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Abstract: Increasing evidence on the significance of nutrition in reproduction is emerging from both
animal and human studies, suggesting a mutual association between nutrition and female fertility.
Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak
correlations are often reported, probably because of the individual variations in genome, proteome,
metabolome, and microbiome and the extent of exposure to different environmental conditions. In
this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping
and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile
patients than applying a generic nutritional approach. In this review, we report on new insights into
the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic,
and microbiomic aspects that should be investigated to achieve effective personalized nutritional
interventions. Specifically, we will focus on the management of low-grade chronic inflammation,
which is associated with several infertility-related diseases.

Keywords: precision nutrition; infertility; nutrigenetic; nutrigenomics; epigenetics; microbiota;
chronic low-grade inflammation

1. Introduction
1.1. Association between Nutrition and Fertility

Infertility is a disease defined by the failure to achieve pregnancy after 12 or more
months of regular unprotected sexual intercourse [1]. Infertility affects 48.5 million couples
worldwide, with important psychological implications for the couple and with a negative
impact on the quality of their life [2]. Assisted reproductive technologies (ART) represent
the most effective mean to treat infertility. However, despite significant and constant
advances in ART, success rates only marginally increased across the decades [3,4]. Since
lifestyle and environmental factors such as alcohol and caffeine consumption, smoking,
nutritional habits, pesticides, and endocrine disruptors seem to exert a profound impact on
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reproductive health [5], lately several efforts were made to investigate whether modifiable
habits in parental lifestyle, particularly maternal nutrition, can be targeted for a better
reproductive outcome.

Nutrition has been associated with the development of multiple conditions [6], and
mounting evidence suggests an interdependent correlation between nutrition and female
fertility [7]. Improper food consumption, leading to unbalanced caloric intake, is responsi-
ble for abnormal body weight. Several studies have shown how body mass index (BMI)
has a J-shaped correlation with the risk of infertility: both underweight (BMI < 19 kg/m2)
and overweight (BMI 25–29.9 kg/m2) women have a similar risk of infertility [8–10]. This
is because either poor or excessive intake of micro and macro nutrients such as carbohy-
drates, proteins, vitamins, and minerals alter energy balance, which is directly correlated to
reproductive performance [8].

The hypothesis that an appropriate diet improves fertility is supported by studies
in both animal models and humans. In particular, the Mediterranean diet (MedDiet) has
been studied in this regard [11–15], but many studies also investigated the effect of dietary
intake of specific macronutrient(s) or micronutrient(s) (such as proteins, fats, carbohydrates,
vitamins and minerals such as vitamin B12, vitamin D, folates zinc, omega-3) with the
risk of infertility [16–18]. Although conflicting results exist for diary consumption [19,20],
female reproductive health, in general, seems to benefit from a correct balance of proteins,
carbohydrates, lipids, antioxidants, and folate in the daily diet. In particular, the consump-
tion of whole grains, fruits, vegetables, fish (rich in omega-3 polyunsaturated fatty acids
(PUFAs)), olive oil (rich in monounsaturated fatty acids (MUFAs)), and low consumption
of trans-fats may not only improve overall health but also enhance fertility [17]. Moreover,
an adequate intake of antioxidants, folic acid, β-carotene, vitamin C, E, and especially
folates and choline for supporting the one-carbon metabolism (1-C), namely a series of
interlinking metabolic pathways comprising folate cycle, methionine remethylation, and
trans-sulfuration [21,22], are associated with shorter time to pregnancy [7].

1.2. From General Population-Based Recommendations to Precision Nutrition for Infertility

Whereas the literature on the correlation between diet and fertility is steadily increas-
ing, and the evidence that a strong link between unhealthy dietary habits and infertility
is undeniable, there are no official guidelines on the nutritional management of patients
seeking a pregnancy. Likewise, IVF is not routinely combined with a nutritional counsel-
ing program.

Indeed, no specific dietary patterns for improving reproductive chances have yet
been identified. This is mainly due to: (i) conflicting results reported from different
studies; (ii) limited sample size; (iii) heterogeneity of populations under study; (iv) dif-
ferent confounding factors interfering with the correlation diet-reproductive outcomes;
(v) self-reporting in the methods adopted for dietary assessment, such as food frequency
questionnaires (FFQs). Although FFQs represent the most practical way to assess dietary
habits, in large prospective studies, they are insufficient to accurately evaluate diet compo-
sition. Since follicle depletion is an ongoing process that begins during fetal development
and continues throughout a woman’s reproductive life, assessing the correlation between
diet and reproduction would be easier if the whole nutritional and lifestyle “story” of a
woman is examined instead of just focusing on the situation at the time of conception, by
means of FFQ with all its inherent limitations [22].

Finally, the most important aspect: all these studies used a “one size fits all” principle
in analyzing stratified nutrition intervention, the most used method for giving general
guidelines to groups of individuals who share key characteristics (e.g., “eat at least five
portions of fruit and vegetables daily”) [23]. Of note, such an approach is mostly intended to
limit/avoid deficiencies rather than to improve health [24]. Everyone has its own genome,
proteome, metabolome, microbiome, and exposome, namely the totality of exposure over
the lifetime, which has been demonstrated to affect the genetics, epigenetics, and immune
system in humans [25]. Therefore, the environment must be considered since it influences,
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together with genetic variability, the way dietary components are absorbed, metabolized,
and utilized [26]. For this reason, it is utopian, if not impossible, to determine a dietary
pattern that fits all patients in relation to the treatment of infertility or any other disease.

As for all branches of medicine, a personalized and “precise” approach should be
applied for the nutritional support of infertile patients [27]. Diet should be tailored to the
individual just like the pharmacological and therapeutical treatments for infertility are
adapted to each woman’s characteristics (deep phenotyping, nutrigenetics, microbiome,
etc.) [28,29]. This approach is known as “precision nutrition” [24], and it might be more
effective than general dietary advice [30,31].

1.3. The Emerging Role of Chronic Low-Grade Inflammation in Infertility

The mechanisms linking parental periconceptional diet to reproductive health are
not fully understood. Eventually, several hormonal imbalances are involved, leading to
the dysregulation of both the HPG axis and gonadal steroidogenesis [8]. A further crucial
mechanism by which nutrition may affect reproductive function is the modulatory effect on
inflammatory processes exerted by many nutrients and non-nutrient food components [32].

Inflammation is an innate defense response of the microcirculation occurring after in-
jury or infection in locally blood-supplied tissues, which activates immune cells and releases
various soluble mediators such as chemokines, cytokines, eicosanoids (e.g., prostaglandins),
free radicals, and vasoactive amines by resident cells (tissue macrophages, dendritic cells,
lymphocytes, endothelial cells, fibroblasts, etc.) [33]. A correct inflammatory response
consists of three main steps: (i) acute inflammatory response, namely the production of
inflammatory mediators (e.g., cytokines) by resident cells, infiltration of leukocytes, elim-
ination of pathogen and/or debris; (ii) resolution, namely the removal of inflammatory
stimuli, catabolism of proinflammatory mediators, polymorphonuclear cells death and
efferocytosis and influx of monocyte-derived macrophages; (iii) post-resolution, namely the
influx of adaptive immune cells, re-assembly of tissue-resident macrophages and dendritic
cells, the establishment of adaptive immunity. The occurrence of all these phases is required
to restore the functional homeostasis and the transition from innate (rapid, non-specific
inflammatory response) to adaptive (more rapid and effective response to reinfection)
immunity. However, when an incomplete resolution of the initial acute response occurs, a
chronic inflammatory status is established. This, in turn, leads to the persistence of inflam-
matory triggers, which results in the persistence of inflammatory macrophages, chemokine,
and cytokine synthesis/secretion and in the failure to establish adaptive immunity with a
persistent level of tumor necrosis factor (TNF), interferons, and, most importantly, IL-6 [33].

