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Abstract: Over the years, structure-based design programs and specifically docking small molecules to proteins 

have become prominent in drug discovery. However, many of these computational tools have been developed to 

primarily dock enzyme inhibitors (and ligands to other protein classes) relying heavily on hydrogen bonds, 

electrostatic, and hydrophobic interactions. In reality, many drug targets either feature metal ions, can be targeted 

covalently, or are simply not even proteins (e.g., nucleic acids). Herein, we describe several new features that we 

have implemented into FITTED to broaden its applicability to a wide range of covalent enzyme inhibitors, and to 

metalloenzymes, where metal coordination is essential for drug binding. We also report new datasets that were 

essential to demonstrate areas of success and those where additional efforts are required. This resource could be 

used by other program developers to assess their own software. 
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INTRODUCTION 

Drug discovery is an expensive endeavor with a high failure rate. It takes on average over 10 years to bring a 

drug to the market with a total development cost estimated from $300M to nearly $3B,1,2 with a large fraction of 

the costs being attributed to failures.3,4 It is now fairly common to find computer-aided drug design (CADD) 

techniques applied at various stages of the preclinical drug discovery pipeline in an attempt to reduce costs and 

accelerate the time required to reach clinical trials. Indeed, it has been proposed that using CADD tools in the drug 

discovery process could lead to an overall cost reduction of 50%.5 One such technique is structure-based drug design 

(SBDD), more specifically docking methods, with its primary application in the hit identification stage. Over the 

past three decades, several research and development teams in both academia and industry have developed and 

improved docking software, leading to programs like AutoDock,6,7 FITTED,8,9 FlexX,10,11 Glide,12,13 GOLD,14,15 

ICM,16-18 and Surflex.19,20  

Docking methods aim to predict the binding mode of potential ligands and to rank their binding affinity for a 

target—ideally applicable to vast types of ligands and targets. Docking programs generally perform well in 

predicting traditional non-bonding ligand-protein interactions (e.g., using previously trained electrostatic, van der 

Waals, and hydrogen bonding terms from molecular mechanics). However, cross-docking comparative studies, 

more indicative of a real prospective study than self-docking, are much less common and less accurate than self-

docking. In addition, retrospective virtual screening studies rarely demonstrate area under the receiver operating 

curve (AUROC) values exceeding 0.8, although machine learning techniques have been proposed to improve this 

accuracy.21,22 Among the challenges noted are the large chemical diversity in ligands, numerous classes of proteins 

with varying structural features, as well as biases in available testing sets.23,24 

When looking at the applicability domain of existing docking programs, some limitations are apparent. For 

example, covalent drugs have featured in recent reports, demonstrating their potential.25,26 Unfortunately, many 

computational platforms overlook automated recognition of covalent warheads, approximation of covalent group 

reactivity, and simultaneous consideration of covalent and non-covalent binding modes, making docking difficult 

to apply. Similarly, drug discovery campaigns are frequently targeting metalloenzymes, like matrix 

metalloproteinase27 and histone deacetylases.28 In most docking environments, coordination to a metal is often 

modeled using non-bonding interactions that omit any proton transfers to a neighboring basic residue observed in 

several metalloprotein-inhibitor complexes. For example, a hydroxamic acid becomes highly acidic upon zinc 

coordination and will transfer a hydrogen to a neighboring glutamate residue.29 Several metals play key structural 

or functional roles in enzymes: iron is found in nearly 100 enzymes,30,31 while magnesium and zinc are found in 

over 300 enzymes each.32 Other important metals include copper (present in over 25 enzymes),33,34 nickel (in 9 
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enzymes identified to date),35 and manganese (present in over 100 enzymes).36 Each of these metals present specific 

coordination geometries and binding energies, and therefore challenges for docking methods.  

Since the initial report of our docking program FITTED in 2007,8 we have been extending its scope to address 

gaps in computational modeling.9 More specifically, our interests in the covalent inhibition of prolyl 

oligopeptidase37,38 and in zinc-containing histone deacetylases (HDACs)39 led us to implement an accurate covalent 

docking method40 and a zinc coordination method.41 

We report herein our latest development of customized functionalities, their retrospective benchmarking on 

various datasets, as well as the datasets themselves. We believe that these sets can be useful for other research 

groups developing similar routines into their docking programs. Finally, to streamline the usage of FITTED by the 

medicinal chemistry community at large, several aspects have been improved to ease the access to our platform, 

including the development of a user-friendly graphical user interface (GUI) which can be used to quickly set up 

docking experiments (Figure S1).  

