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Abstract: Let n be a fixed natural number. Menger algebras of rank n, which was introduced by
Menger, K., can be regarded as the suitable generalization of arbitrary semigroups. Based on this
knowledge, an interesting question arises: what a generalization of ternary semigroups is. In this
article, we first introduce the notion of ternary Menger algebras of rank n, which is a canonical
generalization of arbitrary ternary semigroups, and discuss their related properties. In the second
part, we establish the so-called a diagonal ternary semigroup which its operation is induced by the
operation on ternary Menger algebras of rank n and then investigate their interesting properties.
Moreover, we introduce the concept of homomorphism and congruences on ternary Menger algebras
of rank n. These lead us to study the quotient ternary Menger algebras of rank n and to investigate
the homomorphism theorem for ternary Menger algebra of rank n with respect to congruences.
Furthermore, the characterization of reduction of ternary Menger algebra into Menger algebra
is presented.

Keywords: ternary Menger algebra; diagonal ternary semigroup; congruence; isomorphism theorem;
reduction

1. Introduction

In 1946, Menger, K. [1] studied the algebraic properties of the composition of multi-
place functions. In addition, the property of the composition, which is called superassociative
law, was studied in both primary and advanced ways. By using this idea, the concept of
Menger algebras of rank n, for all natural numbers n (sometimes, it is called superasso-
ciative algebras) was presented. From now on, we assume that n be a natural number. A
Menger algebra of rank n (see [2]) (T, o) is a pair of a nonempty set T of elements and an
(n + 1)-ary operation o on T which satisfies the superassociative law, i.e.,

o(o(x, y1, ..., yn), z1, ..., zn) = o(x, o(y1, z1, ..., zn), ..., o(yn, z1, ..., zn)) (1)

for all x, yi, zi ∈ T, i = 1, ..., n. If we set n = 1, then the identity (1) is reduced to the
associative law and a Menger algebra of rank 1 forms an arbitrary semigroup.

The theory of Menger algebras of rank n and its applications are developed by Dudek,
W. A. and Trokhimenko, V. S. who studied the so-called principal v-congruences on Menger
algebras of rank n, which are the generalizations of the principal right and left congruences
on arbitrary semigroups (see [3]). Up to 2017, they presented the abstract characterization
of various types of Menger algebras of n-place functions allowing certain permutations of
variables (see [4]), while Trokhimenko, V. S. [5] introduced the so-called v-regular Menger
algebras and investigated its related properties. Moreover, regular elements and Green’s
relations in Menger algebras of terms were studied by Denecke, K. in 2006 [6]. Accord-
ing to transformations semigroups, Clifford, A. H. [7] introduced the important class of
transformations the so-called translations in 1950. Up to 1964, Schein, B. M. [8] studied
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the problem of characterizing inner translations on semigroups. Based on these knowl-
edge, Kumduang, T. and Leeratanavalee, S. introduced the notion of the left translations
for Menger algebras of rank n and studied some of its algebraic properties. In addition,
they also studied the isomomorphism theorem for Menger algebras of rank n (see [9]).
In 2020 [10], they showed that every abstract Menger hyperalgebra, which is a canonical
generalization of semihypergroups, can be represented by multivalued full n-ary functions.
For more information related to Menger algebras see [11].

In 1932, Lehmer, D. H. [12] introduced the definition and theory of ternary semigroups.
Previously, in 1904, Kanser, E. [13] presented the so-called n-ary algebras, which is the
extension of the group concept (cf. [14]). According to ternary algebraic structures and
its generalization, the so-called n-ary algebraic structures, raise certain hopes in view of
their applications in Physics. The quark model inspired a particular brand of ternary
algebraic structures, intended to describe the non-observability of the isolated quarks as
the phenomenon of the algebraic confinement (cf. [15]). Moreover, one of the first such
endeavors has been presented by Numbu, Y. [16] in 1973 and known as the so-called Nambu
mechanics. For further physical applications, see [17,18].

The important area of research of ternary structures (cf. [19]) are ternary algebras,
ternary linear algebras, normed ternary linear algebras, involutive ternary linear alge-
bras, topological ternary linear algebras, C∗-ternary algebras, and Banach ternary algebras
(see [20–26]). Furthermore, the ternary algebraic structures and the n-ary algebraic struc-
tures are considered in the theory of functional equations (see [27–30]). In particular,
consideration such structures in the stability of functional equations (see [31–33]).

The notion of ternary semigroups was known for the first time by Banach, S. (cf. [34,35])
who showed (by an example) that a ternary semigroup does not necessarily reduce to an
ordinary semigroup. A ternary semigroup (T, �) is a groupoid together with a ternary
operation � : T3 −→ T, which is satisfies the ternary associative law, i.e.,

� (�(a, b, c), d, e) = �(a, �(b, c, e), e) = �(a, b, �(c, d, e)) for all a, b, c, d, e ∈ T. (2)

On the other hand, a ternary semigroup is considered to be a special case of an n-ary
semigroup, which is a natural generalization of the notion of ternary semigroups, for n = 3
(cf. [36]).