Inflammation seems crucial in reproduction. Several reproductive processes, such as
ovulation, menstruation, implantation, placentation, and pregnancy, depend on inflamma-
tory pathways [34–37]. Therefore, dysregulation of either the magnitude or the duration of
inflammatory events is strictly involved in the pathophysiology of infertility, and increasing
evidence suggests that different diseases linked to infertility are related to chronic low-
grade inflammation (Figure 1). For instance, patients affected by polycystic ovary syndrome
(PCOS) show increased inflammatory markers, together with increased levels of C-reactive
protein (CRP), IL-18, TNF-α, IL-6, white blood cell count (WBC), monocyte chemoattractant
protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) [38]. Altered gene
expression and genetic variants of TNF-α and IL-6 genes have also been suggested in
PCOS [39,40]. In patients affected by endometriosis, also, elevated levels of inflammatory
cytokines, such as IL-17, IL-6, and TNF-α, are found in the peritoneal fluid [41,42], and
the nuclear factor-kB (NF-kB) seems responsible for the activation of the inflammatory
process leading to the overexpression of p450 aromatase in the endometrium. This, in turn,
increases the local production of estrogens, altering endometrial receptivity [41,42]. NF-kB
also impacts ovarian physiology, altering the local intrafollicular environment and resulting
in a larger production of intracellular reactive oxygen species (ROS) that impair oocyte
competence [43]. Proinflammatory cytokines (IL-6, IL1β, interferon (IFN) α, TNF-α, IFNγ),
as well as anti-inflammatory or regulatory mediators (IL-10, TGFβ), are increased even
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in the endometrium of women affected by adenomyosis, confirming the immunological
changes associated with this disease [44]. Similarly, chronic endometritis (CE) is character-
ized by a low-grade local chronic inflammation with increased local concentrations of IL-1b
and TNF-α [45]. At last, hydrosalpinx involves a significant increase in inflammatory cells
in the endometrium, increased IL-2 concentrations, upregulation of NF-kB, and decreased
expression of leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family [34].
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Patients with a diagnosis of unexplained infertility (UI) or premature ovarian failure
(POF) also show an imbalanced adaptive immunity, with a persistent status of chronic
inflammation [46]. Women with UI often display increased T helper 1/T helper 2 ratios
and T helper 17 levels, both involving a proinflammatory state [47–49]. POF, as well,
is characterized by a disequilibrium between anti-inflammatory and proinflammatory
cytokines [50–52], which suggests that inflammation, aging, and premature ovarian insuffi-
ciency are closely related [52].

Chronic systemic inflammation is typical even across autoimmune diseases (ADs),
often associated with complications of fertility [53–55]. A chronic inflammatory state often
imbalances the immune microenvironment and results in the production of autoantibodies,
possibly triggering ADs [53,55–57]. Among the most common: anti-phospholipid syn-
drome (APs) and systemic lupus erythematosus (SLE) [58], rheumatoid arthritis (RA) [59],
autoimmune thyroid disease (AITD) [60], and celiac disease [55].

The pathway by which chronic low-grade inflammation impairs reproduction still
needs to be fully elucidated. However, chronic inflammation may impair folliculogenesis
via oxidative stress [61]. Indeed, inflammation and oxidative stress are mutually nourishing
each other. In detail, inflammation promotes oxidative stress through increased NF-kB
-p65 phosphorylation, the consequent increased expression of the redox family of NADPH
oxidases (NOX), and the production of superoxide (O2), which is subsequently converted
to hydrogen peroxide (H2O2) from the superoxide dismutase (SOD). ROS species (O2−

and H2O2) then freely move from the organelle to the cytoplasm and activate NF-kB -
p65 phosphorylation, thereby increasing the expression of proinflammatory cytokines,
including TNFα and IL-6 [62], and spreading inflammation.

Chronic low-grade inflammation may impair endometrial receptivity as well. In fact,
inflammatory conditions such as endometriosis, adenomyosis, and CE figure among the
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main endometrial causes of recurrent pregnancy loss (RPL) and impair the chances of a
full-term pregnancy via well-known mechanisms [63,64].

A further mechanism by which inflammation affects reproduction is by altering blood
coagulation. Increased blood coagulation and thrombosis can result from activated im-
mune conditions, including elevated proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8),
aberrant allo-immunity, and autoantibodies [65–67]. These effects occur even in the absence
of genetic variants associated with maternal thrombophilia (e.g., factor XIII and factor
II of coagulation and polymorphism in plasminogen activator inhibitor (PAI-1)). Blood
coagulation is pivotal in embryo-endometrium interaction [68], and coagulation defects
impair implantation [69–72]. As a matter of fact, altered coagulation is often reported
in proinflammatory conditions such as endometriosis [73], PCOS [74], adenomyosis [75],
and ADs [71,76–78], further confirming the interdependent correlation between chronic
low-grade inflammation and blood coagulation.

Increasing evidence suggests that many nutrients and non-nutrient foods and com-
ponents such as phytochemicals [79] modulate inflammation both acutely and in the long
term [32,80]. It is therefore expected that a targeted “anti-inflammatory” nutritional support
for infertile patients may represent a valuable tool to lower the proinflammatory status
often associated with infertility. The putative negative effects exerted by both oxidative
stress and altered blood coagulation on gamete, embryo, and endometrial competence
might be thereby improved.

2. Tailoring the Nutritional Management of the Infertile Patient Using an
“Anti-Inflammatory Approach”
2.1. Nutrigenetic Features Potentially Useful in the Management of Low-Grade Inflammation
among Infertile Patients

The Human Genome Project made it possible to identify genetic variants involved in
nutrient metabolism. This led to the development of nutrigenetics, the branch of science
that investigates how the genotype influences the body’s response to food, nutrients, and
nutrition-related diseases [81]. In the last decade, nutrigenetics rapidly developed and
led to rapid growth in the number of companies offering direct-to-consumer genetically
based testing (DTC-GT). These tests are not only aimed at estimating the risk of developing
clinical conditions such as diabetes, cancer, or cardiovascular disease, but they also suggest
“DNA diets”, namely diets personalized according to an individual’s genotype [82]. “Eat
right for your genotype” is the tagline of most of these marketing strategies [83]. However,
evidence-based advices or guidelines in this field are missing and a diet entirely based on
the genotype lacks scientific support [84]. Genetic tests should be preferentially included
within a functional strategy, correlating the results obtained with the patient’s clinical
characteristics, symptoms, and diet habits [85]. Keeping these limitations in mind, these
tests might be a valuable tool for better understanding everyone’s response to specific
dietary or nutrient patterns. The professionals could benefit from these tests to develop
more precise and effective dietary plans [24,86]. Single nucleotide polymorphisms (SNPs),
which lead to a single base change in the DNA sequence, represent the simplest and most
frequent kind of genetic variation used to implement nutrigenetic tests [83].

Hereafter, we will describe a list of SNPs that might be investigated for the nutritional
management of infertile patients, aiming to outline possible nutritional strategies to manage
low-grade inflammation.

2.1.1. Folates and Choline Metabolism

Folic acid and folate are water-soluble B vitamins, also known as vitamin B9 [87]. The
two terms are often used interchangeably, but the first refers to the synthetic molecule
introduced in supplements or fortified foods, while the second is the form naturally present
in some foods, including green and leafy vegetables, sprouts, some fruits, legumes, seeds,
and offal [88].

Folates are essential for the synthesis of DNA and proteins, especially in tissues
subject to processes of proliferation and differentiation [87]. Choline, sometimes referred
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to as vitamin J, is an amine that acts as a coenzyme in numerous metabolic reactions,
and it is involved in the formation of cell membranes and in the synthesis of cholinic
neurotransmitters, such as acetylcholine and the methyl group donor, betaine [89]. Natural
dietary sources of choline are in both water-soluble and lipid-soluble forms, with high
concentrations in milk, liver, egg yolk, meat, and wheat germ [89].

Folates and choline dietary intake are important in human reproduction, exerting a role
in 1-C metabolism, which deliver methyl groups via the linked folate–methionine cycles for
critical processes such as DNA synthesis, phospholipid, and protein biosynthesis [21,90].
Derangements in 1-C metabolism during the periconceptional period (in women from
around 26 weeks prior to conception) are associated with reproductive failure and impact
on implantation and long-term health [21,22]. The efficacy of the 1-C metabolism relies
strongly on the folic acid cycle, especially on 5-methyl-tetrahydrofolate (5MTHF) as a
methyl donor. MTHFR is the gene that encodes for methylenetetrahydrofolate reductase,
the enzyme that converts folate to its biologically active form, 5-methyltetrahydrofolate [91].
This active form allows the re-methylation of homocysteine into methionine, using vitamin
B12 as a cofactor [92], thus ensuring the correct functioning of the 1-C metabolism. However,
variations in this gene cause reduction or loss of activity of the MTHFR enzyme leading to
global hypomethylation and hyper-homocysteinaemia [21], a sensitive marker of deranged
maternal 1-C metabolism, with important consequences also on fertility [93]. Various
correlations, in fact, exist between high plasma homocysteine and adverse reproductive
outcomes such as RPL [94], pre-eclampsia, placental abruption [95,96], and the prevalence
of PCOS [97]. Moreover, a negative correlation is in place between derangements in 1-
C metabolism, hyperhomocysteinaemia, and oocyte or embryo development, perhaps
via aberrant methylation, but also via oxidative, vascular, apoptotic, and inflammatory
pathways [98–100].