STATUS, THEORY, AND IMPLEMENTATIONS 

Covalent docking. Reactions observed in covalent inhibition and encoded into FITTED are now classified into 

five classes (examples of PDB files featuring these reactive groups and reactive residues are given in brackets): 

Class 1. The reactive protein residue (e.g., a catalytic serine) reacts with an electrophilic warhead, and the 

bond order of the electrophile changes, hence the hybridization of the atoms (e.g., sp2 to sp3). The electrophile 

then abstracts the residue’s acidic proton (e.g., to become a hemiacetal). Among these reactive groups are 

aldehydes (PBD 1ME3), ketones (PDB 1BGO), Michael acceptors (PDB 1F29), isothiocyanates (PDB 6PQP) 

and terminal alkynes (PDB 6QBS). Michael acceptors are not limited to α,β-unsaturated amides and esters 

but also include α,β-unsaturated sulfonamides and nitro alkenes (PDB 1ZK5). 

Class 2. The reactive residue reacts with the electrophilic warhead, but there is no change in the hybridization 

of the electrophile. A basic residue in the binding site abstracts the acidic proton of the residue. This is 

observed with boronic acids (PDB 1VGC) reacting with catalytic serine residues.  

Class 3. The reactive residue attacks an electrophilic warhead, a leaving group escapes, and a basic residue 

abstracts the proton. This is observed with activated chloro phenyls (p-nitro in PDB 3B0R), α-halo ketones 

(PDB 1AIM), disulfide exchanges with cysteine residues (PDB 1F4C), phosphonyl chloride (PDB 1LPM), 

sulfonyl fluoride (PDB 5U8L), fluoro-amidines (PDB 2DW5), aryl sulfones (PDB 4ONM) and thionyl esters 

(PDB 6CL0). 

Class 4. The reactive residue attacks the electrophilic warhead, a bond is broken opening a ring (no leaving 

group escapes) and the ligand abstracts the residue’s acidic proton. Among these groups are epoxides (PDB 
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1CVZ), aziridines (PDB 5V6V), β-lactams (PDB 1B12), β-lactones (PDB 1AWH), and hydroxy-isothiazoles 

(PDB 2IJN). 

Class 5. A negatively charged reactive residue (with no proton) attacks the electrophilic warhead, a bond is 

broken, and a stable ion is released. As an example, we can cite the opening of a β-lactone by glutamic acid 

(PDB 4WV7) through attack of a sp3 carbon of the lactone with release of a carboxylate. 

The encoding first required a complete revision of our functional group recognition algorithm which now not 

only identifies reactive groups, but also leaving groups and various tautomeric states of each warhead. This 

identification is performed by SMART, a pre-processing tool which prepares small molecules for docking.  

To enable proton exchanges, up to three dummy hydrogen atoms are added to the system by FITTED prior to the 

actual docking (Figure 1): one to the neighboring basic residue (if any), one to the warhead (if required) and one to 

the reactive residue (if required). The status (ON or OFF) of these protons will depend on the class of reaction under 

investigation. If FITTED identifies a candidate pose as non-covalent (warhead too far from the reactive residue), the 

proton will remain on the reactive residue as shown in Figure 1A, unless the reaction is from class #5 (negatively 

charged residue). If from classes #2 or #3, the proton is virtually moved to the basic residue (Figure 1B). If the pose 

is identified as covalent and if the reaction is from class #1 or class #4, the proton on the warhead is turned ON and 

the one on the active residue is turned OFF to represent a proton transfer (Figure 1C).  

 

Figure 1. Proton exchanges between groups. This example shows a serine-histidine-aspartate triad that can be found 

in the active site of POP. In green, protons in the ON state; in burgundy, protons in the OFF state.  

Similarly, to form bonds, dummy bonds are added when the reaction class is identified and turned ON or OFF 

depending on the covalent or non-covalent nature of the binding. Meanwhile, bond order and hybridization are 

adjusted as the reaction proceeds (sp2 aldehyde into sp3 acetal in Figure 1) and leaving groups “disappear” after the 

reaction is complete (and should be restored if a non-covalent pose is deemed better). This is achieved by assigning 

each bond and atom a covalent and a non-covalent form (ON or OFF, single, double, or triple bond hybridization). 
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If the reactive group is found within a user-defined cutoff distance of the reactive residue (default: covalent bond 

length +1.8 Å), the covalent form is selected, otherwise the non-covalent form is used. 

We have implemented seven residues that can react covalently. While cysteine residues have historically been 

the major target for covalent drugs (in particular for targeting kinases),42 catalytic (i.e., activated) serines,43,44 

lysine,45 aspartic acids,46 glutamic acids,47 tyrosines,48 and histidines49 have also been used to bind covalent drugs 

or reactive probes. These different residues have now been implemented into FITTED. The user must instruct the 

program which reactive residue and basic neighboring residue (if any) are to be considered. FITTED will artificially 

duplicate this residue, add the copy (additional bonds and atoms) to the small molecule, and annotate it as ON when 

covalent and OFF when non-covalent. In tandem, the same residue will be kept as part of the protein and will be 

annotated as ON when non-covalent and OFF when covalent. The use of dummy atoms and annotated bonds and 

atoms facilitates the use of a constant number of bonds and atoms throughout the entire docking process. When the 

list of interactions (angles, torsions, non-bonded) is created, they are annotated as “covalent only” or “non-covalent 

only” and “always” to ensure that the molecular mechanics calculations are considering only the interactions related 

to each of the poses, whether covalent or non-covalent. 

