (OLS) regression

over an apparent constant slope zone on a log-log plot (Ramsey and

Yuan (1990, p. 157, p. 160-161), Scheinkman and LeBaron (19S9a)).

Problems of subjectivity in the choice of the apparent constant slope

zone together with the mathematical form of the OLS estimator lead us

to focus upon the elasticity measure of dimension. Ve also wanted to

see how well our methodology would perform on the most volatile

measure of dimension. Derivatives are well known to be noisy and

difficult to estimate. Another reason for concentration on this form

is that we can write various estimators of the elasticity as a

function of U-statistics. Ve calculate the slope of [log(C)/log(E)]
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of two nearby points for a point estimate of correlation dimension.

Sample properties of our estimate are discussed in section 3. Using

this dimension concept enables us to apply the theory of

U-statistics. Vhile Denker and Keller (1986) use U-statistics theory

to derive asymptotic standard errors for a Grassberger-Procaccia type

of correlation dimension estimate, our work was done independently.2

Let {at} be an lID stochastic process with finite moments as in

(2.16).3 Then {a~} satisfies the mixing condition of Theorem 2.2.

The dimension estimate, which is intended to approximate the

elasticity, d[log(C)]/d[log(E)], that we will examine is defined as

follows:

log C(E+4E,m,T) - log C(E,m,T)
(2.18) dm(E,4E,T) =-------------------------------------

log(E+4E) - log(E)

Since C(E,m,T) ~ C(E,m) therefore,

Note that dm(E,4E,T) is a function of two quantities, C(E+4E,m,T) and

C(E,m,T), i.e. dm(E,4E,T)=D(C(E+4E,m,T),C(E,m,T)). By (2.11), we

have
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(2.21) C(e,m,T)-O(e,m) = -i-E(h1(a~,e)-O(e,m)) + R2

where O(e,m)=C(e,m)=EC(e,m,T). Hence, we may apply the delta method

(Serfling (1980, p. 124)) to prove the following theorem. The proof

is in the Appendix.

Theorem 2.3: Assume {at} is lID and satisfies the moment condition

in (2.16). Suppose the differential of D(.,.) is nonzero at

(C(e+Ae,m), C(e,m)), and the covariance matrix of (C(e+Ae,m,T),

C(e,m,T)) is nonsingular, and VDm defined below is positive. Then

(2.22) T1/ 2[D{C(e+Ae,m,T),C(e,m,T)} - D{O(e+Ae,m),O(e,m)}]

~ N(O,VDm)

where
.1 . .

(2.23) VDm = 412[Am + Bm- 2Cm + 2 E {Am-J + Bm-J - 2Cm-J}],
j=l

1 = [log(e+Ae) - log(e)]-l,

A = K(e+Ae)/C(e+Ae)2,

B = K(e)/C(e)2,

C = V(e+Ae,e)/(C(e+Ae)C(e)),

C('), K(.) are defined in (2.8), (2.9) and V(e+Ae,e) =

EI(ai,ajie+Ae)I(ai,ajie).

Theorem 2.3 is a basis for setting up hypothesis testing
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concerning dimension. For example Scheinkman and LeBaron (1989a)

produced a point estimate of about 6 for the correlation dimension of

stock returns. This number has been widely cited. With our methods

one can now estimate a standard error for such point estimates of

dimension. This was not possible before. We investigate this

problem in section three.

(2) STANDARD ERRORS OF IOLIOGOROV ENTROPY

The standard error of the approximate Kolmogorov entropy Km(E) _

log[C(E,m)jC(E,m+l)] can be derived following the procedure of

Theorem 2.3 since the sample estimator of Km(E), Km(E,T), is a

differentiable function of two U-statisics, C(E,m,T), C(E,m+l,T).

The Kolmogorov entropy of a deterministic dynamical system,
k k kYt+l=f(Yt), Yt ER ,f:R ~ R , is a measure of how fast a pair of

states become distinguishable to a measuring apparatus with fixed

precision under forward iteration (Eckmann and Ruelle (1985, p.

637)). For example if {at} is lID the limit of the approximate

Kolmogorov entropy, Km(E), is infinity as E goes to zero. For finite

E, {at} lID implies Km(E) = -log(C(E,l)) ~ 00, E~ o. The proof of

the following theorem is found in the Appendix.

