Genetic algorithm with iterated local search for solving a location-routing problem

Joey Eremondi Bas Geerts Mathijs Stertefeld

About Paper

- Published in Elsevier 2011
- Cited by 18 papers
- Written at
 - FSEGS, Tunisia
 - LAMIH, France

Authors

Houda Derbel

5 papers17 citations

Bassem Jarboui

- 59 papers
- 713 citations

Authors

Saïd Hanafi

- 133 papers
- 993 citations

Habib Chabchoub

- 83 papers
- 153 citations

Outline

- Problem Definition
- Approach Taken
- Experimental Results
- Conclusion and Discussion

- Undirected graph G = (V,E), costs on edges
- Nodes are either Depots or Customers
- Each customer has a demand
- Each depot has a cost and capacity
- Each depot has a vehicle of unlimited capacity, can take product to customers

- Want to find:
 - A subset S of all the depots
 - A route starting and ending at each depot in S
- such that
 - Every customer has their demand delivered to them
 - No depot gives out more than its supply
 - The combined cost of depots and routes is minimal

- Each potential solution has two vectors
 - A: the assignment vector
 - A[i] = k if customer i assigned to depot k
 - P: the permutation vector
 - Ordering of customers 1 to n
 - If customers i and j are assigned to depot k, visit i before j in the delivery route for k
- Some solutions might be equivalent

- Facility Location is NP-Hard
- Travelling-Salesman is NP-Hard
- Locating-routing requires solutions to both problems, so it is also NP-Hard

Example Problem

Example Solution

Outline

- Problem Definition
- Approach Taken
- Experimental Results
- Conclusion and Discussion

Hybrid Approach

- Use ILS to refine population of GA
- Given parents:
 - Generate a child using crossover and mutation
 - If fitness is within δ of the best so far, apply ILS on the child

Algorithm 1: Hybrid GA&ILS high level overview								
1 $s \leftarrow 40$; $\mathbb{P}_a \leftarrow 0.7$; $\mathbb{P}_p \leftarrow 0.9$; $\delta \leftarrow 0.1$; /* Global parameters */ ;								
² The GA algorithm high level code :								
3	FEVAL _{best} $\leftarrow \infty$;							
4	Initialize Pop /* First generation of individuals*/;							
5	Initialize the best fitness FEVAL _{best} ;							
6	while termination criterion is not satisfied do							
7	SELECT individuals x_1 and x_2 from Pop following prob.							
8	Apply CROSSOVER to x_1 and x_2 ;							
9	Let x_{new} be the new obtained child;							
10	Apply MUTATION to x_{new} ;							
11	if $\operatorname{FEVAL}(x_{new}) < (1+\delta) \cdot \operatorname{FEVAL}_{best}$ then							
12	Apply ITERATIVE LOCAL SEARCH with x_{new} as an i:							
13	Update the best fitness FEVAL _{best} ;							
14	\square Apply Replacement to $Pop;$							
11 12 13 14	$\begin{bmatrix} \text{if } Feval(x_{new}) < (1 + \delta) \cdot Feval_{best} \text{ then} \\ & $							

Genetic Search: Selection

- According to probability distribution:
 - where [k] is the kth solution in descending order of its objective value
 - and *M* is the population size

$$\mathbb{P}([k]) = \frac{2k}{M(M+1)}$$

Genetic Search: Crossover

- Assignments *A*: simple one-point crossover
- *P* uses permutation-based crossover
- Point chosen from the first parent, permutation copied up until that point
- Elements of second parent inserted in order, skipping ones already added from first

Permutation-based crossover

Fig. 2. Crossover operation for the permutation vector.

Genetic Search: Mutation

- A and P mutated separately
- Randomly move one customer to different depot
 - Allows potential depots to be added/removed from set of depots actually used
- Permutation: randomly select customer, reinsert into random position

Fitness function

- FEVAL(x) = COST(x) + PENALITY(x).
 - COST(x) = total cost of the LRP solution represented by individual x.
 - PENALTY(x) = a penalty on the violation of the capacity constraints

Fitness function

• More precisely:

$$P_{\text{ENALITY}}(x) = \sum_{j \in J} \alpha \cdot \max\{0, D_j(x) - b_j\}$$

- where:
 - $D_j(x)$ is the total demand of customers assigned to depot *j* in solution *x*.
 - b_i is the maximal capacity of depot *j*.
 - $\vec{\alpha}$ is a constant that reflects the degree of the penalty.

ILS: Neighbour Choice

- Use four separate neighbourhoods for each solution
 - Insertion move
 - Swap move

ILS: Neighbour Choice

- Sequentially improve an initial solution x
- Repeat until local optimum of the 4 structures of neighborhood is reached.

Algorithm 3: LOCAL SEARCH using neighborhoods $\mathcal{N}1$, $\mathcal{N}2$, $\mathcal{N}3$ and $\mathcal{N}4$

input : x : an initial solution

1 $x_1 \leftarrow \text{First Improvement on } x \text{ using neighborhood } \mathcal{N}1$;

2 $x_2 \leftarrow \text{FIRST}$ IMPROVEMENT on x_1 using neighborhood \mathcal{N}_2 ;

3 $x_3 \leftarrow$ FIRST IMPROVEMENT on x_2 using neighborhood $\mathcal{N}3$;

4 $x_4 \leftarrow \text{First Improvement on } x_3 \text{ using neighborhood } \mathcal{N}4;$

5 if $FEVAL(x_4) < FEVAL(x_1)$ then

 $6 \qquad x \leftarrow x_4;$

7 Go to Line 1;

• Swap 2 random customers assigned to 2 different depots

(a) initial solution x

(b) neighboring solution in $\mathcal{N}1(x)$

 Insert one customer from one route into another route

(a) initial solution x

(b) neighboring solution in $\mathcal{N}2(x)$

Swap the position of 2 customers inside a route

(a) initial solution x

(b) neighboring solution in $\mathcal{N}3(x)$

• Insert a customer between 2 other customers in the same route.