C677T (rs1801133) and A1298C (rs1801131) are the most common MTHFR gene vari-
ants. The carriers of these genotypes show reduced methylenetetrahydrofolate reduc-
tase activity compared to wildtype individuals, resulting in a higher risk of folate defi-
ciency [91,92,101]. C677T, then, is common in Caucasians or Hispanics (about 20–40% are
CT-heterozygous in USA and 8–20% are TT-homozygous in North America, Europe, and
Australia), whereas Blacks are less affected by this genetic variant [91]. A1298Cis mostly
found in North Americans, Europeans, or Australians (7–12%) but less common among
Hispanics and Asians (1–5%) [91]. Since MTHFR isoforms can impair gametogenesis and
embryogenesis, genotyping both male and female partners for these mutations before
conception might be considered, especially in the case of RPL and in gamete donors [102].

Since folate and choline pathways are coupled, folate intake might be modulated by
the genetic variants involved in the metabolism of choline, specifically those relating to
PEMT (rs7946 and rs12325817) and MTHFD1 genes (rs2236225) [103]. SNPs in the former
gene are associated with different risks of organ damage/dysfunction in the case of low
dietary intake [93]. Within this context, identifying subjects with a reduction/loss of gene
function associated with the metabolism of both folate and choline is a priority. In fact, an
appropriate nutritional management based on their SNPs is advisable [101,102,104,105]
(Table 1). For instance, food intervention studies showed that carriers for C677T had higher
folic acid levels and reduced inflammation markers (ILs, TNF-α, and homocysteine levels)
when exposed to high folate diets, especially from vegetables [106]. In patients carrying risk
genotypes for both rs1801133 and rs1801131, instead, a natural folate-enriched diet should
be recommended [107] together with adequate supplementation of the 5-MTHF active
form according to their genetic profile (wildtype 200 µg/day, intermediate 400 µg/die
and risk 800 µg/day) [101] (Table 1), thereby also avoiding the potential adverse effects of
un-metabolized folic acid (UMFA) syndrome, which may occur when large doses of folic
acid are used (5 mg/day) [102].
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Table 1. Practical examples of single nucleotide polymorphisms (SNPs) that can influence a proinflammatory environment in infertile women and the suggested
nutritional intervention.

Genes/
Haplotypes

Nutrition and Health
Pattern Involved SNPs Genotype Differences Nutritional Intervention in Subjects at Risk

rs1801133 C/C
normal enzyme activity

C/T
reduced enzyme

activity

T/T
reduced enzyme activity

MTHFR Folate metabolism

rs1801131 A/A
normal enzyme activity

A/C
reduced enzyme

activity

C/C
reduced enzyme activity

Adequate B vitamin-enriched diets (green raw vegetables, fruits,
shellfish, etc.) and/or adequate supplementation (wildtype

200 µg/day; intermediate 400 µg/day; risk 800 µg/day; [101])
with adequate B6, B12 and choline intake

rs7946 G/G
normal enzyme activity

A/G
higher choline
deficiency risk

A/A
higher choline deficiency risk

PEMT

Choline metabolism rs12325817
G/G

normal choline
metabolism

C/G
higher choline
deficiency risk

G/G
higher choline deficiency risk

MTHFD1 rs2236225
G/G

normal choline
metabolism

A/A
higher choline
deficiency risk

A/G
higher choline deficiency risk

Increased amount of folate rich foods (raw green leafy
vegetables, seeds, fruits) [103]

rs9939609
T/T

lower risk of obesity
and adiposity

A/T
higher risk of obesity

and adiposity

A/A
higher risk obesity and adiposity

FTO

rs1558902
T/T

lower risk of obesity
and adiposity

A/T
intermediate risk of

obesity and adiposity

A/A
higher risk obesity and adiposity

Hypocaloric MedDiet in general with low saturated fats and
limited carbohydrates [108–112]. Higher intake of proteins is

recommended in risk allele carriers [113]

LEP
rs2167270

G/G
lower risk of obesity

and IR

G/A
higher risk of obesity

and IR

A/A
higher risk of obesity and IR

rs7799039
G/G

lower risk of obesity
and IR

G/A
higher risk of obesity

and IR

A/A
higher risk of obesity and IR

Hypo/normo-caloric diet with reduced SFA and carbohydrates
intakes especially from sweets and snacks [114]

ADIPOQ

Obesity, fat mass
and Met-S

associated genes

rs266729

C/C
normal adiponectin
levels, lower risk of

Met-S

C/G
diminished adiponectin

levels, higher Met-S
traits

G/G
diminished adiponectin levels,

higher Met-S traits
Reduced SFA intake [115]

LCT Lactose metabolism rs4988235 T/T
lactase persistence

C/T
intermediate phenotype

C/C
lactose intolerance

Diet low in lactose (<12 g) use of fermented dairy products
and/or adequate lactase [116] and probiotic supplementation

[117]
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Table 1. Cont.

Genes/
Haplotypes

Nutrition and Health
Pattern Involved SNPs Genotype Differences Nutritional Intervention in Subjects at Risk

rs174537 C/C
normal biosynthesis

C/T
reduced biosynthesis

T/T
impaired biosynthesis

FADS1
Long-fatty acids

synthesis rs174547

T/T
normal D5D and D6D
fatty acid desaturase

enzyme activity

T/C
decreased D5D and

D6D fatty acid
desaturase enzyme

activity

C/C
decreased D5D and D6D fatty acid

desaturase enzyme activity

Adequate apport of foods containing omega-3 PUFAs
and/or adequate omega-3 supplementation [118]

PPAR-G rs1801282
G/G

reduced risk of T2DM
and IR

G/C
intermediate risk of

T2DM and IR

C/C
Increased risk of T2DM and IR

rs12255372
G/G

lower risk of T2DM and
gestational diabetes

G/T
higher risk of T2DM

and gestational diabetes

T/T
higher risk of T2DM and gestational

diabetes
TCF7L2

rs7903146 C/C
normal insulin response

C/T
intermediate insulin

response

T/T
impaired insulin response

KCNJ11

Glucose
metabolism/diabetes

or insulin
resistance risk

rs5219

E/E
normal glucose

tolerance, lower risk of
T2DM and IR

E/K
intermediate risk of

T2DM and IR

K/K
altered glucose tolerance, higher risk of

T2DM and IR

According to the combination of genetic risk: low glycemic
index diet with the characteristics of the MedDiet so

adequate fiber intake (30 g/day), limitation of refined
carbohydrates and replacement of animal fats with

vegetable ones, especially MUFAs (extra virgin olive oil) but
also PUFAs (oily fruit). Possibly support with omega3

supplementation.
[119–125]

CYP1A2 Caffeine metabolism rs762551 A/A
fast metabolizer

A/C
slow metabolizer

C/C
slow metabolizer

Caffeine intake <100 mg/day
[126]

HLA
Celiac disease

predisposition and
gluten sensitivity

rs2395182
rs7775228
rs2187668
rs4639334
rs7454108
rs4713586

DQ2/DQ8-negative

Half DQ2-positive
HLA-DQA1*0501 or

0505 or
HLA-DQB1*0201 or

0202

DQ2-positive
HLA-DQA1*0501

or*0505
and

HLA-DQB1*0201
or *0202

DQ8-positive
HLA-DQA1*03

and
HLA-DQB1*0302

Gluten-reduced diet (from 3 g up to 13 g) [127] or gluten-free
diet using naturally GF products (e.g., rice, quinoa,

amaranth, buckwheat)

Methylenetetrahydrofolate Reductase (MTHFR); Phosphatidylethanolamine N-Methyltransferase (PEMT); methylenetetrahydrofolate dehydrogenase 1 (MTHFD1); Fat Mass and
Obesity-Associated (FTO); Leptin (LEP); Adiponectin (ADIPOQ); Lactase (LCT); Fatty Acid Desaturase 1 (FADS 1); Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ);
Transcription Factor 7 Like 2 (TCF7L2); Potassium Inwardly Rectifying Channel Subfamily J Member 11 (KCNJ11); Cytochrome P450 1A2 (CYP1A2); Human Leukocyte Antigen (HLA);
Mediterranean Diet (MedDiet); Insulin Resistance (IR); Metabolic Syndrome (Met-S); Type 2 Diabetes Mellitus (T2DM); Saturated Fatty Acids (SFA); Monounsaturated Fatty Acids
(MUFA); Polyunsaturated Fatty Acids (PUFA);Gluten-Free (GF).
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In addition, the adherence to MedDiet was associated with reduced homocysteine
levels in carriers of risk alleles, both in homozygosity and heterozygosity, but not in wild
types [128]. Furthermore, carriers of MTHFR mutations seem to benefit from an increased
intake of choline, as carriers of PEMT and MTHFD1 risk genotypes benefit from the
increased amount of folate-rich foods [103,105,129].