Theorem 2.4: Make the same assumptions as in Theorem 2.3. If {at}

is an lID process,
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where Km(f,T) is the sample estimate of the Kolmogorov entropy,

For some applications, the invariance property, i.e. the first

order asymptotics of the correlation dimension and the Kolmogorov

entropy evaluated at estimated residuals are the same for true

residuals, can be shown. We sketch this idea here.

First, in many applications we replace the series of

observations {at} by the standardized series in an attempt to scale

the series so that its mean is zero and its variance is unity. But

this introduces two nuisance parameters that are estimated by the

sample mean and the sample standard deviation, which may change.

These nuisance parameters may change the asymptotic distributions

above.

A second fundamental concern is that many times we are really

interested in testing the estimated residuals of some parametric
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model such as an Autoregressive Moving Average (ARMA) model or an

Autoregressive Conditional Heteroscedastic (ARCH) model for temporal

dependence or instability. But then the distribution of the

estimated residuals is contaminated by the estimation procedure.

Some limited results are discussed below.

Consider null models of the form

. 2
where G is C (twice continuously differentiable), the parameter

vector b is estimated yT consistently and {et } is IID with mean zero

and unit variance. Then under modest regularity conditions the

argument in Brock and Dechert (1988b) can be extended to show that,
,

under (2.28), if Eh1(u)=O, the limit law of yT(C(e,m,T) - C(e,m)) is

the same whether C(e,m,T) is evaluated at the true {et } or the

estimated {et }. The full details are in Brock and Dechert (1988b)

for the case m=l and G is a linear autoregression. Ve call this

property "the invariance property". A similar argument can be

developed to show the invariance property, under (2.28), for the

limit law of

(2.29) yT[F{C(e,l,T), ••• ,C(e,k,T)} - F{C(e,l), •.. ,C(e,k)}]

where F is C2• This includes the correlation dimension estimate and

the Kolmogorov entropy estimate discussed in this paper.
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Remark: For the indicator kernel h1(u)=E[I(u,vjf)lu] = Fe(U+f) 

Fe(u-f). So Eh1'(u)=0 in this case. Here Fe(u)=Prob(et~u).

These results are of limited usefulness in applications. First,

they do not cover all F in (2.29) when the variance of et must be

estimated. An invariance result for the BDS (1987) statistic is in

Brock (1989). Second, they apply only to the estimated residuals of

null models where the true residuals are assumed lID. We would like

to get away with assuming weaker maintained assumptions on these

residuals. Unfortunately we have not obtained any useful results

under more general assumptions.

3. ElPIRICAL APPLICATION

In this section we apply the theory. Scheinkman and LeBaron

(1989a) estimated the correlation dimension for 1226 weekly

observations on the CRSP value weighted U.S. stock returns index

starting in the early 1960's. They arrived at roughly a dimension of

6. They then calculated another estimate of dimension due to Takens

which was also close to 6. Here we provide asymptotic estimates of

standard errors for the elasticity estimate of dimension for

Scheinkman and LeBaron's data set.

The embedding dimension is increased from 1 to 14, and the
2 4resolution parameters f+Af, f are adjusted from 0.9, 0.9 to 0.9 ,

0.95. For each embedding space and parameter value, a point estimate
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of the correlation dimension is reported in Table 1. Dimension

estimates are between 7 and 9 in high embedding dimensions, and their

standard errors are low enough to make the test statistic values

significant at the 57. level under the assumption of asymptotic

normality. Note that the null hypothesis of lID is rejected in favor

of a lower dimensional alternative. This is consistent with the

results of Scheinkman and LeBaron.

Table 2 reports the dimension estimates and their associated

standard errors computed for 1226 lID observations to compare with

the 1226 actual weekly stock returns. An IMSL standard normal

subroutine DRNNOA was used to generate the pseudo random numbers.

Since the correlation integral loses too many comparable pairs in

high embedding dimensions, we report the results for embeddings only

up to 8 dimensions. We can see the correlation dimension estimate

and the embedding dimension go almost together as they should. When

the resolution parameter E is too small, we lose comparable pairs

very fast. The interesting fact from Table 2 is that most of the

test statistics are insignificant at conventional significance

levels, i.e. we fail to reject the null hypothesis that returns are

lID. This is encouraging since we know the artificial returns are

lID.