Reaction mechanism specificities. Several challenges arose when developing this new covalent docking 

functionality. First, some groups are prone to undergo different reactions depending on their environments. For 

example, aldehydes react with catalytic serine residues to form the corresponding hemiacetals. However, in many 

serine proteases (e.g., PDB 1QFS), an oxyanion hole stabilizes the developing negative charge, and the proton is 

not transferred from the serine to the acetal but rather to the catalytic histidine (Figure 2A). Alternatively, aldehydes 

can also form imines with lysines. Second, as shown in Figure 2B, the hydroxy-isothiazole has a resonance structure 

which is more electrophilic and will react with a cysteine to form a disulfide bridge (PDB 2IJN). However, a much 

more complex mechanism with inversion of double bond configuration has also been proposed which may explain 

the possible (E) double bond configuration observed in the crystal structure. Third, when reacting with an epoxide, 

the reaction is stereospecific with inversion of configuration.50 Thus, when docking an epoxide covalently, the 

forming bond should consider this stereochemical characteristic (Figure 2C – PDB 1CVZ). Fourth, more complex 

and less usual mechanisms such as the SN2’ adopted by Moxalactam (PDB 1I5Q),51,52 the furan opening of 

Wortmannin (PDB 1E7U) likely resulting from a conjugate addition-retro addition sequence53 or the tosyl 

displacement of BAY11-7082 also resulting from a similar sequence (PDB 4ONN),54 are more difficult to encode 

and deemed too specific to be of interest for most users (Figure 3). However, some complex mechanisms appearing 

in the literature have been included into our program. For example, catechol55 (Figure 2D – PDB 3V4J) or activated 

alkyl fluoride56 (Figure 2E – PDB 2GH5) can be converted into Michael acceptors under specific redox conditions. 
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Figure 2. Examples of covalent binding modes in less common mechanisms. 
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Figure 3. Drug-specific mechanisms. 

To address these issues, additional implementations were required. First, to identify what the product should be 

(aldehyde into hemiacetal and/or negatively charged hemiacetal or imine), the program is informed of the reactive 

residue and of the presence of the oxyanion hole using specific parameters. The product will then be automatically 

identified depending on the reactive group and residue (aldehyde + serine → hemiacetal; aldehyde + lysine → 

imine). Second, the various possible protonation states of the warheads have been implemented to ensure the 

docking will not fail as a result of an improper protonation assignment. Third, the stereochemistry inversion is 

automatically identified (reaction specific) and a routine ensuring proper stereochemistry in the covalently bound 

ligand has been added.  

Docking to metalloproteins. Since the development of the initial zinc parameterization proved successful, we 

followed the same recipe for three other classes of proteins: enzymes featuring neutral Zn complexes, heme-Fe, and 

one or two Mg ion systems with strict coordination geometry. Our approach began with obtaining representative 

crystal structures to be used for quantum mechanics (QM) evaluation of iron, zinc, and magnesium coordination 

(see Supporting Information for complete set). To reduce the computational cost of the calculations, we truncated 

the crystal structures’ active sites such that only the metal ion and the essential amino acids for enzymatic reactivity 

are present. For iron-containing enzymes, we focused exclusively on cytochrome P450s (CYPs), where the iron ion 

is usually coordinated by a porphyrin ring and a cysteine residue. Then, for each class of proteins, we assembled 

training sets containing small molecules and fragments known to bind these metals. For example, the zinc-cysteine 

training set is comprised of generic thiol, sulfonamide, hydroxamic acid, and water. The CYP training set is 

comprised of nitrogen containing aromatic and aliphatic five and six membered rings. The rings contain a basic 

nitrogen atom and other heteroatoms present at different positions, as well as a wide variety of electron withdrawing 
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and donating groups at the ortho, para and meta positions (Chart S1). For magnesium, phosphate, alcohol and 

carbonyl containing groups were selected.  

For each metal ion, we explored the potential energy surface (PES) of ligand binding, starting from a distance of 

10.0Å, where there is little interaction between the ligand and the metal, and going to 1.6Å, where there is high 

repulsion between the ligand and the metal. We used increments of 0.2Å, thus obtaining 43 unique structures across 

the PES. At every point on the PES, the ligand was optimized while the metal ion and surrounding residues were 

frozen in the crystal structure geometries. An example of a representative PES for iron-ligand coordination is given 

in Figure 4, along with snapshots of the binding process at 10.0 Å (no interaction), 2.0 Å (attractive interactions) 

and 1.6 Å (repulsive interactions). 

