Manipulating Exchange Bias by Spin-Orbit Torque

Chih-Huang Lai

Materials Science and Engineering, National Tsing Hua University, Taiwan

Outline

Effective fields induced by Spin-orbit torque in Pt/Co/Pt

Pt (2 nm)/ Co (0.9 nm)/ Pt (2 nm)/

Spin Hall effect dominated ($\Delta H_L >> \Delta H_T$)

Huang and Lai, APL, 107, 232407(2015)

SOT in Pt/Co/IrMn

Exchange bias of FM/AFM

• Align the interfacial spins of AFM with FM magnetization

- 1. Deposition with external magnetic field.
- 2. Field-cooling

Magnetic property of as-deposited film

SOT switching curve

Dominant spin current source

Current-pulse-induced EB switching

Dominant spin current source- bottom Pt

Sub.//Ti(5)/Pt(5)/[Co(0.3)/Ni(0.6)]₂/**FeMn**(10)/Ti (2)

NATIONAL TSING HUA UNIVERSITY

Measurement of device temperature

 $\Delta R = R - R_0$ $T = T_0 + \gamma \Delta R = 67.5 \pm 1.7^{\circ}C$ $\gamma = 12.27 \text{ K/}\Omega, \text{ where } \gamma = dT/dR$

Keithley 4200-SCS (Semiconductor Characterization System) with **4225-PMU** Ultra Fast I-V Module

Pulse width = 10 us. Current pulse amplitude =Jc

Time-resolved resistance measurement (TRRM)

urement (TRRM) Pt 2/Co 1.2/IrMn 6 (nm)

Effects of Hx on SOT switching of FM and EB

The reversal of interfacial spins depends on FM magnetization, regardless of Hx. The spin current provides disturbance for the interfacial spins to be aligned with FM.

How far can spin current go through the FM

For ferromagnetic layer thickness > 3.4 nm, the EB is not switched

Enhanced spin torque at FM/AFM interface

$$\frac{\partial \boldsymbol{m}}{\partial t} = -\gamma \boldsymbol{m} \times \boldsymbol{H}_{\text{eff}} + \alpha \, \hat{\boldsymbol{m}} \times \frac{\partial \boldsymbol{m}}{\partial t} - \frac{\delta \boldsymbol{m}}{\tau} - \boldsymbol{\nabla} \cdot \boldsymbol{Q}$$

SOT switching in AP-mode

Pt(2)/ [Co(0.2)/Ni(0.8)]₂/IrMn(8)

The closeness of FM and EB switching thresholds provides an indirect hint that SOT is the key for the switching mechanism. Flipping interfacial spins is accumulative and leads to smooth EB reversal, different from FM reversal.

Independent SOT switching of ferromagnetic magnetization and exchange bias.

Field-free switching

ightarrow after In-plane annealing, the field free SOT switching can be accomplished

Summary

Acknowledgement

- Dr. Kuo-Feng Huang
- Dr. Ding-Shou Wang
- Mr. Po-Hung Lin
- Prof. Hsiu-Hau Lin(Physics, NTHU)
- Funding supported by Ministry of Science and Technology (MOST), Taiwan and Applied Materials Co.

Web page of our lab: Prof. Chih-Huang Lai

Chih-Huang Lai chlai@mx.nthu.edu.tw