To estimate the speed of information creation, Km, we also

estimate the approximate Kolmogorov entropy. Tables 3 and 4 are

entropy estimates and their standard errors computed from 'actual

stock returns and standard normal random numbers. Theoretically if

the stock returns process is lID then the entropy estimate should be



18

close to the value, -log(C(f,l,T)). The Kolmogorov entropy estimate

becomes smaller than -log(C(f,l,T)) when actual values are used in

Table 3, but this is not true when random numbers are used in Table

4. Actual data generate statistically significant test statistics,

in other words, the test rejects the null hypothesis that stock

returns are generated by an IID stochastic process.

Note from Table 4 that the Km estimates are all positive even

though the process is IID. Eckmann and Ruelle (1985, Sections 4 and

5) point out that Km is a lower bound to the true Kolmogorov entropy

and positive Kolmogorov entropy is associated with chaos. Our

results caution the investigator that stochastic processes such as

IID processes are also consistent with positive Kolmogorov entropy.

This indeterminacy brings up a natural question: What do we learn

when we reject the null hypothesis of IID with the Km-based test

statistic as in Table 3? Let us explain.

Note that log(C(f,m)jC(f,m+l)) = log(C(f,l))-l if and only if

C( f ,m+l) jC( f ,m)=C( f, 1), i. e. Prob(Xt +1 1Xt ,Xt _1,··· ,Xt _(m-l)) =

Prob(Xt +1) when "Xt " is shorthand for the event 1\-Xsl~f. Hence

failure to reject the null of IID under a Km-based test is consistent

with the m-past (Xt ,Xt _1""'Xt _(m_l)) having no predictive power for

the future, Xt +1. We say more about this in Baek and Brock (1990)

where we show that this kind of testing methodology based upon Km

leads naturally to tests of whether one series {Yt } helps predict
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another series {Xt }.

Monte Carlo experiments were done to examine the quality of

normal approximation of the test statistics and small sample bias

pointed out by Ramsey and Yuan (1989). 2500 samples were replicated

to generate a sampling distribution. The same experiments were

performed with different values of "the sample size and the parameter

E. But we only report the results where the sample size is 1000, and

E+AE, E are 0.9, 0,92 for the correlation dimension and E=0.9 for the

Kolmogorov entropy in Table 5 and 6.

In Table 5, the second column shows that the correlation

dimension estimate is biased downward which makes the test statistic

take negative values. Also histograms of the standardized estimates

of the correlation dimension in Figure 1 - 9 (top plot) show this

downward biasness. The average empirical asymptotic standard errors

(ASE) which are computed by the 2500 empirical ASE's based on (2.23)

are in the third column. The fourth column contains the true ASE's

of the test statistic, [dm(E,AE,T)-m], computed by using numerically

calculated C(E+AE), C(E), K(E+AE), K(E) and V(E+AE,E).7 Even though

C, K, and V are consistently estimated, there is a big deviation

between the mean ASE and true ASE (See the proof of Theorem 2.3 in

Appendix for notations.).8 The main reason for this is that the,

parameter exaggerates the ASE in our dimension calculation method.

For instance ,2~90 when E+AE=0.9 and E=0.92. If there is a 1%

discrepancy between the true value and the estimated value except for

the factor, 4,2, in the variance formula then we expect there will be
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a 360% difference in the variance. As long as the normal

approximation is good, there should not be a big problem to use the

empirical ASE for hypothesis testing. If the sampling distribution

is well approximated by a normal distribution, VT·SD is close to the

mean of the empirical ASE. By comparing the third column and the

last column, we may see how good the normal approximation is. In the

high embedding dimensions 9 and 10, the approximation is quite good.

However, when the data is embedded in low dimensions, the test

statistic has smaller dispersion than the standard normal

distribution. Since previous studies such as Scheinkman and LeBaron

(1989a) indicate the meaningful embedding dimension range is high

dimensional space, we think that our previous application to stock

returns is suggestive.