  

Figure 4. Left: PES scan example for binding of p-fluoro-pyridine to heme. Level of theory: PBE0(D3BJ)/def2-

SVP/ LANLDZ(Fe).57 Right: Overlay of QM and FITTED energy profiles obtained for compound p-fluoro-pyridine 

(mean unsigned error—MUE— is 0.63 kcal/mol). 

A new molecular mechanics (MM) Lennard-Jones (LJ) potential was fit to the acquired QM data and 

implemented into FITTED for each metal ion. An overlay of the energy profiles obtained with QM and FITTED for a 

representative ligand for iron-ligand coordination is given in Figure 4 (orange curves). Compared to iron 

coordination, very high binding energies (greater than 200 kcal/mol) were computed for phosphate-magnesium 

complexes consistent with previous reports.58 As a result, greater MUE values were obtained, ranging from 1—20 

kcal/mol in most cases. However, these large binding energies are balanced by the displacement of a water molecule 

from the magnesium coordination sphere (10-13 kcal/mol58) and the desolvation of phosphate oxygens (ca. 20 

kcal/mol58).  
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As can be seen in Figure 4, the existing FITTED LJ (12-6) potential, as well as a LJ (6-3) potential, were unable 

to describe the iron-nitrogen coordination process. However, the energy minimum described by the LJ (8-4) 

potential (dark blue curve) is very close in energy to the QM one. Compared to iron, coordination to zinc and 

magnesium was optimally modelled with a LJ (6-3) potential. As previously observed,41 the minimum described by 

the LJ (8-4) (iron) and LJ (6-3) (zinc and magnesium) potentials was offset by 0.2 to 0.25Å when compared to the 

QM minimum. To verify whether incorporating the offset in the computation of the LJ potentials would improve 

the energy profile described by FITTED, we plotted the potential containing the offset (Figure 4). This led to an 

optimal overlap between the QM and FITTED energy profiles. Our analysis showed that an offset of 0.2Å was 

required with iron while 0.25Å was preferred for the other two metals. We then implemented the modified potential 

shown in Eq. 1 into FITTED for describing the iron-nitrogen binding process (the LJ (6-3) potential previously 

implemented for zinc was extended to magnesium). Our study also showed that the zinc binding groups behave 

similarly whether binding to cysteine-coordinated zinc ion or aspartate/glutamate coordinated zinc ions. As a result, 

no special parameters were needed for this class of zinc-containing enzymes. 

EvdW(8−4)−FITTED =  
4εσ8

(r − 0.2)8
− 

4εσ4

(r − 0.2)4
              (1) 

In the case of magnesium, we needed to also compute the effect of the coordination geometry around magnesium. 

We used 10 of the 20 model systems mentioned above, translated ligands in the three perpendicular axes as shown 

in Figure 5, and derived potential energies using B3LYP-D3BJ/6-31G*. The angle and torsion parameters around 

the O–Mg bond were then derived to optimize the match between the MM and QM-derived relative energies. A 

difficulty in modeling coordination geometry using force fields is the consideration of multiple possible angles for 

the same group types. For example, magnesium often has six ligands in an octahedral geometry and may have two 

glutamates both axial (ca. 180 º) or both equatorial (90º). In other words, traditional polynomial potentials with a 

single energy minimum cannot be used. Rather, we choose a periodic function similar to the one used for torsion 

angles (Equation 2). This function with a non-zero V4 value would have minima at 0 º, 90 º and 180 º. More 

advanced effects such as the Jahn-Teller effects will not be considered here. Average values derived from these 

different models were selected. 

𝐸 = 𝑉𝑛/2[1 + cos (𝑛𝜙 − 𝜙0)]  (2) 

The coordination energy was computed at various positions and the corresponding FF parameters were derived 

(Figure 5). 
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Figure 5. Modeling the metal coordination geometry. Blue: QM derived relative energy; orange: FITTED energy. 

Binding to zinc, heme or magnesium is only possible if water present in the resting state is displaced. Thus, as 

was done previously with zinc, a routine has been implemented that adds water molecules to unoccupied 

coordination sites of iron and magnesium ions considering an octahedral geometry, with a free energy of 

displacement of 20.6 (iron), and 24.6 kcal/mol (magnesium).59 As FITTED considers water molecules displaceable, 

it will be possible to simulate the displacement of one (or more) water molecules by a ligand. In addition, 

considering these resting states is critical for optimal binding as these water molecules may be tightly bound and 

hardly displaced by weak ligands. Also, water-bridged complexes may be common with CYPs as shown by EPR 

studies of CYP-ligand complexes in solution.60 With these displaceable water molecules, both directly coordinated 

ligands and water-bound ligands may be predicted. 

