Tributes to Branislav D. Jankovic

Introduction

Neuroimmunomodulation. From Phenomenology to Molecular Evidence p. 1
Biology of Nitric Oxide in Neuroimmunoregulation p. 39
The Pineal Gland as Ontogenetic Scanner of Reproduction, Immunity, and Aging. The Aging Clock p. 46
Role of Cytokines in the Endocrine System p. 50
Neuroimmunomodulation in the Gastrointestinal Tract p. 64
Regulation of NK Cell Lymphokine Responsiveness by Pituitary-Thyroid Hormones during Ontogeny in Mice. Suggestion for a Sequential Neuroendocrine-Immune Cross-Talk p. 73

Problems and Perspectives in the Approach to Neuroendocrine-immunomodulation Studies p. 81
Cryptocrine Signaling in the Thymus Network. Implications for Central T-Cell Tolerance of Neuroendocrine Functions p. 85
Prolactin-Mediated Cellular Interactions in the Thymus p. 100
In Vitro Studies on the Thymus-Pituitary Axis in Young and Old Rats p. 108
Thymic Endocrine Function in Neuroendocrine Human Diseases p. 115
Differential Influence of a Thymic Extract on [alpha]- and [beta]-Adrenoceptors of Mouse Brain Cortex p. 124
The Role of Calcitonin Gene-Related Peptide in the Mouse Thymus Revisited p. 129
Antiinflammatory Effects of the Neuropeptide [alpha]-MSH in Acute, Chronic, and Systemic Inflammation p. 137
Cytokine Antagonists in Infectious and Inflammatory Disorders p. 149
Neuromodulation of Fever. A Possible Role for Substance P. p. 162
Endotoxins, Cytokines, and Neuroimmune Networks with Special Reference to HIV Infection p. 174
Prolonged Asymptomatic States in HIV-Seropositive Persons with Fewer Than 50 CD4[superscript +] T Cells per MM[superscript 3]. Psychoneuroimmunologic Findings p. 185

Pineal-Opioid System Interactions in the Control of ImmunoInflammatory Responses p. 191
Correlation between Estradiol Serum Levels and NK Cell Activity in Endometriosis p. 197
Stress, Distress, and Immunity p. 204
What Is Stress? How Does It Correlate with the Immune System? p. 212
Neuroendocrine Axis and Behavioral Stress p. 216
Rotational Stress Reduces the Effectiveness of Antitumor Drugs in Mice p. 234
Influence of Pain Stimulation on Interleukin-2 Production in Mice p. 244
Genetic Differences in Immunomodulation, Behavior, and Stress-Induced Organ Lesions p. 252
Hypothalamic-Pituitary-Adrenal Axis in Neuropsychiatric Disorders p. 263
Influence of Brain and Behavioral Lateralization in Brain. Monoaminergic, Neuroendocrine, and Immune Stress Responses p. 271
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune Enhancement by Conditioning of Senescent Mice. Comparison of Old and Young Mice in Learning Ability and in Ability to Increase Natural Killer Cell Activity and Other Host Defense Reactions in Response to a Conditioned Stimulus</td>
<td>283</td>
</tr>
<tr>
<td>Shared Ligands and Receptors As a Molecular Mechanism for Communication between the Immune and Neuroendocrine Systems</td>
<td>292</td>
</tr>
<tr>
<td>Regulation of Cytokine Production in Aging Mice</td>
<td>299</td>
</tr>
<tr>
<td>Expression of Human Heat-Shock Protein 70 Antigens and [gamma]/[delta] T-Cell Receptor Antigens in Human Central Nervous Tissue</td>
<td>305</td>
</tr>
<tr>
<td>Dopamine D1 Receptors in the Amygdala Enhance the Immune Response in the Rat</td>
<td>316</td>
</tr>
<tr>
<td>Interleukin-1 Receptors in Brain and Pituitary. Characterization and Modulation during Infection and Stress</td>
<td>324</td>
</tr>
<tr>
<td>Widespread Activation and Consequences of Interleukin-1 in the Brain</td>
<td>338</td>
</tr>
<tr>
<td>Melatonin Treatment Mimics Pineal Graft Action in Regulating Brain Cortex Adrenoceptors in Aging Mice</td>
<td>358</td>
</tr>
<tr>
<td>Epilogue</td>
<td>364</td>
</tr>
<tr>
<td>Subject Index</td>
<td>365</td>
</tr>
<tr>
<td>Index of Contributors</td>
<td>371</td>
</tr>
</tbody>
</table>

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.