It is important to realize that even though the test of lID

based upon the derivative measure of dimension is capable of

rejecting the null hypothesis of lID for stock returns in favor of

some "lower dimensional" alternative. This does not necessarily mean

chaos is present. There are many stochastic processes where close

m-histories tend to be followed by close descendants that must be

ruled out before one can claim chaos. Also, consistent with Ramsey

and Yuan (1989,1990), biases appear in the dimension estimates and

the asymptotic standard errors grow dramatically with the embedding

dimension. Although theory implies that these biases disappear in

the limit bootstrapping and bias reduction techniques along the lines

of Efron (1982) have potential to improve performance. We suspect

that bootstrapping, rather than using asymptotics will improve
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performance of all the statistics discussed in this paper because

bootstrapping apparently helps approximate some of the higher order

terms in the Edgeworth expansion (Efron (1982), Efron and Tibshirani

(1986) and references) whereas our methods capture only the first

order terms.

Another technique that may improve performance of dimension

based tests is to fix a zone of epsilons of the log(C(E,m)) vs.

log(E) plot and follow Denker and Keller (1986) to estimate the slope

of the log (C(E,m)) vs. log(E) plot over this zone. Since our

derivative estimate of dimension performed better than we thought

(even though it performed poorly) we believe the Denker and Keller

procedure may perform well. 9 Turn now to the Km-based test which

performed much better.

We analyzed the reliability of the Km-based test in a similar

way in Table 6. From the second column, there is no clear evidence

that the entropy estimate is biased. Also the consistent estimates

of C and K bring the mean ASE based on (2.27) very close to its true

value. By comparing the third and last column we can say that the

normal approximation is good for high embedding dimensions. The

histogram constructed by the standardized sampling distribution in

Figure 1 - 9 (bottom plot) also shows evidence of good normal

approximation.

Finally we turn to the two examples which show how our dimension

test can be applied without such a serious bias problem.
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Example 1: Suppose you have two time series {a1t} and {a2t} and you

want to test whether their dimensions are the same. I.e. you want to

capture, in some reasonable way, the notion of a statistically

significant difference in the number of "possibly nonlinear factors"

or active modes in the two series.

To do this one could, under the maintained hypothesis of

stationarity and mixing as in Theorem 2.2, set up the null hypothesis

that the dimension for m, f for the two series is the same against

the alternative that it is not. The asymptotic variance under the

null for the difference of the two dimension estimates could be

derived as in the proof of Theorem 2.3, but the variance formula will

need to be modified to include a string of covariance terms.

As a special case we will construct a test of the null

hypothesis that {a1t} and {a2t} are both lID and mutually

independent. This test is based upon comparison of the dimension

estimates. The lID null leads to asympotic null standard normality

being achieved for a test statistic with a simple asymptotic variance

formula but it opens a gap between the null hypothesis of the same

dimension and alternatives of different dimension. That is to say,

the test developed under the lID null may reject the null because lID

does not hold even though the dimensions are the same. This can

happen through the change in the variance formula. At the risk of

repeating, however, under a suitable weak dependence condition, it

would be possible to construct a test of the more desirable null

hypothesis that the dimensions are the same which has a limiting null
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standard distribution but a more complicated variance formula. We

have

Theorea 3.1: Let d~(E,~E) and d;(E,~E) be the correlation dimension

of the first series and the second series respectively. The null

hypothesis that both series are lID and mutually independent with

common distribution function is tested by d~(E,~E) = d;(E,~E), and

the alternative hypothesis is d~(E,~E) f d;(E,~E). Then under the

null hypothesis,

where
1
dm(E,~E,T)=the correlation dimension estimator of the first sample,

2
dm(E,~E,T)=the correlation dimension estimator of the second sample,

VD1 = the consistent estimator of the variance, 8,2[Am + Em _2Cm +

m-l A • A • A •

2 ~ {Am- J + Bm- J - 2Cm- J}J, A, B and Care def ined III (2.23).
j=l

Proof: The proof is similar to the proof of Theorem 2.3.

A

For practical purposes we computed VD1 from the first sample

because the two series have the same distribution under the null

hypothesis. Ahistogram of the statistic (3.1) with 2500 iterations
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which is drawn in Figure 10 it did not show downward bias because the

bias factors in the numerator cancel and the 1 factors are cancelled

from the numerator and the denominator of (3.1). It also showed that

the sampling distribution has thin tails relative to the standard

normal distribution.

Example 2: The second application is designed to test whether the

given series {at} is lID or not. The lID test based on the dimension

estimate is constructed in a similar way as the first example. First

of all a bootstrap sample is generated from the given sample with

replacement. If the series {at} has a chaotic attractor which shows

a low dimension estimate, the difference between the original and the

bootstrap sample correlation estimates should be statistically

significant since the chaotic structure is destroyed by shuffling.

