Strong Convergence Theorems for Asymptotically Nonexpansive Nonself-Mappings

S. Plubtieng and R. Wangkeeree

Abstract: Suppose C is a nonempty bounded closed convex retract of a real uniformly convex Banach space X with uniformly Gâteaux differentiable norm and P as a nonexpansive retraction of X onto C. Let $T : C \to X$ be an asymptotically nonexpansive nonself-map with sequence $\{k_n\}_{n \geq 1} \subset [1, \infty)$, $\lim k_n = 1$, $F(T) = \{x \in C : Tx = x\}$, and let $u \in C$.

In this paper we study the convergence of the sequences $\{x_n\}$ and $\{y_n\}$ which defined by

$$x_n = \left(1 - \frac{t_n}{k_n}\right) u + \frac{t_n}{k_n} (PT)^n x_n$$

and

$$y_n = P \left(\left(1 - \frac{t_n}{k_n}\right) u + \frac{t_n}{k_n} T(PT)^{n-1} y_n \right),$$

where $t_n = \min \left\{ \frac{1}{2}, 1 - \frac{1}{n} \right\}$ for $n = 1, 2, \ldots$.

Keywords: Asymptotically nonexpansive nonself-maps, nonexpansive retraction, uniformly convex, uniformly Gâteaux differentiable norm.

2000 Mathematics Subject Classification: 47H10, 47H09, 46B20.

1 Introduction

Let C be a nonempty closed convex subset of a Banach space X and let $T : C \to X$ be a nonexpansive mapping (i.e. $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$). For a given $u \in C$ and each $t \in (0, 1)$, we can define a contraction $T_t : C \to X$ by

$$T_t x = tTx + (1-t)u, \text{ for all } x \in C. \quad (1.1)$$

If T is further assumed to be self-mapping i.e. $T(C) \subset C$, then T_t maps C into itself, hence the Banach's contraction principle yields a unique fixed point x_t in C, that is, we have

$$x_t = tTx_t + (1-t)u. \quad (1.2)$$
Now a natural question give rise to whether \(\{x_n\} \) converges strong as \(t \to 1 \) to a fixed point of \(T \). The strong convergence of \(\{x_t\} \) as \(t \to 1 \) for a self-mapping \(T \) of a bounded set \(C \) was proved in a Hilbert space by Browder [3] in 1967 and in a uniformly smooth Banach space by Reich [12] in 1980.

Recently, Xu and Yin [18] proved that if \(C \) is a nonempty closed convex (not necessarily bounded) subset of a Hilbert space \(H \), if \(T : C \to H \) is a nonexpansive nonself-mapping, and if \(\{x_t\} \) is the sequence define by (2) which is bounded, then \(\{x_t\} \) converges strongly as \(t \to 1 \) to a fixed point of \(T \). They also studied other schemes involving the nearest point projection \(P \) from \(H \) onto \(C \), which were introduced by Marino and Trombetta [11].

In 1998, Takahashi and Kim [14] extended Xu and Yin’s result [18] to a reflexive Banach space with has uniform normal structure and a uniformly Gâteaux differentiable norm, using sunny nonexpansive retractions and Banach limits.

On the other hand, Lim and Xu [10] obtained the following : Let \(C \) be a bounded closed convex subset of a Banach space \(X \) and \(T : C \to C \) is an asymptotically nonexpansive mappings, that is, there is a sequence \(\{k_n\}_{n \geq 1} \subset [1,\infty) \), \(k_n \to 1 \) as \(n \to \infty \) such that
\[
\|T^n x - T^n y\| \leq k_n \|x - y\|, \forall x, y \in C, n = 1, 2, \ldots.
\]
(1.3)
Fix \(u \in C \) and for each integer \(n \geq 1 \) define the contraction \(S_n : C \to C \) by
\[
S_n x = \left(1 - \frac{t_n}{k_n}\right) u + \frac{t_n}{k_n} T^n x,
\]
(1.4)
where \(t_n = \min \left\{1 - (k_n - 1) \frac{1}{n}, 1 - \frac{1}{n}\right\} \). Then the Banach contraction principle yields a unique point \(x_n \) fixed by \(S_n \), that is, we have
\[
x_n = \left(1 - \frac{t_n}{k_n}\right) u + \frac{t_n}{k_n} T^n x_n.
\]
(1.5)
Further, if \(X \) is uniformly smooth \(\lim_{n \to \infty} \frac{t_n k_n}{k_n - t_n} = 0 \) and \(\lim_{n \to \infty} \|T^n x_n\| = 0 \), then the sequence \(\{x_n\} \) converges strongly to a fixed of \(T \).