Regarding supplementation, the B vitamin complex rather than only folic acid might
be appropriate in specific cases (e.g., vegetarians or vegans) since vitamin B12 together
with B6 act as substrates or cofactors in folate–methionine cycles. As a consequence, when
intracellular B12 levels are low, the “methyl-folate trap” may occur, leading to a decline in
intracellular folates [130].

In conclusion, since dietary inadequacies in B vitamins represent a growing problem
in both developed and developing countries [131], testing MTHFR polymorphisms together
with vitamin B status in the preconception period may be useful to highlight micronutrients
deficiencies and to plan an adequate B vitamin-enriched diet (green raw vegetables, fruits,
shellfish, etc.). Finally, it should always be considered that unhealthy habits such as
smoking and excessive coffee and alcohol consumption deeply affect these pathways [132].

2.1.2. Celiac Disease and Gluten Sensitivity

Celiac disease (CD) is a chronic inflammatory disease that affects approximately 1%
of the world population [133]. It is characterized by gastrointestinal features, such as
abdominal pain and distension, bloating, diarrhea, malabsorption, vomiting, and non-
gastrointestinal features, such as chronic fatigue, iron deficiency anemia, dermatitis her-
petiformis [134] after the ingestion of gliadin, a gluten protein, mainly present in wheat,
but in barley and rye as well [135]. The causes of this disease are both genetic and envi-
ronmental [136]. Genetic susceptibility is mainly imputable to human leukocyte antigen
(HLA) haplotype DQ2 or DQ8, identified by molecular genetic testing of HLA-DQA1
and HLA-DQB1. Approximately 95% of patients with CD test positive for at least one of
them [137], but their prevalence in the general population ranges from 30% to 40%, with
only about 3% of carriers actually developing CD. In other terms, the absence of HLA-
DQA1 and HLA-DQB1 excludes CD, while their presence simply defines an individual
as susceptible [138]. Additional factors then play a crucial role in CD development (e.g.,
stressful events such as a loss a pregnancy, or an infection) [139].

In the case of CD, the ingestion of gluten triggers inflammation at the intestinal bar-
rier and leads to the release of proinflammatory cytokines and autoantibodies, thereby
inducing progressive atrophy of the intestinal villi, which causes nutrients malabsorp-
tion [140].Indeed, to establish a CD diagnosis beyond DQ2/DQ8 positivity, a positive
celiac serologic test for tissue transglutaminase (tTG) IgA, anti-deamidated gliadin-related
peptide IgA, and IgG and endomysial(EMA) antibody IgA together with specific histologic
findings on small-bowel biopsy (partial or complete villous atrophy) are required [140].

CD has been associated with type 1 diabetes in children and adolescents, whereas
different autoimmune endocrine diseases, such ashypothyroidism, hypoparathyroidism,
hypopituitarism, or ovarian failure, were found to co-exist in adults [141]. Recent publica-
tions support that undiagnosed CD has a potentially negative impact on female reproduc-
tion [133,142–144] due to gynecological and obstetric disorders (e.g., delayed menarche,
early menopause, amenorrhea) and/or adverse pregnancy outcomes (e.g., RPL, intrauterine
growth restriction, low birth weight, and preterm deliveries) [143,145,146].

Specifically, CD may affect fertility through the malabsorption of micronutrients such
as folic acid, fat-soluble vitamins, iron, zinc, and vitamin B12 [143], in turn leading to
hyperhomocysteinemia and increasing the risk of thrombosis and coagulation alterations
in general [147]. Other hypotheses involve immune-mediated mechanisms causing tissue
damage and obstetric failures through altered placental function [55,144,145]. Endometrial
inflammation during implantation was also suggested to be caused by a gliadin-linked
aberrant expression of angiogenic and proinflammatory pathways [143].
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Based on these data, when a patient with UI or RPL reports gastrointestinal and
non-gastrointestinal issues, CD should be investigated [133,143,146–151] via a complete
or partial screening (i.e., serological markers and/or genotyping for six SNPs in the HLA
genes) (rs2187668, rs4713586, rs4639334, rs7454108, rs2395182, rs7775228) [133,143,145].
Nonetheless, intestinal and/or extraintestinal symptoms can occur in some patients even
after the consumption of gluten-containing cereals, although both EMA and tTG antibodies
are negative. There is, in fact, a condition called non-celiac gluten sensitivity (NCGS),
whose prevalence ranges from 0.5% to 15% [152], that requires proper nutritional manage-
ment [153] (Table 1).

In summary, the genetic predisposition for CD, along with an accurate anamnesis
and serological tests, may unveil undiagnosed celiac patients or patients who may benefit
from a gluten-free or gluten-reduced diet (3 g–13 g) [127] with a positive effect on their
proinflammatory status and ultimately reproductive outcomes [141,142].

2.1.3. BMI and Fat Mass

The impact of overweight and obesity on reproduction is mainly due to endocrine
mechanisms that interfere with both ovarian and endometrial functions via altered in-
flammatory responses. The adipose tissue is an endocrine organ that secretes numerous
bioactive cytokines, named adipokines, playing key roles in the regulation of immune
response, glucose and lipid metabolism, and reproduction [154]. They include leptin,
adiponectin, resistin, visfatin, omentin, and other non-adipose-specific cytokines such
as IL-6, IL-1β, and TNFα. These molecules seem strongly associated with both insulin
resistance (IR) and type 2 diabetes mellitus (T2DM), two well-known proinflammatory
diseases [155,156].

The impact of obesity on ovarian function, granulosa cells, cumulus cells, and oocyte
quality is subject to an intense investigation. Obesity is associated with lipid accumulation
in non-adipose tissue cells, which increases oxidative stress and endoplasmic reticulum
stress response, both phenomena tightly linked with systemic inflammation [62,157]. Like-
wise, the negative impact of obesity on endometrial receptivity has become evident: obese
women show an increased risk of miscarriage [158–162] even when euploid embryos are
transferredin utero [163–165]. However, the sole evaluation of BMI may lead to misclas-
sification. Indeed, the concept of normal-weight obesity (NWO) has been outlined for
normal-weight women with a proportion of fat mass (FM) greater than 30% [166–169].
Given the role of adipose tissue on inflammation, it is important to estimate FM in in-
fertile patients through methods such as dual-energy X-ray absorptiometry (DEXA) and
bioimpedance analysis (BIA) or using anthropometric measures in validated formulas to
calculate the adipose mass [169,170].

Genome-wide association studies (GWAS) have identified several genetic variants
associated with a higher susceptibility to obesity [171] when the subject is exposed to an
obesogenic environment [10,172]. To date, over 300 polymorphisms have been identified.
The main gene associated with FM and obesity is FTO, which regulates neurological
and hormonal pathways, as reported in both mice and humans, associated with appetite
and body energy consumption [173]. The most representative SNP in FTO is rs9939609
(T>A) which has been linked with BMI, T2DM, gestational diabetes (GDM), and eating
behavior [174–178].

Based on the current evidence, in the case of FTO risk genotypes, hypocaloric Med-
Diets with low saturated fats and limited carbohydrates should be advised [108–112].
Especially patients carrying the risk alleles for rs1558902 may benefit from a high protein
diet to lose weight [113]. Recently, the effects of the interaction between nutrigenetic vari-
ants and diet/lifestyle intervention on the mid-term changes in the anthropometric and
clinical parameters of overweight or obese subjects affected by T2DM or dysglycemia have
been evaluated [179]. This study showed that subject carriers of the A allele in FTO lost
less weight and had a lower BMI decrease from baseline to 12 months than TT carriers,
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supporting the interaction between FTO and diet/lifestyle intervention in the regulation of
body weight.

Further obesity-related genes include MC4R, peroxisome proliferator-activated recep-
tor gamma (PPAR-G), and both adipokine-encoding genes (LEP and ADIPOQ) [180–182].
Carriers of LEP rs2167270 and rs7799039 show a higher risk of obesity and insulinresistance
and should reduce the intake of carbohydrates, especially from sweets and snacks [114].
SNPs in the ADIPOQ gene encoding for adiponectin are associated with lower serological
levels of the hormone, higher BMI, and elevated FM. Low SFA intake is recommended for
LEP (rs2167270, rs7799039) and ADIPOQ (rs266729) risk genotypes [114,115]. Evidence
suggests that, in patients carrying risk alleles, diets with an increased amount of both
MUFAs and PUFAs, may reduce the risk of developing obesity [183–185] (Table 1).