BENCHMARKING DATASETS.  

To evaluate FITTED’s ability to dock covalent drugs and metalloprotein inhibitors, we sought large, diverse testing 

sets of high-quality structures from the PDB. This led to a refinement of our existing datasets, which enabled us to 

benchmark our programs.  

Covalent docking set. In 2018, Scarpino, Ferenczy, and Keserű reported a comparative study of docking 

programs applied to covalent docking.61 The dataset of 208 complexes used in this study was selected and was 
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expanded to include targeted amino acids beyond cysteine and serine and to include a large variety of warheads. 

This enhanced set is comprised of nearly 300 structures (Table S2).  

Metalloproteins. In 2014, we reported our initial validation set for zinc metalloenzymes, containing 123 

protein/ligand complexes.41 For iron-containing enzymes, we assembled a representative set of 85 CYP protein-

ligand complexes from the PDB, with and without iron-coordinating nitrogen ligands. For magnesium, we 

assembled a set containing 29 diverse crystal structures. As a note, the MetalPDB database was very useful in 

identifying metal-containing enzymes.62 

RESULTS AND DISCUSSION 

Covalent docking. As reviewed recently, many docking programs now enable the docking of covalent 

inhibitors.26 However, the process often requires the manual identification of reactive functional groups, or covalent 

warheads, and precludes the use of these programs in large virtual screening campaigns. In addition, when the 

covalent mode is selected, all the molecules are docked covalently, regardless of whether the covalent mode should 

be preferred or not. In our original covalent docking development, FITTED was used to discover prolyl 

oligopeptidase (POP) inhibitors.40 This class of serine proteases (S9 proteins also including DPP-IV and fibroblast 

activation protein-α) has primarily been targeted using nitrile, aldehyde, and boronic acid derivatives. To customize 

our software and facilitate the discovery of POP covalent inhibitors, these three functional groups were hardcoded 

into the program and this version of FITTED was successfully used to design potent inhibitors.40 In addition, a mode 

was developed to enable both covalent and non-covalent binding modes to be considered simultaneously, enabling 

the program to identify the most likely mode of binding. Since then, we have started a large medicinal chemistry 

program to identify covalent inhibitors of SARS-CoV-2 3CLpro and PLpro, two enzymes featuring a catalytic cysteine 

residue.63 To respond to this need, we decided to redesign our program and rewrite the entire covalent docking 

routine such that it includes many different warheads and reactive residues.  

Docking to metalloproteins. Several drug targets include a metal ion in their catalytic site. Previously, our 

software FITTED was designed to accurately compute the energetics and geometrical considerations of a ligand in 

the active site of a zinc metalloprotein and to model the exchange of a proton between a ligand and a neighboring 

residue.41 This methodology was developed for zinc ions with histidine and glutamic acid residues in their 

coordination sphere. However, our recent attempts to design inhibitors of AID has raised potential concerns about 

the binding of ligands to zinc ions that feature cysteine residues in the coordination sphere (a neutral zinc complex) 

which may not be accurately described with the current parametrization. 

In addition to zinc, iron is present in many important proteins such as CYPs, which are involved in the metabolism 

of most drugs on the market.3,64-66 The co-administration of drugs, one metabolized by CYP and the other inhibiting 
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CYP, leads to drug-drug interactions where there is accumulation of the unmetabolized drug which can lead to 

severe toxicity. One strategy to prevent drug-drug interactions is to computationally predict CYP inhibition and 

include this routine in drug development software like FITTED. Reversible CYP inhibition is observed with several 

molecules termed Type II ligands that contain a basic nitrogen atom which may coordinate the heme iron, (Figure 

6a).67 An example of such ligand is ritonavir, an antiretroviral compound that inhibits CYP3A4 (see PDB 3NXU). 

To correctly model Type II ligands and thus better predict CYP inhibition, we implemented nitrogen-iron 

coordination in FITTED. This functionality is lacking in the majority of SBDD software, with some exceptions, of 

which we mention EADock. This docking program has been trained to predict heme coordination, with a self-

docking accuracy of 62% on a small set of complexes (31/50 heme structures that exhibited iron-nitrogen 

coordination).68 

While zinc is often used to cleave peptide or protein amide bonds and iron is used for its redox properties, 

magnesium (and manganese) ions are often used by enzymes involved in nucleic acids69 biochemistry, as well as 

by human ubiquitin hydrolase70 and pyruvate carboxylase.71 Complicating matters, some proteins feature more than 

one magnesium and/or manganese ion in their catalytic site. For example, the Flap Endonuclease 1, involved in 

DNA replication and repair and a potential target for cancer therapeutics, and the restriction endonuclease (EcoVR, 

Figure 6b) require two magnesium ions for phosphate activation.72 In contrast to soft zinc ions, which do not have 

a very strict preference for a specific geometry, magnesium has a strong preference for six ligands (preferentially 

oxygen containing) with very well defined coordination geometry.73,74 For optimal docking, this factor should be 

considered. 