ILS: Perturbation Methods

- Opening closed depots gives us opportunities for different type of solutions
- Select an open depot at random
 - Remove the customers already assigned towards another depot (open or closed)
- This generates new kind of solutions by opening/closing some depots

Outline

- Problem Definition
- Approach Taken
- Experimental Results
- Conclusion and Discussion

The Experiment

- 5 data sets:
 - 5 facilities and {10, 20, 30} customers
 - \circ 10 facilities and {20, 30} customers
- Vary ratio of total supply and total demand
- Vary average cost of opening a depot
- Compare with ILS and Tabu Search

Experiment Setup

- Coded in C
- Performed on a desktop computer
 - Windows XP
 - Intel Pentium IV 3.2 GHz
 - 1 GB RAM

Experiment Results

Measured values:

- Average deviation of solution value relative to lower bound
- Running time of 10 instances

Experiment Results

Instances		p						m						g					
		ILS		GA&ILS	5	T.S		ILS		GA&ILS	5	T.S		ILS		GA&IL	S	T.S	
		%gap	Time	%gap	Time	%gap	Time	%gap	Time	%gap	Time	%gap	Time	%gap	Time	%gap	Time	%gap	Time
<i>S</i> 1	а	0	0.01	0	0.02	0.35	5.37	0	0.02	0	0.03	0.6	5.45	0.01	0.01	0	0.02	0.06	5.43
	b	0	0.00	0	0.02	0.04	4.89	0	0.01	0	0.02	0.35	5.10	0	0.01	0	0.02	0.04	5.04
	С	0.00	0.00	0	0.02	0.24	3.97	0	0.01	0	0.03	0.04	4.19	0	0.01	0	0.02	0.33	4.23
S2	а	10.42	0.41	10.42	0.40	10.79	22.7	7.66	0.83	7.65	0.92	7.97	24.94	2.85	2.28	2.85	0.64	2.94	25.91
	b	11.58	0.10	11.58	0.21	12.30	23.4	8.88	0.32	8.88	1.05	9.29	23.09	4.02	0.96	4.02	0.36	4.40	23.88
	С	13.63	0.12	13.63	0.22	13.69	17.47	10.34	0.90	10.34	1.00	10.44	17.42	4.03	0.2	4.03	0.55	4.08	17.37
<i>S</i> 3	а	10.88	5.47	10.28	6.07	11.31	70.18	6.28	7.00	6.48	4.25	7.41	71.73	2.27	5.48	2.26	8.44	2.50	70.32
	b	11.35	4.95	11.20	4.44	12.33	62.78	8.69	3.66	8.78	7.62	10.30	64.88	3.21	2.36	3.16	2.55	3.79	65.53
	С	13.26	2.99	13.26	2.64	14.20	45.76	9.75	5.51	9.55	5.75	11.38	45.39	3.75	4.18	3.75	2.19	4.33	45.22
M2	а	21.75	1.90	21.64	4.71	22.01	90.55	14.15	2.40	14.10	5.28	14.90	91.14	6.08	3.18	6.01	7.30	6.13	90.72
	b	27.37	0.71	27.38	2.03	28.63	58.89	17.17	4.90	17.30	3.74	17.52	63.19	8.39	5.04	8.30	6.26	8.83	55.6
	С	29.60	2.85	29.32	2.43	30.71	40.30	20.94	1.67	21.02	3.67	22.98	38.13	9.94	4.54	9.94	4.87	11.54	35.60
М3	а	20.34	7.63	19.43	14.61	20.63	240.62	12.79	12.98	12.98	15.35	14.16	241.96	6.63	17.71	6.75	17.23	6.44	239.20
	b	24.75	4.82	24.82	18.07	26.65	139.08	16.97	6.58	16.23	9.33	17.45	163.97	6.97	11.42	8.18	15.23	8.77	133.81
	С	26.98	5.44	27.10	5.93	28.62	97.96	19.67	6.69	19.65	10.87	19.36	96.21	9.11	10.17	9.16	15.04	9.89	98.01

Solutions Found

- Found better solutions than Tabu in all tests
- Frequently found same or better solution than ILS
- Highest average deviation of 29.32%

Running Time

- Consistently faster than Tabu
- Ranged from slightly slower to much slower than ILS
- Longest running time is 18.07 seconds

Comparison

- Use of t-test
- Comparison between averages of two methods

$$\begin{cases} H_0: & \alpha_1 = \alpha_2 \\ H_1: & \alpha_1 < \alpha_2 \end{cases}$$

Comparison Results

H_0	H_1	t-value	p-value
ILS = T.S	ILS < T.S	-8.72	0.00
GA&ILS = T.S	GA&ILS < T.S	-9.83	0.00
GA&ILS = T.S	GA&ILS < T.S	-1.069	0.142

Outline

- Problem Definition
- Approach Taken
- Experimental Results
- Conclusion and Discussion

Conclusion

- Solution to two NP-Hard problems
- Combinations of GA and ILS
- Compared with best known methods
 - Higher accuracy
 - Better performance

Discussion

- Questions
- Comments