Analogous to the theory of semigroup, the algebraic structure of ternary semigroups
and its related properties are studied by many mathematicians in various topics. In 1955,
Los, J. [35] proved that every ternary semigroup can be embedded in a semigroup and
studied some properties of ternary semigroups. Up to 1965, Sioson F. M. [37] studied an
ideal theory in ternary semigroups. Moreover, he also defined regular ternary semigroups
and characterized it by the notion of quasi-ideals. Sheeja, G. and Sri Bala, S. [38] investigated
the so-called orthodox ternary semigroups. Vagner, V. [39] studied semiheaps which are a
ternary system under an operation satisfying a different type of ternary associative law in
1953. Next, in 1983, the theory of ternary semigroups and semiheaps were developed by
Santiago, M. L. in [40]. In 1940, Post, E. L. [41] constructed the so-called covering groups
(cf. [42]). Based on the concept of covering groups, Santiago, M. L. and Sri Bala, S. [43]
constructed the semigroup ST such that a ternary semigroup T embedded in ST , and
investigated some related properties in 2010. Recently, congruences and some different
types of congruences on ternary semigroups are presented in [14,34,44,45].

To the main results of the article, let us consider on Menger algebras (T, o) of rank n.
If we set n = 2 for the identity (1), then we get o : T3 −→ T which is ternary operation
such that satisfying the identity

o(o(x, y1y2), z1, z2) = o(x, o(y1, z1, z2), o(y2, z1, z2)) (3)

for all x, y1, y2, z1, z2 ∈ T. We see that the identities (2) and (3) are not the same thing,
which means that the ternary operation o on T does not satisfy the ternary associative
law. Consequently, Menger algebra of rank n is not a generalization of arbitrary ternary
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semigroups. Therefore, it will be very interesting to see what a generalization of arbitrary
ternary semigroups is.

In this paper, we first introduce the notion of ternary Menger algebras of rank n which
can be regarded as a canonical generalization of arbitrary ternary semigroups in a different
sense from n-ary semigroups. In Section 2, we establish a new ternary algebraic structure
the so-called a diagonal ternary semigroup. Moreover, its interesting algebraic properties
are investigated. In Section 3, we define a homomorphism and congruences on ternary
Menger algebras of rank n. Furthermore, we also extend some well-known results related to
congruences from arbitrary ternary semigroups to its extension. In Section 4, we complete
the paper with the characterization of reduction of ternary Menger algebra of rank n into
Menger algebra of rank n.

2. Ternary Menger Algebra and Diagonal Ternary Semigroup

In this section, we introduce the notion of a ternary Menger algebra of rank n, which is
a canonical generalization of arbitrary ternary semigroups, and give some of its examples.
Moreover, we define a new ternary operation which is induced by the operation on ternary
Menger algebra of rank n and hence we obtain the so-called a diagonal ternary semigroup.

Definition 1. A (2n + 1)-ary groupoid (T, •), i.e., a nonempty set T with one (2n + 1)-ary
operation • : T2n+1 −→ T, is called a ternary Menger algebra of rank n (a ternary superassociative
algebra) if it satisfies the so-called ternary superassociative law:

•(•(a, b1, .., bn,c1, ..., cn), d1, ..., dn, e1, ..., en)

= •(a, •(b1, c1, ..., cn, d1, ..., dn), ..., •(bn, c1, ..., cn, d1, ..., dn), e1, ..., en)

= •(a, b1, ..., bn, •(c1, d1, ..., dn, e1, ..., en), ..., •(cn, d1, ..., dn, e1, ..., en)).

Please note that if n = 1, then we obtain a ternary Menger algebra of rank 1 (a ternary
semigroup). For convenience, we write a[b1...bnc1...cn] or a[bc] instead of •(a, b1, .., bn, c1, ..., cn).
In case b1 = ... = bn and c1 = ... = cn, we write a[bncn] instead of •(a, b1, .., bn, c1, ..., cn) and
it will be interpreted as the result of the operation • applied to the elements a, b1, ..., bn, c1, ...,
cn ∈ T. By this convention, the above ternary superassociative law can be written as
the following:

a[b1...bnc1...cn][d1...dne1...en] = a[b1[c1...cnd1...dn]...bn[c1...cnd1...dn]e1...en]
= a[b1...bnc1[d1..dne1...en]...cn[d1..dne1...en]],

or its shortly form as

a[b c][d e] = a[b1[c d]...bn[c d]e] = a[bc1[d e]...cn[d e]].