A)    B) 

 

Figure 6. A) Heme bound to a nitrogen-containing inhibitor; B) Phosphate hydrolysis by EcoVR adapted from 72. 

Considering these different requirements, special consideration for ligand-metal binding (both energy- and 

geometry-wise) must be given to these classes of proteins and specific implementations must be devised. As 

described in the previous section, specific force field terms and parameters were developed. 
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Evaluating the software. Before looking at the new features described above, we tested our modified programs 

on existing benchmark sets and assessed whether the previously implemented routines were still as effective. To 

perform this evaluation, the lowest energy pose over 10 runs of docking for each ligand-protein complex was 

compared to the cognate ligand pose. As has been widely used in most docking evaluations, a root mean square 

deviation (RMSD) of 2.0 Å was considered as the threshold to distinguish poor and good predictions. The Astex 

set, previously used by numerous docking program users, our large self-docking/cross-docking set reported 

previously and expanded over time and our zinc metalloenzyme set were selected for this preliminary validation.  

A)         B) 

 

C) 
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Figure 7. Validation on previous sets. A) Astex set (299 protein-ligand complexes, set #1); B) FITTED set – self 

docking (306 protein-ligand complexes, set #2) 75; C) FITTED set – cross-docking (1,210 protein-ligand complexes, 

set #3).75 See Supporting Information for more complete data. 

Docking of these three sets ran uneventfully, confirming that the programs were stable, and pose prediction 

accuracy was evaluated (Figure 7). The measured accuracies were similar to those reported earlier (2014: set #2 

and 3: 73% (3 runs), 40% (3 runs); current work: 72% (3 runs), 47% (3 runs)). Before proceeding further, we 

thought to have a closer look at the cross-docking data as an accuracy lower than 50% may be problematic in a 

prospective study. Our investigations of the major failures confirmed what we expected from cross-docking. For 

example, the AChE binding site is very well defined with a number of aromatic residues (Trp279, Tyr70, Tyr121, 

Phe290, Phe331, Phe330 shown in Figure 8A) delineating it.  
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Figure 8. Five crystal structures used for cross-docking to AChE, A) snapshot of all five crystal structures 

superposed (1EVE - grey; 1GPN – green; 1ZGC – orange; 2ACK – pink; 2CKM – blue); B-F) each of the five with 

their respective co-crystallized ligand. 

These geometrical constraints make the binding site shape very selective. As shown in Figure 8A, Trp279 and 

Phe330 must adjust their conformation to the each of the five ligands. More specifically, Trp279 moves to open 

space and enable stacking to the tetrahydroacridine moiety in 2CKM (Figure 8A-blue and F). As the protein is 

considered rigid in cross-docking experiments, the ligand from 2CKM cannot be properly docked to the other four 

structures where the Trp279 side chain blocks this space. Similarly, Phe330 has a unique conformation in each of 
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the five structures. This induced-fit phenomenon is a major issue in docking when a rigid protein is used but, as 

shown here, can easily be detected using cross-docking. In contrast, self- (all below 1 Å) and cross-docking poses 

(18 out of 20 below 1.25 Å) to GPB is highly accurate. In this case, the co-crystallized ligands are similar and none 

of the binding site residue side-chains are found to move. As the superposition of these different GPB protein 

structures is not perfect (RMSDs of the Cα between protein pairs vary between 0.1 and 0.5 Å), the slightly higher 

average RMSDs measured in cross-docking relative to self-docking can be related to this superposition deviation. 

Thus, while ca. 50% accuracy in cross-docking may be seen as low, this is not a failure of the program, but, rather 

a limitation of the methodology (docking to rigid protein) which can be addressed considering protein flexibility as 

we have previously shown.76 Thus, a good understanding of the dynamics of the protein under evaluation, of the 

type of interactions (e.g., stacking to Trp279) and nature of the molecules to be docked is essential for medicinal 

chemists to select the most appropriate structure(s) for prospective studies.  

When considering the Astex set we were content to see that our programs provided accurate results (70% accuracy 

over 10 runs).75 We then moved to virtual screening to evaluate whether our program still performs as previously 

reported. The collected data (ca. 75% AUROC over the 102 proteins of the DUDe set, with an AUROC > 80% for 

39 proteins and >90% for 12 proteins) confirms the accuracy has not been affected by the several changes we made 

over the past years. This first set of evaluation experiments confirmed that our programs are stable and that our new 

implementation did not affect the accuracy. 