However if {at} is lID, the difference between them should not be

significantly large. The formal test statistic will be the

following.

*Theore.3.2: Let dm(E,dE) and dm(E,dE) be the correlation dimension

of the original and the bootstrap series respectively. The null

*hypothesis of lID is tested by dm(E,dE) = dm(E,dE) against the

*alternative hypothesis, dm(E,dE) < dm(E,dE) to set up a one-tail

test. Then under the null hypothesis,
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IIhere

dm(f,~f,T)=the correlation dimension estimator of the original

*sample, dm(f,~f,T)=the correlation dimension estimator of the

bootstrap sample, VD2 = the

812[Am + Bm _2Cm + 2
m
E
1

{Am-j
j=l

defined in (2.23).

consistent estimator of the variance,

+ B"m- j - 2" Cm- j}], A B d C, an are

Proof: The proof is simliar to that of Theorem 2.3.

We computed VD1 from the original sample because the bootstrap

sample gives a close value under lID assumption. A histogram based

on 2500 iterations of this experiment in Figure 11 sholls no clear

evidence of downllard bias. The same cancelling of the 1 factor that

occurred in (3.1) also occurred in (3.2).10

4. CONCLUSION AND FUTURE RESEARCH

This paper has shown that central limit theory for U-statistics

under assumptions of lIeak dependence may be fruitfully applied to

provide inference theory using objects of nonlinear science such as

the correlation dimension and the approximate Kolmogorov entropy.
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For example ~e derived asymptotic standard errors for correlation

dimension estimates and estimates of approximate Kolmogorov entropy.

We then estimated these quantities for stock returns. Dimension

estimates appear rather unstable. Kolmogorov entropy estimates ~ere

better behaved.

The performance of the dimension estimate ~as poor, due to a

bias in the dimension estimate itself and bias in the standard error

estimate. But inference ~as improved by use of bias reduction

techniques. U-statistic theory can also be applied to provide

inference theory for measures of instability ( See Appendix 3. ).

Our methods are general. For example the correlation integral

can be used to build tests for nonlinear "Granger/Wiener" causality

~hich is explain in Appendix 4, as ~el1 as for "instability," This

~ork is in progress and is touched upon in Baek and Brock (1990).
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FOOTNOTES

1. "Log" denotes the natural logarithm in this paper.

2. After our work was completed Dee Dechert told us about Denker and

Keller (1986). They choose 5 values €i=0.08x2-i, i=0,1,2,3,4 and

write the OLS estimators of a, P in the OLS regression, log C(€i,m)=a

+ Plog(€i) + ~i' in U-statistic form. In this way they obtain an

estimate of P from the vector of estimates {C(€i,m)} and a standard

error for p. They show the results are very good for a certain

dynamical system on the plane.

3. The assumption of lID is not needed for any of the applications.

It is used to simplify the variance formulae for the statistics to be

treated below. If one imposes the mixing assumptions of Denker and

Keller (1983, 1986) one can develop a variance formula like (2.13)

which is an infinite sum of relevant covariances. One can then use a

consistent estimator of this infinite sum to develop the general

theory along the lines of the special case of lID developed here.

For example the general theory can be used to estimate confidence

intervals for estimates of objects like Kolmogorov entropy and

dimension.

4. A continuous function of random variables which converge in

distribution also converges in distribution. (Serfling, (1980, p. 24,
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Theorem)).

5. We thank Pedro DeLima for help with this formula. A similar

independence test based upon the Kolmogorov entropy was independently

developed by Hiemstra (1990). We highly recommend this excellent

study to the reader. It contains not only a study of independence

tests but also applications to testing the efficient markets

hypothesis.

6. For the case of standardized t and standard normal distributions,

DIM calculations are approximately equal to mfor each embedding

dimension m. Technically DIM = m[(dC(£)jd£)£]jC(£) for embedding

dimension munder the null of lID distribution. The following table

reports the numerical calculations of [(dC(£)jd£)£]jC(£) for the t

and standard normal distributions. A fat tailed t distribution of

degree of freedom 3 was chosen from Hsieh and LeBaron (1988a) since

we assume the underlying structure of the Scheinkman and LeBaron data

is approximated by the t distribution.