Example 1. (i) Let T = Z×Z = {(x, y) : x, y ∈ Z}. Define a (2n + 1)-ary operation • on T by

(x, y)[(x1, y1)...(xn, yn)(a1, b1)...(an, bn)] = (x, bn) for all ai, bi, x, xi, y, yi ∈ Z, i = 1, ..., n.

Then (T, •) is a ternary Menger algebra of rank n.
(ii) Consider a set N+ of all non-zero natural numbers together with a (2n + 1)-ary operation

• defined by

x[y z] = x · gcd{y} · gcd{z} for all x, yi, zi ∈ N+, i = 1, ..., n,

where · and gcd{} mean a usual (binary) multiplication and the greatest common divisor, respec-
tively. Then (N+, •) forms a ternary Menger algebra of rank n.

(iii) The set R+ of all positive real numbers under a (2n + 1)-ary operation defined by

x[y z] = x · n
√

y1 · · · yn · z1 · · · zn for all x, yi, zi ∈ R+, i = 1, ..., n,

where · is a usual (binary) multiplication. Then (R+, •) is a ternary Menger algebra of rank n.
(iv) Let R be the set of all real numbers with a (2n + 1)-ary operation defined by



Mathematics 2021, 9, 553 4 of 14

x[y z] = x + y1+...+yn+z1+...+zn
n for all x, yi, zi ∈ R, i = 1, ..., n.

where + is a usual (binary) addition. Then (R, •) forms a ternary Menger algebra of rank n.
(v) Consider the set On(X) of all n-ary operations which are defined on the set X. Define a

(2n + 1)-ary operation S2n,X : On(X)2n+1 −→ On(X) by, for each f , g, h ∈ On(X),

S2n,X( f , g, h)(x) = f (g(h(x))) for all xi ∈ X, i = 1, ..., n.

Therefore (On(X), S2n,X) forms a (2n + 1)-ary groupoid. Moreover, it is easy to check that
(On(X), S2n,X) satisfies the following identities:

(C1) S̃2n(S̃2n(α, β, γ), λ, µ) ≈ S̃2n(α, S̃2n(β1, γ, λ), ..., S̃2n(βn, γ, λ), µ)
≈ S̃2n(α, β, S̃2n(γ1, λ, µ), ..., S̃2n(γn, λ, µ))

(C2) S̃2n(α, δ1, ..., δn, δn+1, ..., δ2n) = α

(C3) S̃2n(δi, β, γ) =

{
βi if i = 1, 2, ..., n
γi−n if i = n + 1, n + 2, ..., 2n,

where S̃2n is an (2n + 1)-ary operation symbol corresponding to the (2n + 1)-ary operations Sn,
δi, i = 1, 2, ...., 2n are nullary operation symbols and α, β, γ, λ, µ are variables.
Indeed, for each f , g, h, p, q ∈ On(X) we have

S2n,X(S2n,X( f , g, h), p, q)(x) = S2n,X( f , g, h)(p(q(x)))

= f (g(h(p(q(x)))))

= f (g1(h(p(q(x)))), ..., gn(h(p(q(x)))))

= S2n,X( f , S2n,X(g1, h, p), ..., S2n,X(gn, h, p), q)(x)

Similarly, S2n,X(S2n,X( f , g, h), p, q)(x) = S2n,X( f , g, S2n,X(h1, p, q), ..., S2n,X(hn, p, q))(x).
Hence S2n,X satisfies (C1), which means that S2n,X is ternary superassociative. Consequently,
(On(X), S2n,X) forms a ternary Menger algebra of rank n. Furthermore, it is easily seen that S2n,X

satisfies (C2) and (C3).

Remark 1. Let T be a Menger algebra of rank n with an (n + 1)-ary operation (x, y1, ..., yn) 7→
o(x, y1, ..., yn). Then T under the (2n + 1)-ary operation defined by (x, y1, ..., yn, z1, ..., zn) 7→
o(o(x, y1, ..., yn), z1, ..., zn) is a ternary Menger algebra of rank n, while a ternary Menger algebra
of rank n does not necessarily reduce to a Menger algebra of rank n.

Example 2. Consider a set T = {−i, i} under the ternary multiplication of complex numbers is
a ternary Menger algebra of rank 1 while T with usual (binary) multiplication is not a Menger
algebra of rank 1.

Now, we define a new ternary operation induced by a (2n + 1)-ary operation of a
ternary Menger algebra of rank n, then a nonempty base set of a ternary Menger algebra
under this operation forms a ternary semigroup.

Proposition 1. Let (T, •) be a ternary Menger algebra of rank n. Define a ternary operation
∗ : T3 −→ T by

∗ (a, b, c) = a[bncn] for all a, b, c ∈ T, (4)

then (T, ∗) forms a ternary semigroup.
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Proof. Indeed, for each a, b, c, d, e ∈ T we have

∗(∗(a, b, c), d, e) = ∗(a[bncn], d, e)

= a[bncn][dnen]

= a[b[cndn]...b[cndn]en]

= ∗(a, ∗(b, c, d), e) and

∗(∗(a, b, c), d, e) = ∗(a[bncn], d, e)

= a[bncn][dnen]

= a[bnc[dnen]...c[dnen]]

= ∗(a, b, ∗(c, d, e)),

which imply that ∗ is ternary associative. Therefore (T, ∗) is a ternary semigroup.