Covalent docking. Significant changes have been made to our programs SMART (identification of covalent 

warhead) and FITTED (docking covalently). To evaluate the updated modules, we first started with a set reported by 

Scarpino et al.61 In their study, they showed that FITTED was a top-performer although 15% of the cases could not 

be evaluated as the reaction mechanisms and/or warheads were not implemented. The automated warhead 

recognition and pre-defined mechanisms implemented into FITTED enable its use in large screenings, but limit it to 

those implemented groups and mechanisms. To overcome this limitation, we have rewritten the covalent docking 

routines to facilitate the addition of novel mechanisms and warheads. Using these new routines, we implemented 

ca. 20 mechanisms and over 50 common warheads (Table S1). With these new mechanisms and warheads, FITTED’s 

accuracy (reported to be 56% on 175 cases by Keserű and co-workers) increased to 71% (on the entire set of 208 

complexes, Figure 9A). As noted by Keserű, a number of failures comes from the scoring as a pose with RMSD 

below 2Å is found in nearly 90% of the cases in at least one of the 10 runs (but not necessarily identified as the 

most favoured). However, the convergence of the conformational search contributes to the problem as the accuracy 

substantially increased (64 to 71%) when going from 3 runs to 10 runs. 
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A)         B) 

 

Figure 9. Accuracy of covalent docking. A) set reported by Scarpino et al.61; B) extended set. 

Next, we evaluated our new covalent docking routines on the entire extended set which covers a much larger 

diversity of warheads and reacting residues. While the measured accuracy is lower (Figure 9B), the difference 

between 3 and 10 runs remained approximately the same. Interestingly, pose prediction when considering 10 poses 

(lowest RMSD out of 10 runs) is also less accurate for these less common warheads, although still acceptable (64% 

below 2 Å). As discussed below, the scoring functions in FITTED are likely the cause of this observation. 

Metalloproteins. The sets comprised of 123 zinc-containing protein-ligand complexes (Figure 10A),41 85 heme-

containing systems and 29 magnesium-containing systems (Figure 10B) were used for a total of 237 metalloproteins. 

To our knowledge, no dataset of this magnitude has previously been compiled to widely test docking programs and 

their applicability to this target class. 
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A)           B) 

 

Figure 10. A) Accuracy of metalloprotein mode in the self-docking of ligands to zinc; B) Accuracy of 

metalloprotein mode in the self-docking of ligands to magnesium or heme-containing proteins. 

We first reported FITTED for zinc-containing metalloproteins in 2014 and validation on the 123 complexes 

revealed an accuracy of 64% (10 runs).41 Our investigations on proteins including a neutral zinc-complex (e.g., zinc 

ion coordinated by 2 cysteine thiolates) revealed that our parameters previously developed with charged zinc 

complexes (e.g, zinc coordinated by 3 histidine residues) were accurately modeling the coordination energy profiles 

and no further parameters were needed. We were pleased to see that the accuracy of the current version has not 

been affected by the latest changes and even improved (70%) thanks to changes we made throughout the years on 

the preparation of the ligands for docking. We were, however, a little disappointed by the observed accuracy for 

heme and magnesium containing enzymes with an accuracy of about 50% (top pose) and 73% (best pose out of 10 

runs) which is lower than with the other protein families.  

We thought to look at the causes of the low accuracy for iron and magnesium. A typical example is 3R9C 

(econazole bound to heme-containing CYP164A2 enzyme). In this case, the overall RMSD is greater than 2.0 Å, 

but the RMSD around the metal binding group is excellent (0.11 Å). In the crystal structure, the ligand econazole 

coordinates to the heme through the imidazole moiety (Figure 11A - green), with a Fe-N distance of 2.1 Å. Moreover, 

econazole forms multiple hydrophobic interactions inside the active site with Ala95, Leu180, Leu184, Ile255, 

Val303, and Val306. FITTED correctly identifies the iron coordination with a Fe-N distance of 2.0 Å (Figure 11B - 

pink). In addition, the docked pose exhibits interactions with the same hydrophobic residues. The major differences 

between the docked pose and crystal structure come from the orientation of the imidazole ring and the rotation about 

the N-C bond. 
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Figure 11. Comparison between A) the crystal structure of econazole (green) and B) the docked pose (pink) in the 

active site of CYP164A2.  

A similar observation is made with 4D75 (CYP3A4 co-crystallized with a pyridine-based inhibitor). In addition, 

this ligand (Figure 12 top) is highly flexible with 8 rotatable bonds. The heteroaromatic ring – a pyridyl – 

coordinates to the iron of the heme (Fe-N distance of 2.4 Å), a process which is excellently described by FITTED 

(RMSD = 0.3Å, Fe-N distance of 2.3Å). Meanwhile, the high flexibility of the ligand precludes the identification of 

a side chain pose with a low RMSD (Figure 12 bottom). As previously described,77 difficulties in conformational 

sampling and scoring arise when ligands contain numerous rotatable bonds.  
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Figure 12. Top - CYP3A4 inhibitor – crystal ligand in 4D75. Bottom - Overlay between the crystal ligand (green) 

and docked pose (pink). 