2.1.4. Milk, Dairy Products, and Lactose Intolerance

The main concern about dairy consumption in infertile patients is the contamination
by steroid hormones, growth factors, pesticides, and chemical substances, often found
in these products. All those substances might affect female endocrine functions and
folliculogenesis [186]. Moreover, dairy consumption may increase the Homeostatic Model
Assessment for Insulin Resistance (HOMA-IR) value, concurring with the risk of insulin
resistance and PCOS [186]. However, the kind of product seems relevant. Indeed, the
consumption of full-fat dairy products or fermented products, especially when added
with probiotics and vitamin D, such as yogurt and kefir, seem beneficial in women with
PCOS since they act on both tissue insulin sensitivity and glucose tolerance [186].On the
contrary, skimmed milk intake seems associated with acne, a sign of PCOS, perhaps because
androgen precursors are present in milk [186]. On the contrary, a recent meta-analysis
suggests that a long-lasting consumption of low-fat dairy products is beneficial for tissue
insulin sensitivity [187].

Given the contrasting results on a putative relationship between milk, dairy products,
and fertility [16,17,186], there is no indication to remove them from the diet of an infertile
patient [186,188]. Part of the discrepancies reported in the literature could depend on lac-
tose digestion and absorption, which are highly variable across individuals. This variability
depends primarily on genetics; however, conditions that affect the integrity of small-bowel
mucosa might be involved as well (see Section 4) [189]. Lactose digestion and absorption
depend on the enzyme lactase (encoded by the gene LCT) that hydrolyzes lactose into
galactose and glucose in the small intestine [189]. This enzyme is essential during the first
years of life, whereas its efficiency lowers with age [190]. In fact, lactose digestion in adult-
hood is the result of a status of tolerance defined “lactose persistence” [191]. Association
studies demonstrated that lactose intolerance is due to hypolactasia with a genetic ori-
gin [190,192]: subjects at risk (CC genotype for−13910C>T (rs4988235)) are found mainly in
the Caucasian Europeans [193,194]. TT genotype carriers, instead, show lactase persistence,
while heterozygous CT genotype subjects show an intermediate condition and may present
symptoms, as well [195]. The assessment of this variant might be useful from a nutritional
standpoint. An LCT-deficient individual cannot digest lactose, and undigested lactose
coming in contact with the intestinal microbiota undergoes fermentation causing visceral
hypersensitivity, bloating, meteorism, and diarrhea [192], often associated with anxiety
and the irritable bowel syndrome (IBS) [189]. The consequence is a proinflammatory status
of the intestine and dysbiosis [196,197]. In these subjects, a diet low in lactose is strongly
recommended. However, since this is not an allergy, a completely lactose-free diet is not
required because patients with lactose intolerance often tolerate up to 12 g of lactose as a
single dose with no or just minor symptoms [198]. Some forms of lactose maldigestion also
improve following a targeted use of probiotics such as Lactobacillus spp., Bifidobacterium
longum, or Bifidobacterium animalis [117,199] or lactase supplementation (3000 to 6000 IU of
beta-gal [116] (Table 1). At last, genotype analysis is valuable for the differential diagnosis
of primary and secondary hypolactasia to identify correct treatment through personal-
ized dietary plans [200]. Importantly, commonly used tests such as the hydrogen breath
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tests (HBTs), i.e., the gold standard to measure the effective functionality of lactase in an
individual [201], do not allow a differential diagnosis [189].

2.1.5. Fatty Acids Metabolism

Among nutrients with inflammatory properties, PUFAs are probably the most impor-
tant. PUFAs are fundamental building blocks of all cells, and their organization is essential
for regulating cell functions [202]. Within the cell, membrane-derived fatty acids and
their metabolites can regulate the antioxidant signaling pathway and modulate inflamma-
tory processes, mainly via the inhibition of NF-kB and PPAR-alpha/gamma transcription
factor pathways [203]. Omega-3 and omega-6 fatty acids are major PUFAs and are be-
lieved to be critical in the regulation of inflammatory and immune responses through
pro- and anti-inflammatory activities, respectively. Omega-6 fatty acids and their deriva-
tives (mainly arachidonic acid) are precursors of proinflammatory eicosanoids, whereas
omega-3 and its derivatives (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic
acid) are precursors of anti-inflammatory eicosanoids [204]. Moreover, several lipid me-
diators are biosynthesized from essential PUFAs (resolvins, protectins, and maresins).
These molecules, known as specialized pro-resolving mediators (SPMs) [205], are involved
in inflammation resolution [206]. In this view, they represent a novel promising thera-
peutic approach for PCOS [207,208], endometriosis [209], and some pregnancy-related
pathologies [210]. Indeed, the pro-resolution strategy seems more promising than con-
ventional anti-inflammatory approaches, at least for some conditions [211–214]. Different
reports in the literature show a positive correlation between omega-3 PUFA and both
spontaneous conceptions and IVF outcomes [17]. However, others failed to unveil such
a correlation [215]. These contrasting results are imputable to different nutrient exposure
and variable capacity to utilize/metabolize omega-3 among individuals. In this regard, the
ratio between omega-3 and omega-6 amounts must be controlled since omega-6 PUFAs
compete for the same enzymes involved in the omega-3 PUFAs pathway, making such
a ratio crucial for the inflammatory balance [216]. The recommended value is 4:1 or less.
Nonetheless, disproportionate amounts of omega-6 PUFAs are found in today’s Western
diets leading to 10:1–50:1 ratio [216].

Not only the omega3-omega6 ratio can alter the inflammatory balance, but also genetic
variants of the fatty acid desaturate genes (FADS1, FADS2, FADS3), as individuals carrying
specific SNPs are more prone to a chronic proinflammatory status [217–220]. For exam-
ple, GG carriers in rs174537 (FADS1) showed higher arachinoic acid, eicosadienoic acid
(EDA), eicosapentanoic acid (EPA), low-density lipoproteins (LDL), and total cholesterol
levels determining a higher proinflammatory status [218], and significant associations
were also found for another FADS1 polymorphism (rs174547) and decreased enzyme ac-
tivity [221].Genotyping for these variants can help identify patients at risk for a chronic
proinflammatory condition since the physiological resolution path is clearly underpowered
in these individuals. However, an adequate amount of omega-3 PUFAs may compensate
for an impaired enzyme function in individuals at risk, suggesting the importance of
both tailored dietary plans [220,221] and tailored omega-3-PUFA supplementation [118] in
individuals carrying risk alleles, especially if vegetarian [220,222,223] (Table 1).

2.1.6. Glucose Metabolism

An unbalanced intake of macronutrients such as carbohydrates promotes both in-
flammation and oxidative stress. This occurs because simple carbohydrates (e.g., fructose
and glucose) involve (i) de novo synthesis of free fatty acids (FFA) in the liver, causing
lipotoxicity [224] and (ii) hyperinsulinemia, which leads to systemic inflammation [225]
by stimulating NF-kB nuclear translocation, the extracellular release of proinflammatory
mediators from macrophages and ultimately systemic insulin resistance [226]. In other
terms, both lipotoxicity and hyperinsulinemia trigger inflammatory processes and increase
ROS formation [155,227,228]. Increased intake of carbohydrates, in fact, has been associated
with conditions such as obesity, metabolic syndrome, diabetes, leaky gut syndrome, and
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Alzheimer’s [229–232]. A large body of evidence supports the role of carbohydrates in fertil-
ity as well [233], and dietary adjustments to reduce insulin secretion represent an intriguing
non-pharmacological perspective to counteract infertility. It has been demonstrated that,
while LH and FSH are the primary regulators of late folliculogenesis, insulin can also
modulate this process. Hyperinsulinemia, in fact, exerts both direct and indirect effects on
folliculogenesis and intraovarian gonadotropin-driven granulosa and thecal cell steroidoge-
nesis [234]. Moreover, high insulin levels and insulin resistance constitute an unfavorable
biochemical environment in the ovaries [234,235]. Thus, reducing insulin circulating levels
may reduce hormonal imbalance and improve ovarian function [236]. Insulin may also
play homeostatic roles inenergy metabolism in the endometrium, with hyperinsulinemia
contributing to poor implantation rates and increased miscarriage rates. The proposed
mechanisms are (i) increase in androgens, plasminogen activator inhibitor, and uterine
vascular resistance, (ii) decrease in glycodelin, insulin-like growth factor binding protein 1
(IGFBP 1), and uterus vascularity [237–239].