We call the ternary semigroup T under this operation, a diagonal ternary semigroup.
Now, we introduce some special elements on a ternary Menger algebra, and show the
relationship between a diagonal ternary semigroup and a ternary Menger algebra of rank n.

Definition 2. An element e of a ternary Menger algebra T of rank n is said to be a
(i) left diagonal unit if e[enxn] = x for all x ∈ T;
(ii) right diagonal unit if x[enen] = x for all x ∈ T;
(iii) lateral diagonal unit if e[xnen] = x for all x ∈ T;
(iv) two-side diagonal unit if e[enxn] = x = x[enen] for all x ∈ T;
(v) diagonal unit if e[enxn] = x[enen] = e[xnen] = x for all x ∈ T.

Definition 3. Let (T, •) be a ternary Menger algebra of rank n and a ∈ T. Then a is called
idempotent, if a[anan] = a.

A ternary Menger algebra is called band, if every element of T is idempotent.

Example 3. Let T be a nonempty set and let a ∈ T be fixed. If we define a (2n + 1)-ary operation
• by

x[y z] = a for all x, yi, zi ∈ T, i = 1, ..., n,

then (T, •) forms a ternary Menger algebra of rank n with an idempotent element a.

Example 4. A (2n + 1)-ary groupoid (T, •) together with the operation

x[y z] = x for all x, yi, zi ∈ T, i = 1, ..., n

is a ternary Menger algebra of rank n. Moreover, all elements in T are idempotent and right diagonal
unit, while T has no left diagonal unit.

Example 5. Consider the set N+ of all non-zero natural numbers under a (2n + 1)-ary operation
• defined by

x[y z] = min{x, y, z} for all x, yi, zi ∈ N+, i = 1, ..., n

forms a ternary Menger algebra of rank n with a diagonal unit 1. Furthermore, the diagonal ternary
semigroup of (N+, •) is commutative, i.e.,

∗(x1, x2, x3) = ∗(xσ(1), xσ(2), xσ(3))

for all permutation σ of {1, 2, 3} and x1, x2, x3 ∈ N+.

Proposition 2. Let (T, •) be a ternary Menger algebra of rank n which has a two-side diagonal
unit e. Then every element x ∈ T satisfying e = e[xnxn] is also a two-side diagonal unit.
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Proof. Indeed, for each y ∈ T we obtain

y = y[enen] = y[ene[xnxn]...e[xnxn]] = y[enen][xnxn] = y[xnxn] and

y = e[enyn] = e[e[xnxn]...e[xnxn]yn] = e[enxn][xnyn] = x[xnyn].

Hence x is a two-side diagonal unit.

Proposition 3. Let (T, •) be a ternary Menger algebra of rank n which has a left diagonal unit
e and for each x, y ∈ T there exists an element z ∈ T satisfying e = z[xnyn]. Then the diagonal
ternary semigroup (T, ∗) of T is left cancellative., i.e.,

∗(x, y, a) = ∗(x, y, b) =⇒ a = b for all a, b, x, y ∈ T.

Proof. Assume that ∗(x, y, a) = ∗(x, y, b) for all a, b, x, y ∈ T. By our assumption, we have
x[ynan] = x[ynbn]. It implies that

a = e[enan]

= e[z[xnyn]...z[xnyn]an]

= e[znx[ynan]...x[ynan]]

= e[znx[ynbn]...x[ynbn]]

= e[z[xnyn]...z[xnyn]bn]

= e[enbn]

= b.

Hence the diagonal ternary semigroup (T, ∗) is left cancellative.

Proposition 4. For a diagonal ternary semigroup (T, ∗) of a ternary Menger algebra (T, •) of
rank n,

∗(x, y, z)[a b] = ∗(x, y, z[a b]) for all ai, bi, x, y, z ∈ T, i = 1, ..., n.

Proof. Indeed, for ai, bi, x, y, z ∈ T, i = 1, ..., n we have

∗(x, y, z)[a b] = x[ynzn][a b]

= x[ynz[a b]...z[a b]]

= ∗(x, y, z[a b]).

This completes the proof.

Previously, we have shown the relationship between a ternary Menger algebra and
a diagonal ternary semigroup, i.e., if we have a ternary Menger algebra of rank n, then
we obtain the so-called a diagonal ternary semigroup. On the other hand, if we have a
ternary semigroup satisfying the conditions given below, then it will be a diagonal ternary
semigroup of some ternary Menger algebras of rank n.