In this paper, we prove a strong convergence theorem for weakly asymptotically regular nonself-mappings in a real uniformly convex Banach space with uniformly Gâteaux differentiable norm, using sunny nonexpansive retractions and Banach limits. Our proof employ the methods of Lim and Xu [10] and Takahashi and Kim [14].

2 Preliminaries

Throughout this paper we denote by \(X \) and \(X^* \) a real Banach space and the dual space of \(X \), respectively. The value of \(x^* \in X^* \) at \(x \in X \) will be denote by \(\langle x, x^* \rangle \). We also denote by \(\mathbb{R} \) and \(\mathbb{R}^+ \) the set of real numbers and all nonnegative real numbers, respectively. When \(\{x_n\} \) is a sequence in \(X \), then \(x_n \to x \)(resp.
Let $x_n \to x$ will denote strong (resp. weak) convergence of the sequence $\{x_n\}$ to x. Let C be a nonempty closed convex subset of X and let T be a mapping of C into X. Then we denote by $F(T)$ the set of all fixed points of T, i.e. $F(T) = \{x \in C : Tx = x\}$. Let D be a subset of C and let P be a mapping of C in to D. Then P is said to be sunny if

$$P(Px + t(x - Px)) = Px,$$

whenever $Px + t(x - Px) \in C$ for $x \in C$ and $t \geq 0$. A mapping P of C into C is said to be a retraction if $P^2 = P$. If a mapping P of C is a retraction, then $Pz = z$ for every $z \in R(P)$, where $R(P)$ is the range of P. A subset D is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D; for more details, see [8, 15].

Let $S(X) = \{x \in X : \|x\| = 1\}$. Then the norm of X is said to be Gâteaux differentiable (and X is said to be smooth) if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x and y in $S(X)$. It is also said to be uniformly Gâteaux differentiable if for each $y \in S(X)$, the limit (2.1) attained uniformly for x in $S(X)$. With each $x \in X$, we associate the set

$$J(x) = \{x^* \in X^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}.$$

Then $J : X \to X^*$ is said to be the duality mapping. It is well know if X is smooth, then the duality mapping J is single-valued and strong-weak* continuous. It is also know that if X has a uniformly Gâteaux differentiable norm, J is uniformly continuous on bounded sets when X has its strong topology while X^* has its weak star topology; see Day [5] or Diestel [6].

Let μ be a mean on positive integers N, i.e. a continuous linear functional on l^∞ satisfying $\|\mu\| = 1 = \mu(1)$. Then we know that μ is a mean on N if and only if

$$\inf \left\{a_n : n \in \mathbb{N} \right\} \leq \mu(a) \leq \sup \left\{a_n : n \in \mathbb{N} \right\}$$

for every $a = (a_1, a_2, \ldots) \in l^\infty$. According to time and circumstance, we use $\mu_n(a_n)$ instead of $\mu(a)$. A mean μ on \mathbb{N} is called a Banach limit if

$$\mu_n(a_n) = \mu_n(a_{n+1})$$

for every $a = (a_1, a_2, \ldots) \in l^\infty$. Using the Hahn-Banach theorem, or the Tychonoff fixed point theorem, we can prove the existence of a Banach limit. We know that if μ is a Banach limit, then

$$\liminf_{n \to \infty} a_n \leq \mu_n(a_n) \leq \limsup_{n \to \infty} a_n$$

for every $a = (a_1, a_2, \ldots) \in l^\infty$. So, if $a = (a_1, a_2, \ldots) \in l^\infty$ and $a_n \to c$, as $n \to \infty$ we have $\mu_n(a_n) = \mu(a) = c$. Further, we know the following results [13].
Lemma 2.1 Let C be a nonempty closed convex subset of a Banach space X with a uniformly Gâteaux differentiable norm, let $\{x_n\}$ be a bounded sequence of X and let μ be a mean on \mathbb{N}. Let $z \in C$. Then

$$
\mu_n \|x_n - z\|^2 = \min_{y \in C} \mu_n \|x_n - y\|^2
$$

if and only if $\mu_n \langle y - z, J(x_n - z) \rangle \leq 0$ for all $y \in C$, where J is the duality mapping of X.