£ xjVS where xN t(3)
0.8849
0.9052
0.9221
0.9362

x where xN N(O,1)
0.8721
0.8954
0.9145
0.9303

Therefore we use mfor the approximate value of DIM under the given

null hypothesis in Table 1 and 2. It can be shown, putting

C(£,1)=C(£), and using (2.4) that [(dC(£)jd£)£]jC(£) ~ 1, £ ~ O.

One can evaluate the quality of the approximation near £=0 by
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computing the Taylor expansion of (dC(E)/dE)/(C(E)/E) from (2.4)

around E=O. It is quite good as the table shows.

7. The true ASE of the test statistic uses numerically integrated

values of K, C, and V for the calculation of

ASE=[412{Am + Bm_ 2Cm + 2
m
E
1

(Am-j + Bm-j _ 2Cm-j)}]1/2, where
j=l

1 = [log(E+AE) - log(E)]-l, A = K(E+AE)/C(E+AE)2, B = K(E)/C(E)2,

C =V(E+AE,E)/(C(E+AE)C(E)).

True K, C, and V (by numerical integration)

E K( E) C(E) \/(E' ,E)

0.4755 0.2295 20.2511 (E'=0.9,E=0.9 )

0.2098 0.4332 0.1912 (E'=0.92,E=0.93)

0.1743 0.3938

Notes:

• Error function E(z)=(2/~~)f~exp(-t2/2)dt was used to calculate K,

C, and V. Let f(z) be the probability density function of a

standard normal random variable, i.e. f(z)=(1/~~)exp(-z2/2).

Then C(E) = (1/2)f_:[E{(x+E)/~}-E{(x- E)/~}]f(x)dx, and K(E) =

(1/2)L:[E{(x+E)/~}-E{(x- E)/~}]2f(x)dx, and V(E' ,E) =

(1/4)L:[E{(x+E')/~}-E{(x- E')/~}] [E{(x+E)/~}-E{(x- E)/~}]f(x)dx .

• MATHEMATICA was used for numerical calculations. Refer to Volfram,

S. (1988), lathematica, New York, Addison Vesley.
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8. The table below shows that the sample estimates of K, C, and V

converge to their true values consistently.

Estimates of K, C, and V (Standard Normal)

T f K C \I

1000 0.9 0.251 (0.0052) 0.475 (0.0037) 0.228 (0.0049)

1000 0.92 0.210 (0.0047) 0.433 (0.0036) 0.190 (0.0044)

1000 0.93 0.175 (0.0042) 0.394 (0.0035)

500 0.9 0.252 (0.0074) 0.476 (0.0053) 0.229 (0.0070)

500 0.92 0.210 (0.0067) 0.434 (0.0052) 0.191 (0.0063)

500 0.93 0.175 (0.0060) 0.394 (0.0050)

250 0.9 0.252 (0.0104) 0.476 (0.0076) 0.229 (0.0099)

250 0.92 0.211 (0.0095) 0.434 (0.0073) 0.191 (0.0088)

250 0.93 0.176 (0.0085) 0.395 (0.0070)

Notes:

• T is the sample size .

• K, C, and V are calculated by 2500 replications. The standard

errors for K, C, and V are reported in parentheses.

9. Note that the bad performance of our dimension based statistic is

due to the "magnification" quantity 4"? In a comparison test of

whether true dimension estimates were significantly different this

quantity could be cancelled which may lead to better performance.

10. Since there are well known alternative tests for lID besides
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dimension based tests and Kolmogorov entropy based tests, the issue

of comparison arises. A serious discussion of this issue is beyond

the scope of this paper. A rather extensive discussion of the power

and size properties of the closely related BDS test for lID is in

Brock, Hsieh, and LeBaron (1991). A comparison (with moment

generating function tests, Kendall's tau, and Blum, Kiefer,

Rosenblatt's test) of the size and power properties of a vector

version of the BDS test is in Baek (1988).

The Kolmogorov entropy test is treated in Hiemstra (1990).