Proposition 5. Let (T, �) be a ternary semigroup and f be an n-ary operation on T satisfying
the conditions

(i) f (xn) = x for all x ∈ T,
(ii) �( f (x), x, y) = f (�(x1, x, y), �(x2, x, y), ..., �(xn, x, y)) for all x, xi, y ∈ T, i = 1, ..., n.

Then (T, �) is a diagonal ternary semigroup of some ternary Menger algebras of rank n.

Proof. Assume that (T, �) satisfies all the above conditions. We define a (2n + 1)-ary
operation • on T by

x[x y] = �(x, f (y), f (z)) for all x, yi, zi ∈ T, i = 1, ..., n.
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Now, we show that the operation • is ternary superassociative. Indeed, for ai, bi, x, yi, zi ∈
T, i = 1, ..., n we obtain

x[y z][a b] = �(�(x, f (y), f (z)), f (a), f (b))

= �(x, �( f (y), f (z), f (a)), f (b))

= �(x, f (�(y1, f (z), f (a)), ..., �(yn, f (z), f (a))), f (b))

= �(x, f (y1[z a], ..., yn[z a]), f (b))

= x[y1[z a]...yn[z a]b] and

x[yz1[a b]...z1[a b]]

= �(x, f (y), f (z1[a b], ..., zn[a b]))

= �(x, f (y), f (�(z1, f (a), f (b)), ..., �(zn, f (a), f (b))))

= �(x, f (y), �( f (z), f (a), f (b)))

= �(�(x, f (y), f (z)), f (a), f (b))

= x[y z][a b].

Consequently, (T, •) is a ternary Menger algebra of rank n.
Finally, if (T, ∗) is a diagonal ternary semigroup of this ternary Menger algebra of

rank n, then for each x, y, z ∈ T we have

∗(x, y, z) = x[ynzn] = �(x, f (y, ..., y), f (z, ..., z)) = �(x, y, z).

Hence (T, ∗) = (T, �), i.e., (T, �) is a diagonal ternary semigroup of (T, •). This proves
the proposition.

Corollary 1. Let (T, �) be a ternary semigroup together with a left unit, (T, �) is a diagonal
ternary semigroup of some ternary Menger algebras of rank n with a left diagonal unit if and only if
there exists an n-ary operation on T which satisfies the conditions (i) and (ii) of Proposition 5.

Proof. Suppose that (T, �) is a diagonal ternary semigroup of a ternary Menger algebra of
rank n with a left diagonal unit e. We now define an n-ary operation f : Tn −→ T by

f (x) = e[enx] for all xi ∈ T, i = 1, ..., n.

Indeed, for each x, xi, y ∈ T, i = 1, ..., n we obtain f (x, ..., x) = e[enxn] = x and

�( f (x1, ..., xn), x, y) = �(e[enx], x, y)

= e[enx][xnyn]

= e[enx1[xnyn]...xn[xnyn]]

= f (x1[xnyn], ..., xn[xnyn])

= f (�(x1, x, y), ..., �(xn, x, y)),

which means that f satisfies the conditions (i) and (ii) of Proposition 5.
Conversely, we assume on a ternary semigroup (T, �) with a left unit there exists

an n-ary operation f satisfying all the conditions of Proposition 5. Then, this ternary
semigroup is also a diagonal ternary semigroup of a ternary Menger algebra (T, •) of rank
n under the (2n + 1)-ary operation defined by

x[y z] = �(x, f (y), f (z)) for all xi ∈ T, i = 1, ..., n. (5)

Finally, we suppose that e belongs to this ternary semigroup T be a left unit. Indeed,
for x ∈ T we have

e[enxn] = �(e, f (e, ..., e), f (x, ..., x)) = �(e, e, x) = x,
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which means that e is a left diagonal unit of a ternary Menger algebra (T, •) of rank n.

Next, we give the following example which satisfies Proposition 5 and Corollary 1.

Example 6. Consider the closed interval I = [0, 1] together with the ternary operation � defined
by �(x, y, z) = x for all x, y, z ∈ I. It is obvious that (I, �) forms a ternary semigroup with all
elements are a left unit. Next, we define an n-ary operation f on I by

f (x) = min{x} for all xi ∈ I, i = 1, ..., n.

Indeed, for each x, xi, y, z ∈ I, i = 1, ..., n we get f (xn) = min{xn} = x and �( f (x), y, z) =
f (x) = f (�(x1, y, z), ..., �(xn, y, z)). Hence f satisfies the conditions of Proposition 5. By Corol-
lary 1, such ternary semigroup is a diagonal ternary semigroup of a ternary Menger algebra (I, •)
of rank n with all elements are a left diagonal unit, where the operation • is defined as (5).

Definition 4. Let (S, •1) and (T, •2) be two ternary Menger algebras of rank n and let h : S −→
T. Then h is said to be a homomorphism of S into T if

h(•1(x, y, z)) = •2(h(x), h(y1)..., h(yn), h(z1), ..., h(zn))

for all x, yi, zi ∈ S, i = 1, ..., n.