Genetic variants related to glucose metabolism were detected mainly in relation to
T2DM. Several studies highlighted the complex polygenic nature of T2DM, where a plethora
of genetic loci seems to increase the risk of its development by acting on insulin secretion
or by reducing its action [239]. One of the most studied genes is peroxisome proliferator-
activated receptor gamma (PPAR-G), which is part of the nuclear receptor subfamily of
transcription factors involved in various biological processes that include the differentiation
of adipocytes, lipogenesis, and glucose homeostasis [119,240]. In fact, some PPAR-G agonist
drugs are used in the treatment of diabetes [241]. Among the SNPs analyzed, Pro12Ala
(rs1801282) is the most relevant, whose minor allele is G [240]. As evidenced by a recent
meta-analysis, carriers of GG genotype seem less subject to T2DM [240]. The protective
role of this SNP seems confirmed in insulin resistance, and screening for this SNP would
identify individuals exposed to lower risk, thus guiding the professional in establishing the
daily percentages of carbohydrates in the diet. Furthermore, both GG and GC genotypes
are subject to a greater weight loss than CC, especially when they consume a diet rich
in MUFAs, thus emphasizing the importance of the type of fatty acids chosen for them
(e.g., extra virgin olive oil) [119,120]. Another relevant gene is transcription factor 7-like 2
(TCF7L2), which encodes for a transcription factor central in the WNT signaling pathway.
This transcription factor covers, among other functions, an essential role in diabetes by
mediating the expression of glucagon-like peptide 1 (GLP-1) [242,243]. TCF7L2 variants,
including mainly rs12255372 and rs7903146, predict the prevalence of T2DM in high-risk
individuals, suggesting putative synergistic effects between different risk factors [244]. TT
carriers for rs12255372 were associated with increased T2DM prevalence, especially in the
case of diets with high glycemic index and load, thus suggesting low carb and low GI
diets in patients at risk [121]. Another TCF7L2 variant (rs7903146) is associated with higher
blood sugar levels and impaired insulin response [245]. Subjects at risk have significant
benefits from following Mediterranean diets, characterized by high fiber intake, and should
be preferred in TCF7L2 risk allele carriers [122,246]. T2DM-related gene variants have also
been associated with GDM susceptibility, which represents the most common metabolic
disorder of pregnancy [177,178]. In this contest, Franzago et al. showed an increased risk
of GDM in women carriers of the TT genotype of the TCF7L2 rs7903146 [177,178], as well
as an association between nutrigenetic variants in PPARG2, APOA5, MC4R, LDLR, and
FTO genes and lipid parameters at the third trimester of pregnancy. Since women with
GDM are at greater risk of cardiovascular disease (CVD), T2DM and metabolic syndrome
later in life, these findings could allow the development of an easy tool for personalized
intervention strategies, including routine anthropometric and biochemical parameters,
dietary assessments, and genetic make-up [247].

Another relevant gene involved in insulin response is potassium inwardly rectifying
channel subfamily J member 11 (KCNJ11). KATP channels for potassium, which are ex-
pressed in pancreatic β-cells with a role in insulin secretion, are altered in case of mutations
in this gene, thereby leading to hyperglycemia [248]. A missense mutation, rs5219 C/T,
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was associated with an increased risk of T2DM in Caucasian and East Asian populations,
and the effect of this SNP is amplified by high BMI [248,249].

In summary, genotyping for PPAR-G, TCF7L2 and KCNJ11 might help clinicians estab-
lish personalized nutritional management in subjects who must undertake a low-glycemic-
index diet with the characteristics of the MedDiet with adequate fiber intake (30 g/day),
limitation of refined carbohydrates, and replacement of animal fats with vegetable ones,
especially MUFAs and PUFAs (e.g., oily fruit) [119–125] (Table 1). Genotyping would also
allow calculating the risk of T2DM later in life and the risk for gestational diabetes, whose
short and long-term consequences for the mother, the fetus, and the offspring are not
negligible [250]. Of course, again, the interaction between genetics and the environment is
crucial [251]. For nutritional strategies aimed at managing blood glucose homeostasis refer
to Section 5.3.

2.1.7. Caffeine’s Metabolism

Caffeine (1,3,7-trimethylxanthine) is the worldwide most consumed stimulant, whose
main sources are coffee, tea, soft drinks, and chocolate [252]. Its consumption may mod-
ulate embryo implantation and early post-implantation behavior [252–254] and decrease
live birth rates in both spontaneous conception and IVF [255]. Additionally, several stud-
ies linked caffeine intake to a longer time of pregnancy with a possible dose–response
effect [256–259] and increased risk for fetal death and stillbirth [253]. At present, there is
little evidence to support the detrimental effect of mild–moderate caffeine consumption
on fertility and IVF outcomes [257,260]; therefore, the complete abstinence before or dur-
ing pregnancy cannot be supported [258]. However, coffee and energy drinks containing
caffeine can induce neural and vascular changes with pro-aggregatory effects and a con-
sequently higher risk of thrombosis [261,262]. However, it is complex to assess a putative
inflammatory response to caffeine. Data suggest a predominant anti-inflammatory action
of coffee probably due to components other than caffeine, such as trigonelin and chloro-
genic acid [263]. The current recommendation for pregnant women or women attempting
to conceive is to limit caffeine intake to 200 mg/day, i.e., 1–2 cups [255,258,260]. These
recommendations, though, represent a general guideline for the population that does not
consider an individual’s genotype.

A total of 95% of caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) in the
liver, which exhibits great individual enzyme variability [264]. Numerous studies showed
that different individuals have different degradation capacities and that the risk associated
with caffeine consumption, for example, myocardial infarction, varies according to the
enzymatic capacity dictated by the genetic profile [265]. A missense mutation of this
gene (rs762551) reduces its enzymatic activity, and consequently, carriers of the C-allele,
both in homozygosity and heterozygosity, are considered “slow metabolizers”. In fact,
in these subjects, blood pressure increases significantly with caffeine consumption [264].
Instead, AA genotype carriers are “fast metabolizers”, which makes them less sensitive to
this molecule. Given the known role of variants in the CYP1A2 gene in affecting caffeine
metabolism, the evaluation of circulating caffeine levels and its metabolites (e.g., serum
paraxanthine) together with targeted genotyping might be important [260]. In subjects at
risk, classified as “slow metabolizers”, especially in homozygosity, the recommendation
not to exceed 200 mg per day may not be sufficient, and in dietary counseling, genotyping
maybe be useful to sensitize a patient to further reduce the intake of caffeine to 100 mg per
day, especially during ART treatments and in the first phase of pregnancy [126] (Table 1).

3. Nutrigenomics and the Management of Low-Grade Inflammation in
Infertile Patients

Nutrients should not be considered a mere source of energy. They also contribute
to the regulation of gene expression, either directly or via reversible and heritable epi-
genetic changes [81]. The branch studying the influence of nutrients on DNA is called
nutrigenomics [26]. In general, there are three different mechanisms of action through
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which epigenetic changes occur [266]. These include DNA methylation (gene silencing),
histone modifications, mainly through acetylation (gene activation via increased access
to chromatin), and post-transcriptional modifications through RNA-dependent mech-
anisms [266,267]. Mounting evidence suggests that epigenetic alterations may impact
inflammatory processes, thus contributing to the development of pathologies such as dia-
betes, cardiovascular diseases, cancer, and neurological disorders [268]. Of note, epigenetic
alterations often occur in infertile patients [269–271]. Since nutrients are one of the most
important epigenetic modulators, it would be interesting to understand the relative role of
each nutrient in potential epigenetic alterations. The following section will be dedicated to
some key foods and their bioactive compounds, with proven epigenetic effects on inflam-
matory pathways and, therefore, useful in the nutritional management of infertile patients
for lowering their proinflammatory status