Lemma 2.2 Let C be a closed convex subset of a smooth Banach space X and let $P : X \rightarrow C$ be a retraction, then the following are equivalent:

(i) $\langle x - Px, J(y - Px) \rangle \leq 0$ for all $x \in X$ and $y \in C$;

(ii) $\|Pz - Pw\|^2 \leq \langle z - w, J(Pz - Pw) \rangle$ for all z and w in X;

(iii) P is both sunny any nonexpansive.

Lemma 2.3 (See [17]) Let C be a nonempty subset of a Banach space X and let $T : C \rightarrow C$ be a mapping of asymptotically nonexpansive type on C. Suppose there exists a nonempty bounded closed convex subset M of C with the property (w). For each x in K, define the function

$$
\rho_x(y) = \limsup_{n \rightarrow \infty} \|T^n x - y\|, y \in X.
$$

Then the functional ρ_x is a constant on M and this constant is independent of x in M.

Lemma 2.4 (See [9] and [10]) Suppose that X is a Banach space with uniformly normal structure, C is a nonempty bounded subset of X and $T : C \rightarrow C$ is a asymptotically nonexpansive mapping. Further, suppose that there exists nonempty bounded closed convex subset E of C with the property (w):

$$
x \in E \text{ implies } W_w(x) \subset E,
$$

where $W_w(x)$ is the weak-limit set of T at x; that is, the set

$$
\left\{ y \in X : y = \text{ weak } \lim_j T^{n_j} x \text{ for some } n_j \rightarrow \infty \right\}.
$$

Then T has a fixed point in E.

3 Strong convergence theorems

In this section, we give a definitions and prove our main theorems.
Strong Convergence Theorems for Asymptotically Nonexpansive...

Definition 3.1 Let X be a real normed linear space, C a nonempty subset of X. Let $P : X \to C$ be the nonexpansive retraction of X onto C. A mapping $T : C \to X$ is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\}_{n \geq 1} \subset [1, \infty)$, $k_n \to 1$ as $n \to \infty$ such that for all $x, y \in C$, the following inequality holds:

$$\|T(PT)^n x - T(PT)^n y\| \leq k_n \|x - y\|,$$

for all $n \geq 1$. \hfill (3.1)

T is called weakly asymptotically regular on C if

$$T(PT)^n x - T(PT)^n y \text{ weakly converges to } 0 \text{ for all } x \in C.$$ \hfill (3.2)

Remark 3.2 If T is a self-map, then $PT = T$ so that (3.1) coincide with (1.3)

Theorem 3.3 Suppose that X is a real uniformly convex Banach space with uniformly Gâteaux differentiable norm. Let C be a nonempty bounded closed convex subset of X and $T : C \to C$ be an asymptotically nonexpansive mapping. Let

$$t_n = \min \left\{ 1 - \left(k_n - 1 \right) \frac{1}{2}, 1 - \frac{1}{n} \right\} \text{ for } n = 1, 2, \ldots, \text{ and } u \in C.$$

Then, a mapping S_n on C given by

$$S_n(x) = \left(1 - \frac{t_n}{k_n} \right) u + \frac{t_n}{k_n} T^n x \text{ for all } x \in C$$ \hfill (3.3)

has a unique fixed point x_n in C. Further, if T is weakly asymptotically regular and completely continuous, then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. Suppose that the contraction S_n defined by (3.3) and $u \in C$. Then the Banach contraction principle yields a unique point $x_n \in C$ that is fixed by S_n, that is, we have

$$x_n = \left(1 - \frac{t_n}{k_n} \right) u + \frac{t_n}{k_n} T^n x_n.$$

Then we show that $F(T) \neq \emptyset$ and the sequence $\{x_n\}$ converges strongly to a fixed point of T. Now let μ be a Banach limit and define $f : C \to [0, \infty)$ by

$$f(z) = \mu_n \|x_n - z\| \text{ for every } z \in C.$$

Then, since the function f on C is convex and continuous, $f(z) \to \infty$ as $\|z\| \to \infty$, and X is reflexive it follows from [2] that there exists $v \in C$ with $f(v) = \inf_{z \in C} f(z)$. Define the set