Furthermore, a homomorphism h of S into T is said to be:

(i) a monomorphism if it is injective;
(ii) an epimorphism if it is surjective;
(iii) an isomorphism if it is bijective, in this case S and T are called isomorphic and written

as T ∼= S. Moreover, if S and T are two ternary Menger algebras with identity
elements eS and eT respectively, then h(eS) = eT .

Please note that if T is a ternary semigroup, then we can define two (2n + 1)-ary
operations on T and we also have T under these operations form two ternary Menger
algebras of rank n such that non-isomorphic. Moreover, these ternary Menger algebras
may have the same diagonal ternary semigroup although these are non-isomophic.

Example 7. Let (T, �) be a nontrivial commutative ternary semigroup. Then we consider two
(2n + 1)-ary operations which are defined by

•1(x, y, z) = �(x, y1, z1) and

•2(x, y, z) = �(x, y2, z2) for all x, yi, zi ∈ T, i = 1, ..., n.

It is easy to check that (T, •1) and (T, •2) are non-isomorphic ternary Menger algebras of rank n
together with the same diagonal ternary semigroup (T, ∗) such that the ternary operation ∗ on T is
defined as (4).

3. Congruence on Ternary Menger Algebra

In this section, we introduce the concept of congruences and establish quotient struc-
tures via congruence on a ternary Menger algebra of rank n. Furthermore, we investigate
homomorphism and algebraic properties of the quotient structure with respect to congru-
ences are provided.

Definition 5. A binary relation ρ defined on a ternary Menger algebra (T, •) of rank n is called

(i) stable if for all a, ai, b, bi, ci, di ∈ T, i = 1, ..., n

(a, b), (a1, b1), ..., (an, bn), (c1, d1), ..., (cn, dn) ∈ ρ =⇒ (a[a c], b[b d]) ∈ ρ,

(ii) l-regular if for all a, b, ci, di ∈ T, i = 1, ..., n

(a, b) ∈ ρ =⇒ (a[c d], b[c d]) ∈ ρ,
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(iii) v-regular if for all a, b, ci, d ∈ T, i = 1, ..., n

(a1, b1), ..., (an, bn) ∈ ρ =⇒ (d[c a], d[c b]) ∈ ρ,

(iv) c-regular if for all a, b, ci, d ∈ T, i = 1, ..., n

(a1, b1), ..., (an, bn) ∈ ρ =⇒ (d[a c], d[b c]) ∈ ρ,

(v) s-regular if for all a, b, x, y ∈ T

(a, b) ∈ ρ =⇒ (x[ynan], x[ynbn]) ∈ ρ,

(vi) i-regular if for all a, b, c ∈ T, d = (d1, d2, ..., d2n) ∈ T2n, i = 1, ..., 2n

(a, b) ∈ ρ =⇒ (c[d
∣∣
ia], c[d

∣∣
ib]) ∈ ρ,

According to Definition 5, lead us to consider on a ternary semigroup. Then we obtain
the conditions (ii) l-regular and (vi) i-regular are the same thing. Furthermore, we also
have the conditions (iii) v-regular and (v) s-regular are the same thing.

Definition 6. Let (T, •) be a ternary Menger algebra of rank n. An equivalence relation ρ on T is
called congruence if it is stable, i.e., for all a, ai, b, bi, ci, di ∈ T, i = 1, ..., n

(a, b), (a1, b1), ..., (an, bn), (c1, d1), ..., (cn, dn) ∈ ρ =⇒ (a[a c], b[b d]) ∈ ρ.

Definition 7. Let (S, •1) and (T, •2) be two ternary Menger algebras of rank n and let h : S −→ T
be a homomorphism. Define a relation ker h on S by

ker h = {(a, b) ∈ S× S : h(a) = h(b)},

which is called the kernel of h.

From Definition 7, it is easily to seen that ker h is a congruence on S.
Let ρ be an equivalence relation on a set X and X/ρ = {xρ : x ∈ X}, where xρ = {y ∈

X : (x, y) ∈ ρ}. Then we call the set X/ρ, a quotient set of X by ρ. Moreover, if (T, •) is a
ternary Menger algebra of rank n and ρ is a congruence on T, then T/ρ is a ternary Menger
algebra of rank n under a (2n + 1)-ary operation ? which is defined by

?(xρ, y1ρ, ..., ynρ, z1ρ, ..., znρ) = x[y z]ρ for all x, yi, zi ∈ T, i = 1, ..., n.

Then we define a function ρ\ : T −→ T/ρ by

ρ\(x) = xρ for all x ∈ T.

It is easily seen that ρ\ is an epimorphism. We call a function ρ\ : T −→ T/ρ, the natural
homomorphism.