Additional causes of failures were observed with magnesium-containing enzymes. We first noticed that many 

polyol systems seemed to dock unlike the co-crystallized ligand. Polyol systems have many hydroxyl groups as 

well as carbonyls (often part of a carboxylic acid) and include flexible open forms of sugars. In these particular 

cases, we noticed that FITTED showed difficulties in identifying the correct groups that bind to the metal (i.e., 

distinguishing a diol from another). For example, in malate synthase (PDB 5H8U, Figure 13A), L-malate binds in 

a bidentate fashion with a 1,3 hydroxyl and carbonyl (from a carboxylic acid). In the docked pose, L-malate binds 

via a 1,4-carbonyl (from the two carboxylic acids). 

 

 

Figure 13. A) Crystal structure (green) vs. docked pose (pink) in 5H8U. B) Crystal structure (green) vs. docked 

pose (pink) in 3HPF. C)  

Similarly, FITTED may favor a phosphate-based (phosphate, thiophosphate) moiety coordinating to the 

magnesium ions over diols while diols are experimentally favored (e.g., PDB 1Q6O). In some particular cases (i.e, 
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3HPF), we observed that the ligand (D-galactarate) also exhibited C2 pseudosymmetry. The docked pose is flipped 

by 180° compared to the original ligand, its interactions with the target show similarities to that of the co-crystallized 

ligand, but the presence of stereocenters make the ligand asymmetric and thus leads to a measured high RMSD 

(Figure 13B).  Thus, although the overall RMSDs are > 2.0A, these particular examples should not be necessarily 

considered as a failure, as 1) FITTED correctly identifies the coordination to the magnesium ion; 2) the interactions 

inside the active site are preserved and 3) the proposed binding mode aligns well with the electron density. Finally, 

FITTED tends to favor bidentate chelation while the co-crystallized ligand may only interact with magnesium 

through one major coordination (PDB 3FR8).  

From these various evaluation studies, we have identified two areas to focus for improvement, with the first one 

being the scoring function. Whereas FITTED often finds a correct pose out of 10 runs, it is not always identified as 

the most favored. Better selection of the best pose candidate would obviously increase the pose prediction accuracy 

and the accuracy of virtual screening campaigns should, in turn, improve. Second, our evaluation of FITTED in 

virtual screens revealed an AUROC below 65% in 17/102 proteins from the DUD-e set. Whereas some 

improvement is expected from better pose prediction/selection, predicting ligand-protein affinity needs additional 

consideration. From the analysis of the failures with metalloproteins, we identified the relative preference for some 

groups (e.g., diol and phosphate, monodentate vs. bidentate) as a major weakness. We also found some cases where 

the failure is only apparent (RMSD), while the proposed binding mode is not necessarily wrong and, although 

different from the one provided in the PDB, still matches the electron density.  

Conclusion 

We have implemented many new features in FITTED that will streamline the drug discovery process and allow 

the automated screening of large libraries of compounds. First, we expanded the scope of our covalent docking 

methods. To do so, we modified our functional group recognition algorithm to handle several additional reactive 

warheads and we implemented eight residues that are known to react covalently with ligands. The covalent bond 

formation between a warhead and a residue is now modelled via the use of dummy hydrogen atoms and bonds that 

are turned ON or OFF. Furthermore, FITTED identifies if a molecule preferentially binds covalently or non-covalently.  

Second, we expanded the scope of our metalloenzyme docking routines. Previously, only docking to zinc bound 

to aspartate or glutamate was implemented; FITTED is now suited to dock on metalloenzymes containing a neutral 

(cysteine) or charged (aspartate/glutamate) zinc complex, a heme-iron complex, and one or two magnesium ions. 

To describe the ligand-metal coordination process, we derived Lennard-Jones energy profiles from high level 

calculations. We also implemented the addition of water molecules to unoccupied coordination sites of the metal 

centers.  
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Benchmarking on a number of datasets (new and previously reported) demonstrated the accuracy of this current 

version of FITTED with pose prediction accuracy above 70% for most systems in self-docking (threshold RMSD < 

2Å) and of about 50% in cross-docking (threshold RMSD < 2.5Å) whether covalent or non-covalent, the accuracy 

being a little lower for magnesium and iron-containing metalloproteins (ca. 50% in self-docking). Interestingly, a 

correct pose is found in about 90% of the test cases when 10 poses are generated. This points to our scoring functions 

as a main area for improvement. 
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