$$M = \left\{ v \in C : f(v) = \inf_{z \in C} f(z) \right\}.$$

Then M is a nonempty, bounded closed and convex subset of C see [15, 16]. We further claim that M has the property (w). We must show that $\{T^m x\}$ weak
converges to a fixed point of T. Let $y \in W_n(x)$ then $y = \text{weak } \lim_n T^n x$. It follows by weakly asymptotically regular and completely continuous of T, that $Ty = y$. Hence $W_n(x) \subseteq F(T)$, we also have $\lim_{n \to \infty} \| T^n y - y \| = 0$. By Lemma 2.3, we have $\rho_x = 0$. It implies that $T^n x \to y$ and hence $\{T^n x\}$ converges weakly to fixed point of T. In fact, if x is in M then form $\| x_n - T^n x_n \| \to 0$ as $n \to \infty$, we have

$$f(y) = \mu_n \| x_n - y \| \leq \mu_n \| x_n - T^n x_n \| + \mu_n \| T^n x_n - T^n x \| + \mu_n \| T^n x - y \| \leq k_n \mu_n \| x_n - x \| = k_n f(x).$$

Thus

$$f(y) \leq f(x) = \inf_{z \in K} f(z) \leq f(y)$$

This show that y belongs to M and hence M satisfies the property (w). By Lemma 2.4 that T has a fixed point $z_0 \in M$. Next, to show that $\{x_n\}$ converges strongly to a fixed point of T. We note that, for any $w \in F(T)$,

$$\langle x_n - T^n x_n, J(x_n - w) \rangle = \langle x_n - w, J(x_n - w) \rangle + \langle w - T^n x_n, J(x_n - w) \rangle \geq \| x_n - w \|^2 - \| w - T^n x_n \| \| x_n - w \| \geq -(k_n) \| x_n - w \|^2 \geq -(k_n - 1)d^2,$$

where $d = \text{diam } C$. Since x_n is a fixed point of S_n, it follows that

$$x_n - T^n x_n = \frac{k_n - t_n}{t_n} (u - x_n)$$

and from last inequality above, we get

$$\langle x_n - u, J(x_n - w) \rangle \leq s_n d^2,$$

where $s_n = \frac{t_n(k_n - 1)}{(k_n - t_n)} \to 0$ as $n \to \infty$. Putting $w = z_0$, so we have

$$\langle x_n - u, J(x_n - z_0) \rangle \leq s_n d^2.$$

(3.4)

Since z_0 is the minimizer of the function f on C, by Lemma 2.1 we have

$$\mu_n \langle z - z_0, J(x_n - z_0) \rangle \leq 0 \text{ for all } z \in C.$$

So, putting $z = u$, we have

$$\mu_n \langle u - z_0, J(x_n - z_0) \rangle \leq 0.$$

(3.5)

(3.6)

From (3.5) and (3.6) then, we have

$$\mu_n \langle x_n - z_0, J(x_n - z_0) \rangle = \mu_n \| x_n - z_0 \|^2 \leq 0.$$

(3.7)
Thus, there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\lim_{k \to \infty} x_{n_k} = z_0 \). To complete the proof, suppose there is another subsequence \(\{x_{m_k}\} \) of \(\{x_n\} \) which converges strongly to (say) \(z' \). Then \(z' \) is a fixed point of \(T \). It then follows from (3.4) that

\[
\langle z - u, J(z - z') \rangle \leq 0
\]

and

\[
\langle z' - u, J(z' - z) \rangle \leq 0.
\]

Combining these two inequalities yields

\[
\langle z - z', J(z - z') \rangle = \|z - z'\|^2 = 0
\]

and hence \(z = z' \). Therefore \(\{x_n\} \) converges strongly to a fixed point of \(T \). □

Let \(X \) be a Banach space and let \(C \) be a nonempty convex subset of \(X \). Then for \(x \in C \) we define the inward set \(I_C(x) \) as follows:

\[
I_C(x) = \{ y \in X : y = x + a(z - x) \text{ for some } z \in C \text{ and } a \geq 0 \}.
\]

A mapping \(T : C \to X \) is said to be inward if \(Tx \in I_C(x) \) for all \(x \in C \). \(T \) is also said to be weakly inward if for each \(x \in C \), \(Tx \) be long to the closure of \(I_C(x) \).