Theorem 1. Let (A, •1), (B, •2) and (C, •3) be three ternary Menger algebras of rank n. Let
h : A −→ B and g : A −→ C be two homomorphisms such that g is surjective. Then

(1) There exists a function f : C −→ B such that f ◦ g = h if and only if ker g ⊆ ker h.
(2) The function f in (1) is unique.
(3) The function f in (1) is injective if and only if ker g = ker h.
(4) The function f in (1) is surjective if and only if h is surjective.

Proof. The proof is straightforward.

Theorem 2. Let (S, •1) and (T, •2) be two ternary Menger algebras of rank n and φ : S −→ T be
a surjective homomorphism. Then there exists an isomorphism h from S/ ker φ onto T which is
unique such that h ◦ (ker φ)\ = φ.
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Proof. The proof follows from Theorem 1.

Theorem 3. Let (S, •1) and (T, •2) be two ternary Menger algebras of rank n and let ρ be a
congruence on S. Let φ : S −→ T be a homomorphism such that ρ ⊆ ker φ. Then there exists a
unique homomorphism f : S/ρ −→ T with Im f = Imφ and the diagram

S
φ

//

ρ\

��

T

S/ρ

∃! f3 f ◦ρ\=φ

>>

is commutative, i.e., f ◦ ρ\ = φ where ρ\ is a natural homomorphism.

Proof. The proof is straightforward.

Theorem 4. Let (T, •) be a ternary Menger algebra of rank n and let ρ and σ be congruence on T
such that ρ ⊆ σ. Then there exists a unique surjective homomorphism g : T/ρ −→ T/σ such that
g ◦ ρ\ = σ\, i.e., the following diagram

T σ\
//

ρ\

��

T/σ

T/ρ

∃!g3g◦ρ\=σ\

<<

is commutative, i.e., g ◦ ρ\ = σ\ where ρ\ and σ\ are natural homomorphisms.

Proof. The proof is similar to Theorem 3.

As an immediately consequence of Theorem 4, we have the following results:

Corollary 2. Let (T, •) be a ternary Menger algebra of rank n and let ρ1, ρ2, ..., ρm(m ≥ 2) be
congruences on T such that ρ1 ⊆ ρ2 ⊆ · · · ⊆ ρm. Then there exists a surjective homomorphism
f : T/ρ1 −→ T/ρm.

Theorem 5. Let ρ and σ be two congruence on a ternary Menger algebra (T, •) of rank n such
that ρ ⊆ σ. Then σ/ρ = {(aρ, bρ) ∈ T/ρ× T/ρ : (a, b) ∈ σ} is a congruence on T/ρ and
(T/ρ)/(σ/ρ) ∼= T/σ.

Proof. The proof follows from Theorem 4.

Corollary 3. Let T be a ternary Menger algebra of rank n and let ρ1, ρ2, ..., ρm, ρm+1 be congruence
on T such that ρ1 ⊆ ρ2 ⊆ · · · ⊆ ρm ⊆ ρm+1. Then for each i = 1, ..., m,

ρi+1/ρi = {(aρi, bρi) ∈ T/ρi × T/ρi : (a, b) ∈ ρi+1}

is a congruences on T/ρi and (T/ρi)/(ρi+1/ρi) ∼= T/ρi+1.
Furthermore, for each i = 1, ..., m− 1, the mapping

φi : (T/ρi)/(ρi+1/ρi) −→ (T/ρi+1)/(ρi+2/ρi+1)

is a surjective homomorphism.

Please note that Corollary 3 is a generalization of the Theorem 5, i.e., if we set a natural
number m = 1, then we get Corollary 3 and Theorem 5 are the same. Again, if we set a
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natural number n = m = 1, then Corollary 3 is a generalization of the second isomorphism
theorem for ternary semigroups (see Theorem 3.7, [34]).

4. Reduction of Ternary Menger Algebra into Menger Algebra

In this section, we are about to show that a ternary Menger algebra of rank n together
with some conditions can be reduced to a Menger algebra of rank n. In addition, it can be
reduced even into a band with some specific conditions.

Lemma 1. Let (T, •) be a ternary Menger algebra of rank n which admits an idempotent element
a satisfying the following properties; for i = 1, ..., n

(α) (i) a[anxn] = a[xnan] = x[anan] = x for all x ∈ T
(ii) a[xny] ∈ T for all x, yi ∈ T such that x 6= yi and x, yi 6= a

(β) a[xnxn] = x[anxn] = x[xnan] = x for all x ∈ T

Then (β) implies (α).

Proof. (β) implies (α) (i): Indeed, for x ∈ T we have

a[anxn] = a[ana[xnxn]...a[xnxn]] = a[anan][xnxn] = a[xnxn] = x,
a[xnan] = a[a[xnxn]...a[xnxn]an] = a[anxn][xnan] = x[xnan] = x,
x[anan] = x[xnan][anan] = x[xna[anan]...a[anan]] = x[xnan] = x.