Hiemstra's general conclusion is that the Kolmogorov entropy test

performs quite poorly in comparison with the optima~ test especially

against weak linearly dependent alternatives in conditional mean and

conditional variance. In general one must expect nonparametric tests

like those treated in this paper to do poorly in power properties

against specific parametric alternatives when compared with tests

that are designed to be optimal against specific parametric

alternatives. Based upon work with the closely related BDS test we

expect the Kolmogorov entropy based test to do well against highly

nonlinear alternatives that are predictable in the short term using

nonlinear prediction schemes such as nearest neighbors. See Brock,

V., Hsieh, D., and LeBaron, B., (1990) for the general argument and

Monte Carlo evidence. A serious comparison study of the tests

discussed in this paper must be left to future work.
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APPENDIX

1. Proof of Theorem 2.3

Put E'=E+~E. Applying the delta method (Serfling (1980, p. 124)) to

[D{C(E' ,m,T) ,C(E,m,T)} - D{O(E' ,m) ,0(E,m)}], lie have

(A.l) dD = D1+E{h1(a~,E')- O(E' ,m)}+D2+E{h1(a~,E)- O(E,m)}

+ 0 (T- 1/ 2)
P

1 1IIhere D1 = ---=---- ---=--
In(E')-ln(E) O(E' ,m)

1 1

In(E')-ln(E) O(E,m)

The formula for the variance lIill be derived as in (2.13) after using

the delta method. Put

By Theorem 2.2, T1/ 2dD ~ N(O,VDm) IIhere VDm=E[gl(a~)2 +
m-1
2j~lgl(a~)2g1(a~+j)]' Under the lID assumption on the {at} process,

O(E',m) and O(E,m) are C(E,)m and C(E)m. Denote [log(E') - log(E)]-l

by 1. Then D1, D2 equal 1[C(E,)]-m, -1[C(E)]-m. First, recalling

hl(a~,E) = E[I(a~,a~;E)la~]
m-1

= II [F(at .+€)-F(at .- E)]
i=O +1 +1
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where F(x) =Prob{a �~ x}, we compute

�E�[�g�l�(�a�~�)�2�] = 412[(K(E')/C(E,)2)m + (K(E)/C(E)2)m_

�2�{�E�h�1�(�a�~�,�E�'�)�h�1�(�a�~�,�E�)�/�C�(�E�,�)�m�C�(�E�)�m�}�]�. Next, compute

�E�[�g�l�(�a�~�)�g�l�(�a�~�+�j�)�] = 4l[(K(E')/C(E,)2)m-j + (K(E)/C(E)2)m-j -

Eh1�(�a�~�, E' )h1�(�a�~�+�j�' E) / (C(E' )C(E) )m- Eh1�(�a�~�, E)h1�(�a�~�+�j�' E') / (C( E' )C(E))m] .

Then
m-1

E[gl �(�a�~�)�2�] + 2.E E[gl �(�a�~�)�g�l �(�a�~�+�J�.�)�] = 4l[(K(E')/C(E,)2)m +
J=l

(K(E)/C(E)2)m + 2
m
i/{(K(E')/C(E,)2)m- j + (K(E)/C(E)2)m-j }]

j=l

where

+ R,

m-1
+j:1Eh1�(�a�~�,�E�)�h�1 �(�a�~�+�j ,E')].

Moreover �E�h�1�(�a�~�,�E�'�)�h�1�(�a�~�+�j�,�E�) = �E�h�1�(�a�~�+�j�,�E�'�)�h�1�(�a�~�,�E�) can be shown

easily. Basedon this, R can be further simplified to
m-1

-812[C(E')C(E)rm[Eh1�(�a�~�,�E�'�)�h�1 �(�a�~�,�E�) + 2
j
:
1
Eh1�(�a�~�,�E�'�)�h�1 �(�a�~�+�j ,E)].

Now let W(E',E) be Eh1(at ,E')h1(at ,E). Then �E�h�1�(�a�~�,�E�'�)�h�1�(�a�~�+�j�,�E�) =

[C(E')C(E)]jW(E',E)m-j by the lID assumption. Hence VDm=

412[(K(E')/C(E,)2)m + (K(E)/C(E)2)m - 2 {W(E',E)/C(E')C(E)}m +

2
m
i/[(K(E')/C(E,)2)m-j +(K(E)/C(E)2)m-j - 2 {WeE' ,E)/C(E')C(E)}m-j ]]

j=l
2 m-1 . . .

= 41 [Am + Bm_2cm+ 2 E {A m-J + Bm-J _2Cm-J}]
j=l

where
























































