Using Theorem 3.3, we can prove the following two strong convergence theorems.

Theorem 3.4 Suppose that \(X \) is a real uniformly convex Banach space with uniformly Gâteaux differentiable norm, \(C \) is a nonempty bounded closed convex subset of \(X \) and \(T : C \to X \) is an asymptotically nonexpansive non-self mapping satisfying the weak inwardness condition. Let \(u \in C \). Then, a mapping \(G_n \) on \(C \) given by

\[
G_n(x) = \left(1 - \frac{t_n}{k_n} \right) u + \frac{t_n}{k_n}(PT)^nx \quad \text{for all } x \in C
\]

(3.8)

has a unique fixed point \(x_n \) in \(C \), where \(P \) is a sunny nonexpansive retraction of \(X \) onto \(C \). Further, if \(T \) is weakly asymptotically regular and completely continuous, then \(\{x_n\} \) converges strongly to a fixed point of \(T \).

Proof. It follows by the Banach contraction principle that there exists a unique fixed point \(x_n \) of \(G_n \) in \(C \) such that

\[
x_n = \left(1 - \frac{t_n}{k_n} \right) u + \frac{t_n}{k_n}(PT)^nx_n.
\]

By Theorem 3.3, we obtain that \(\{x_n\} \) converges strongly to a fixed point \(z \) of \(PT \). Next, let us show that \(z \in F(T) \). Since \(z = PTz \) and \(P \) is a sunny nonexpansive retraction of \(X \) onto \(C \), from Lemma 2.2, we have

\[
\langle Tz - z, J(z - v) \rangle \geq 0
\]
for all $v \in C$. On the other hand, Tz belong to the closure of $I_C(z)$ by the weak inwardness condition. Hence for each integer $n \geq 1$, there exists $z_n \in C$ and $a_n \geq 0$ such that the sequence

$$y_n := z + a_n(z_n - z) \rightarrow Tz.$$

Since

$$0 \leq a_n\langle Tz - z, J(z - z_n) \rangle = \langle Tz - z, J(a_n(z - z_n)) \rangle = \langle Tz - z, J(z - y_n) \rangle,$$

we have

$$0 \leq \langle Tz - z, J(z - Tz) \rangle = -\|Tz - z\|^2$$

and hence $Tz = z$. □

Theorem 3.5 Suppose that X is a real uniformly convex Banach space with uniformly Gâteaux differentiable norm, C is a nonempty bounded closed convex subset of X and $T : C \rightarrow X$ is an asymptotically nonexpansive non-self mapping satisfying the weak inwardness condition. Let $u \in C$. Then, a mapping U_n on C given by

$$U_n(y) = P \left(\left(1 - \frac{t_n}{k_n} \right) u + \frac{t_n}{k_n} T(PT)^{n-1} y \right) \quad \text{for all } y \in C \quad (3.9)$$

has a unique fixed point y_n in C, where P is a sunny nonexpansive retraction of X onto C. Further, if T is weakly asymptotically regular and completely continuous then $\{y_n\}$ converges strongly to a fixed point of T.

Proof. It follows by the Banach contraction principle that there exists a unique fixed point y_n of U_n in C such that

$$y_n = P \left(\left(1 - \frac{t_n}{k_n} \right) u + \frac{t_n}{k_n} T(PT)^{n-1} y_n \right).$$

As in proof of Theorem 3.3, if $f(z) = \mu_n \|y_n - z\|$ for every $z \in C$ and $M = \{u \in C : f(u) = \inf_{z \in C} f(z)\}$, we have a fixed point y of PT in M. Hence by Lemma 2.2,

$$\langle Ty - v, J(y - v) \rangle \geq 0 \quad \text{for all } v \in C.$$

Note that Ty belong to the closure of $I_C(y)$ by the weak inwardness condition. Hence, for each integer $n \geq 1$, there exist $z_n \in C$ and $a_n \geq 0$ such that the sequence

$$x_n := y + a_n(z_n - y) \rightarrow Ty.$$

As in the proof of Theorem 3.4, we have $Ty = y$. For any $w \in F(T)$, we have

$$\frac{t_n}{k_n} (w - u) + u = \frac{t_n}{k_n} w + (1 - \frac{t_n}{k_n})u = P(\frac{t_n}{k_n} w + (1 - \frac{t_n}{k_n})u), \quad \text{for } n = 1, 2, \ldots.
Combining (3.10) and (3.11), we get