(β) implies (α) (ii): Indeed, for x, yi ∈ T, i = 1, ..., n we have

a[x...xy1...yn] = a[a[xnxn]...a[xnxn]b1...bn] = a[anxn][x...xy1...yn] = x[x...xy1...yn] ∈ T.

Please note that on the other hand, (α) implies a[xnxn] = x[anxn] = x[xnan] only.
Indeed, for x ∈ T we obtain

a[xnxn] = a[a[xnan]...a[xnan]a[xnan]...a[xnan]] = a[anxn][anxn] = x[anxn] and x[anxn] =
x[a...aa[xnan]...a[xnan]] = x[anan][xnan] = x[xnan].

Consequently, a[xnxn] = x[anxn] = x[xnan]. The counterexample is already shown in
Example 4.16 in [46] where we consider a ternary semigroup as a ternary Menger algebra
of rank 1.

Lemma 2. Let (T, •) be a ternary Menger algebra of rank n which admits an idempotent element
a satisfying the properties (α) and (λ) which is given below

(λ) a[yi...yiz1...zn] = a[y1...ynz1...zn] for all yi, zi ∈ T, i = 1, ..., n.

Then T is a Menger algebra of rank n under an (n + 1)-ary operation o which is defined by

o(x, y) = a[xny] for all x, yi ∈ T, i = 1, .., n

and x[y z] = o(o(x, y), z) for all x, yi, zi ∈ T, i = 1, ..., n.

Proof. Assume that the hypothesis of the theorem is true. First, we define an (n + 1)-ary
operation o on T by

o(x, y) = a[xny] for all x, yi ∈ T, i = 1, ..., n.

By the property (ii) of (α) holds, we have o is an (n + 1)-ary operation on T and T is
closed under this operation. Here we use the fact that T is a ternary Menger algebra of rank
n and the properties (ii) of (α) and (λ) hold. Indeed, for x, yi, zi ∈ T, i = 1, .., n we obtain
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o(o(x, y), z) = o(a[x...xy1...yn], z1, ..., zn)

= a[a[x...xy1...yn]...a[x...xy1...yn]z1...zn]

= a[anxn][y1...ynz1...zn]

= x[y z] and

o(x, o(y1, z), ..., o(yn, z)) = o(x, a[y1...y1z1...zn], ..., a[yn...ynz1...zn])

= a[x...xa[y1...y1z1...zn]...a[yn...ynz1...zn]]

= a[x...xa[y1...ynz1...zn]...a[y1...ynz1...zn]]

= a[xnan][y1...ynz1...zn]

= x[y z].

It follows that o is superassociative and hence (T, o) is a Menger algebra of rank n.

From Lemma 2, let us consider on reduction of ternary semigroup into semigroup.
The condition (λ) is not necessary to suppose it because it is true on ternary semigroups.

Lemma 3. Let (T, •) be a ternary Menger algebra of rank n which admits an idempotent element
a satisfying the property (β), then there exists an (n + 1)-ary operation o on T such that (T, o)
is band (a Menger algebra of rank n with o(x, x, ..., x) = x for all x ∈ T) and x[y1...ynz1...zn] =
o(o(x, y1, ..., yn), z1, ..., zn) for all x, yi, zi ∈ T, i = 1, ..., n.

Proof. From Lemma 1, we get (β) implies (α). Then the (n + 1)-ary operation o : Tn+1 −→
T defined by

o(x, y1, ..., yn) = a[x...xy1...yn] for all x, yi ∈ T, i = 1, .., n

is superassociative. Hence (T, o) forms a Menger algebra of rank n.
Again, by Lemma 1, we obtain x[y1...ynz1...zn] = o(o(x, y1, ..., yn), z1, ..., zn) for all

x, yi, zi ∈ T, i = 1, ..., n. Moreover, for each x ∈ T we have

o(x, x, ..., x) = a[xnxn] = x,

which implies that x is an idempotent element and hence (T, o) is band.

5. Conclusions and Future Works

We introduced the notion of ternary Menger algebra of rank n which can be regard as
a canonical generalization of arbitrary ternary semigroups. Based on this knowledge, we
established the so-called the diagonal ternary semigroup and investigated its interesting
algebraic properties. Next, we continued by introduction of the notion of congruences
on ternary Menger algebras. Moreover, the homomorphism theorem for ternary Menger
algebras is investigated. Furthermore, by using some additional conditions, we showed
the reduction of ternary Menger algebra into Menger algebra (a generalization of arbi-
trary semigroups).

In future work, we will discuss several ideal theories for ternary Menger algebras and
some applications to fuzzy theory, and we will extend some well-known results related
to arbitrary ternary semigroups to extension of ternary Menger algebras. Moreover, we
will establish the representation of ternary Menger algebras for further development of its
algebraic structures.
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