3.1. Folates

Folates represent the most evident example of how diet can modulate gene expression
since methylation is a key mechanism of epigenetic and imprinting processes [22,272].
Indeed, vitamin B9 is the key methyl donor, able to trigger a cascade of events such as DNA
and histone methylation that activate or repress specific genes [267,273]. Methylation errors,
deriving from either hypo- or hypermethylation, are due to folate deficiency and have been
largely associated with major health problems such as cancer, metabolic, autoimmune, and
mental disorders [270,272]. However, the most investigated area in relation to folate intake
is early embryonic development [267]. Low folate intake during the perinatal period has
been associated with permanent hypomethylation and incorrect gene expression, which
are transmitted to future generations [93,267]. Impaired methylation may also impact
reproductive health. Several studies have shown that gamete quality, ovulation, corpus
luteum formation, and embryo development might all be impaired [270]. The negative
effects are mostly attributable to oxidative stress [270]. Methylation and oxidative stress
are linked by the 1-C cycle, which stimulates the synthesis of glutathione and recycles
homocysteine [270]. Glutathione, a powerful antioxidant, protects gametes from reactive
oxygen species (ROS) [270]. Folate and all B vitamins involved are direct supporters of
the 1-C cycle and contribute to maintaining low oxidative stress, thus avoiding epigenetic
alterations [270]. Furthermore, folate deficiency is directly related to increased levels of
inflammatory markers such as IL-β, IL-6, and TNF-α [274]. In some studies, high doses
of folate have been used for their anti-inflammation properties [275]. A correct intake
of folate also reduces the risk of obesity in genetically predisposed individuals, and the
risk of altered glucose metabolism and hypertension, via epigenetic pathways [276–278].
Therefore, adequate amounts of B vitamins, mainly from foods rich in folate and vita-
min B12, are essential to guarantee correct epigenetic pathways through the synthesis of
methionine and S-adenosyl methionine (SAM). These vitamins are important, especially
during ART in advanced reproductive age, since both these techniques and aging may
exacerbate methylation defects [270]. In general, due to dietary inadequacies of B vitamins
in both developed and developing countries [131], supplementation is mandatory prior to
conception and during pregnancy to prevent defective methylation in key genes [21].

3.2. Dietary Fatty Acids

Fatty acids exert different epigenetic functions depending on their category [279].
Saturated fatty acids (SFA) display well-known harmful effects through modulation of
DNA methylation and histone acetylation, ultimately leading to inflammation, lipotoxi-
city, and metabolic alterations [279]. Indeed, diets rich in SFA, such as the Western diet,
contributed to a higher prevalence of obesity, dyslipidemia, diabetes, and cancer [279].
Nevertheless, not all SFA are associated with negative consequences. This is the case of
short-chain fatty acids (SCFA), deriving from intestinal microbial fermentation of indi-
gestible foods, which were linked to positive outcomes on carcinogenesis and inflammation
via epigenetic pathways [280]. Sodium butyrate, for example, arrests cell proliferation and
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promotes apoptosis by inhibiting HDAC activity and inducing histone hyperacetylation
of specific genes involved in colon carcinogenesis [280]. The positive role of butyrate
was also confirmed on metabolic biomarkers of inflammation by mediating transcription
factors such as NF-kB and inhibition of HDAC [281]. Several clinical trials reported lower
plasma C-reactive protein (CRP) levels and decreased inflammatory markers (e.g., intestinal
fecal calprotectin) when consuming fiber-enriched diets associated with higher colonic
production [281]. Dietary trans-fatty acids (TFAs), then normally present in industrial
foods (e.g., margarine, crackers, bakery products, and deep-fried foods) [282], also exert
proinflammatory properties [283]. If these products are consumed on a regular basis, they
may result in a >3-fold increase in plasma concentrations of CRP and significantly increased
concentrations of TNFα, chemokine (C-C motif) ligand 2 (CCL2), IL-1β, and IL-6 [284–287].
Furthermore, TFA consumption is associated with a higher risk of ovulatory infertility,
endometriosis [17], and insulin resistance [234,288]. In addition, TFAs seem to impact
global DNA methylation [289] as well as the regulation of HDL plasma lipids [279].

Even unsaturated fatty acids, such as PUFAs, may act on DNA epigenetic modu-
lation [279]. Indeed, long-chain fatty acids such as omega-3 and omega-6 are rich in
phospholipids that figure among the major methyl group acceptors in the 1-C metabolic
pathway [290]. However, they seem to induce distinct epigenetic changes in adipose tissue
accumulation, obesity, FA uptake and transportation, insulin resistance, and inflamma-
tion. PUFAs overfeeding changes the methylation of 1797 genes in human adipose tissue,
whereas SFA overfeeding increases the methylation of 125 genes, with just 47 genes modi-
fied by both regimens [291]. Omega-3 lipids exert epigenetic modulatory effects on gene
expression favoring an anti-inflammatory status, leading to a significant upregulation of
the genes encoding for the PPAR-G and a downregulation of the genes encoding for the
low-density lipoprotein (LDL) receptor and interleukin-1 [292]. Omega-3 PUFAs modulate
inflammation even through enhanced expression of DNA methyltransferases (DNMTs)
and increased LKB1 tumor suppressor gene expression, in turn stimulating LKB1 activity
with a consequent inhibition of glycolytic enzymes and targeting rapamycin (mTOR) sig-
naling [279,293]. Omega-6 lipids, instead, promote a proinflammatory status, affecting the
concentrations of proinflammatory cytokines through DNA methylation of TNFα [294].

MUFAs induce hypomethylation, with positive consequences on inflammation [279].
OA is undoubtedly the most important MUFA, whose consumption ameliorates lipid and
inflammatory profiles and reduces the risk of cardiovascular, metabolic, and neurodegen-
erative diseases even via epigenetic mechanisms [279,295–297]. Its main dietary source
is extra virgin olive oil (EVOO), key in the MedDiet. Besides OA, EVOO contains other
valuable components such as phenolics, phytosterols, tocopherols, squalene, vitamins E
and K, all exerting both anti-inflammatory and antioxidant effects, modulating glucose
metabolism, and moderating endothelial dysfunction [297–300]. The synergy between its
components makes it very efficient in modulating risk factors for various diseases [297].
Nutrigenomic studies on EVOO showed that its positive properties are exerted by act-
ing on both the transcriptome and the miRNome [297]. The consumption of EVOO was
linked to the downregulation of the CD40/CD40 ligand, a member of the TNF-family
involved in immune responses, and to a reduced expression of proinflammatory cytokines
with an impact on inflammation-related genes, such as IFN-y, IL-7R, and IL8RA [297].
EVOO decreases plasma LDL oxidation and modulates blood pressure by acting on the
renin-angiotensin-aldosterone system (RAAS). Post-prandial studies investigating mRNA
expression report a positive effect on disorders such as the metabolic syndrome [297].

These data overall confirm the importance of diet in the regulation of cellular metabolism
and suggest lowering the intake of SFA and TFA while increasing omega-3 PUFAs and
MUFAs so to decrease both inflammation and oxidative stress in infertile patients via
epigenetic mechanisms.
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3.3. Spices: Turmeric, Ginger, and Chili Pepper

For centuries, plants, including spices, have been used to treat several chronic dis-
eases [301]. In fact, roots, leaves, seeds, or berries, generally called spices, have healthy
properties [301]. The nutraceuticals derived from spices have been largely studied in the
prevention and treatment of inflammatory states [301]. Hereafter we focused on turmeric,
ginger, and chili pepper, the main spices with proven antioxidant and anti-inflammatory
properties, which could play a crucial role in ameliorating the inflammatory process in
infertile patients [302–304].

3.3.1. Turmeric

Turmeric or curcuma longa is part of the Zingiberacee family and is a plant whose roots
are rich in molecules with nutraceutical properties, including curcumin [302]. Curcumin
is a polyphenolic compound with anti-inflammatory, antioxidant, and anti-lipidemic ac-
tivities. Curcumin is an epigenetic inactivator for genes involved in neurodegenerative
and chronic diseases, including cancer [305]. The epigenetic mechanisms are related to
DNA methylation, histone modification, and miRNA modulation, but also to the activa-
tion of transcription factors, cytokines, chemokines, and the inhibition of angiogenesis
through apoptotic mechanisms [306]. This pleiotropic molecule is also involved in inflam-
matory processes, stimulating an anti-inflammatory response in both acute and chronic
phases [305]. These properties make the compound a candidate for anti-inflammatory
treatments [307]. In Middle Eastern cuisine, curcumin is widely used in cooking, combined
with pepper, which increases its absorption. Scientific evidence about its properties has
helped export this spice to other countries as well [302].