Putting \(z\)

From Lemma 2.1, it follows that

where \(b\)

So, we have

Hence

\[
\|\left(y_n - u\right) - \frac{t_n}{k_n} (w - u)\|^2 = \|P\left(\frac{t_n}{k_n} (T(PT)^{n-1} y_n + (1 - \frac{t_n}{k_n}) u) - u - \frac{t_n}{k_n} (w - u)\right)\|^2
\]

\[
= \|P\left(\frac{t_n}{k_n} (T(PT)^{n-1} y_n - u) + u\right) - u - \frac{t_n}{k_n} (w - u)\|^2
\]

\[
= \|\frac{t_n}{k_n} (T(PT)^{n-1} y_n - u) + u\|^2 - \frac{t_n}{k_n} (w - u)\|^2
\]

\[
\leq \left(\frac{t_n}{k_n}\right)^2 \|T(PT)^{n-1} y_n - T(PT)^{n-1} w\|^2
\]

\[
= \frac{t_n^2}{k_n} \|\left(y_n - u\right) - (w - u)\|^2.
\]

So, we have

\[
0 \geq \|\left(y_n - u\right) - \frac{t_n}{k_n} (w - u)\|^2 - \|t_n (y_n - u) - t_n (w - u)\|^2
\]

\[
= 2 \langle (y_n - u) - \frac{t_n}{k_n} (w - u) - t_n (y_n + u) + t_n (w - u), J(t_n (y_n - w))\rangle
\]

\[
= 2 \langle (1 - t_n) (y_n - u) - \frac{t_n}{k_n} (1 - k_n) (w - u), J(t_n (y_n - w))\rangle
\]

\[
= 2 (1 - t_n) t_n \langle y_n - u - \frac{t_n}{k_n} (1 - k_n) (w - u), J(y_n - w)\rangle
\]

\[
= 2 (1 - t_n) t_n \langle y_n - u - b_n (w - u), J(y_n - w)\rangle,
\]

where \(b_n = \frac{t_n (1 - k_n)}{k_n (1 - t_n)} \rightarrow 0\) as \(n \rightarrow \infty\), and hence

\[
\langle y_n - u, J(y_n - w)\rangle \leq b_n \langle (w - u), J(y_n - w)\rangle. \tag{3.10}
\]

Thus putting \(w = y\),

\[
\langle y_n - u, J(y_n - y)\rangle \leq b_n \langle (y - u), J(y_n - y)\rangle. \tag{3.11}
\]

From Lemma 2.1, it follows that

\[
\mu_n \langle z - y, J(y_n - y)\rangle \leq 0\) for all \(z \in C\).
\]

Putting \(z = u\), we have

\[
\mu_n \langle u - y, J(y_n - y)\rangle \leq 0. \tag{3.12}
\]

Combining (3.10) and (3.11), we get

\[
\mu_n \langle y_n - y, J(y_n - y)\rangle \leq \mu_n b_n \langle (y - u), J(y_n - y)\rangle = 0.
\]
It follows that
\[\mu_n \| y_n - y \|^2 \leq 0. \tag{3.13} \]
Therefore, there exists a subsequence \((y_{n_k})\) of \((y_n)\) such that \(\lim_{k \to \infty} y_{n_k} = y\). To complete the proof, suppose there is another subsequence \((y_{m_k})\) of \((y_n)\) which converges strongly to (say) \(y'\). Then \(y'\) is a fixed point of \(T\) and \(y' = y\). Therefore \((y_n)\) converges strongly to a fixed point of \(T\). □

Acknowledgement: The authors would like to thanks The Thailand Research Fund for financial support.

References

(Received 20 January 2005)

Somyot Plubtieng and Rabian Wangkeeree
Department of Mathematics,
Faculty of Science,
Naresuan University,
Phitsanulok 65000, Thailand
e-mail: Somyotp@nu.ac.th, Rabianw@nu.ac.th