3.3.2. Ginger

Zingiber officinale, commonly called ginger, is also a herbaceous plant belonging to
the Zingiberacee family whose rhizome possesses essential oils with antioxidant, anti-
inflammatory, antimicrobial, and anti-glycant properties [303]. The use of this plant in
phytotherapy started in Asia, mainly for the treatment of gastrointestinal disorders, from
nausea and dyspepsia to the irritable bowel disease or the infection from Helicobacter
pylori [308]. Its anti-inflammatory properties have been attributed to the inhibitory role
exerted on the synthesis of prostaglandins and leukotrienes [303,309]. A clinical trial
conducted on endurance runners who consumed 500 mg of ginger powder after exer-
cise registered significantly lower levels of inflammatory markers, specifically plasma
cytokines [310]. Furthermore, ginger is currently used to treat cases of heavy menstrual
bleeding [311].

3.3.3. Chili Pepper

Capsaicin is part of the capsaicinoid family, and it is a component of chili pepper [304].
This molecule has been investigated in interventional studies for its antioxidant and anal-
gesic, as well as anticancer properties [312]. In addition, its effects have been studied in
obesity. Capsaicin acts on metabolism, increasing thermogenesis and contributing to the
reduction in fat, especially visceral fat [313,314]. Furthermore, capsinoids, the secondary
metabolites of capsaicin, increase the feeling of satiety [314,315]. Capsaicin can contribute
to the treatment of pain not only for its analgesic properties but also for inhibiting the
expression of inflammatory cytokines, thus counteracting the effects of many chronic
inflammatory and autoimmune diseases [312,316].

4. Microbiomics in the Nutritional Management of the Infertile Patient

NGS and other high-throughput technologies allowed recent advances not only in
genomics but also in microbiomics, namely the study of the microbiome, that is, the totality
of microbes in specific environments (e.g., the human gut) [24]. The Human Microbiome
Project (HMP), analyzing the genetic material recovered from distinct sites on the human
body, has highlighted the physiological microbial abundance of multiple strains and species
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of different phyla in different sites of the human body, above all gut [317,318]. The hu-
man digestive tract is considered an endocrine-metabolic organ, and it hosts a symbiotic
microbial community [319,320]. Most of the microorganisms found in the digestive tract
belong to groups of Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria [321]. A
normal balance between Bacteriodetes and Firmicutes is mandatory to maintain intestinal
homeostasis, whereas a higher Bacteriodetes/Firmicutes ratio indicates dysbiosis [322]. Gut
microbiota (GM) activity and diversity, determining the state of “eubiosis”, affect human
health [323]. Eubiosis is crucial for intestinal barrier integrity, in turn essential to preventing
the permeation of antigens, endotoxins, pathogens, and other proinflammatory substances
in the human body. It also contributes to energy balance, the synthesis and absorption of
nutrients (including vitamins and short-chain free fatty acids), the metabolism of glucose,
lipid, and bile acids, and the feeling of satiety [324–327]. Furthermore, it is involved in local
and systemic modulation of the immune and inflammatory response [281,319,324,325,328].
Dysbiosis, namely a condition that occurs when microbiota deviates from the “eubiotic” or
“healthy” status, can lead to an alteration of the intercellular tight junctions responsible for
the integrity of intestinal mucosa and its permeability, thus causing the leaky gut syndrome
(LGS) [329]. LGS induces chronic low-grade inflammation, both because the mucus layer
becomes more permeable to microbes and microbial products and because of the activation
of the mucosal-associated lymphatic tissue (MALT), which in turn triggers the inflamma-
tory cascade (leukocytes, cytokines, TNF-α) and results in tissue damage [330]. Indeed,
persistent gut dysbiosis is strictly related to inflammatory bowel diseases such as ulcerative
colitis, Crohn’s disease, and indeterminate colitis [331,332]. Emerging evidence indicates
that the composition of the GM affects fertility. Indeed, GM can modulate circulating
concentrations of sex hormones such as estrogens, testosterone, progesterone, and corticos-
teroids [333]. GM and estrogens show the tightest correlation [334]. GM impacts estrogen
concentrations in the host through the secretion of β-glucuronidase, which deconjugates
estrogens, enabling them to bind estrogen receptors with the subsequent physiological
consequences downstream [335,336]. GM mainly acts on estrogen metabolism by modu-
lating the enterohepatic circulation of estrogens. Therefore, a woman’s GM may, in part,
reflect the metabolic functioning of her hormonal balance and, therefore, her reproductive
health [333].

GM dysbiosis worsens PCOS and insulin resistance conditions [324,337–341], and
it contributes to the onset and progression of endometriosis [325,342]. GM biodiver-
sity is decreased in PCOS women, showing elevated Escherichia:Shigella ratio and an
excess of Bacteroides compared to healthy women [341]. In the case of endometriosis,
instead, Lactobacillus concentrations and potentially pathogenic GM profiles (altered Fir-
micutes:Bacteroidetes ratio) were highlighted [325]. Immune system dysregulation and
altered estrogen metabolism are two conditions also triggered by a dysbiotic status in-
volved in the pathogenesis of endometriosis [325]. An association exists even between
obesity and dysbiosis, with increased Firmicutes:Bacteroidetes ratios [322] that result in
LGS. In this syndrome, an excess of lipopolysaccharides (LPS) enters the bloodstream,
thus contributing to systemic inflammation and metabolic alterations. The mechanism is
mediated by the binding to toll-like receptor 4 (TLR-4) in the intestinal epithelial, in turn
resulting in cytokine production, including TNFα and IL-6 [62]. Thyroid autoimmune
diseases, often a comorbidity of infertility, are associated with GM [343–345]. Similarly,
increased ratios of Butyricimonas, Dorea, Lachnobacterium, and Sutterella, have been reported
in women with POI compared to healthy controls [346]. Lastly, GM influences both vaginal
and uterine environments due to their continuity with the gut [347]. In fact, Lactobacilli
(mainly L. crispatus, L. gasseri, L. iners, and L. jensenii), i.e., the main components of a healthy
vaginal microbiota, come from the gut [348]. The integrity of both vaginal and uterine
microbiota is critical for a healthy reproductive system. Specifically, the vaginal microbiota
protects uterine health [349], while uterine microbiota seems responsible for endometrial
receptivity [350,351].
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Based on all this evidence, assessing GM composition should be considered an impor-
tant diagnostic tool in infertile patients, especially since it is actionable via dietary strategies
to restore and/or maintain gut eubiosis through targeted nutrition [352–355] or probiotic
supplementation [356].

4.1. Possible Test to Assess Gut Integrity and Microbiota Composition

Fecal sample analysis is the simplest way to investigate gut integrity and microbiota
composition via either metabolomics or genomics. Among the metabolites, calprotectin and
zonulin are of particular importance. Zonulin is a protein involved in the regulation of para-
cellular transport in the intestinal lumen. Increased zonulin concentrations correlate with
increased intestinal permeability [357,358], a condition associated with inflammatory (e.g.,
T2DM, CD, obesity) and autoimmune diseases (Crohn’s disease) [359–361]. Calprotectin,
instead, is a protein secreted from stimulated neutrophils, eosinophils, and monocytes,
and when found in feces, it is considered a marker for inflammatory bowel diseases (e.g.,
Crohn’s disease and ulcerative colitis) [362,363]. Other fecal metabolites are described
elsewhere [364].

Microbial compositions can also be assessed in fecal samples through 16S rRNA gene
amplicon sequencing [365]. This type of analysis allows a phylogenetic microbiota profiling
for taxonomy composition, which may translate into clinically useful information for
differential diagnosis [366] and therapeutic strategies, such as appropriate nutrition and
targeted probiotic supplementation aimed at restoring gut homeostasis [356].

Also, urinary metabolites have been proposed to assess dysbiosis, mainly indican
(3-indoxyl sulfate) and 3-methyl-indole (also named skatole). Those are two tryptophan
catabolites found in traces in urine when microbial metabolism is altered [367]. While in-
creased indican concentrations indicate a fermentative dysbiosis in the small intestine [368],
increased urinary skatole is indicative of colon inflammation [369].

4.2. The Role of Diet to Ameliorate Gut Microbiome and Intestinal Barrier Function

Dietary intervention may alter the composition and activity of GM [370]. A calorie-
balanced MedDiet, high in vegetables, PUFAs, dietary fiber, and low in simple sugars and sat-
urated fatty acids, is beneficial to developing and maintaining the microflora [321,326,328,371].
Additionally, supplementation with natural anti-inflammatory and anti-oxidative sub-
stances (e.g., fermented plant foods, curcuma longa, coenzyme Q10, zinc) and multi-strain
probiotics (e.g., Bifidobacterium and Lactobacillus, normally found in fermented foods such
as yogurt and kefir), prebiotics (e.g., fructooligosaccharides, inulin, and galactooligosaccha-
rides) and synbiotics, can contribute to the healthy composition of the gut microbiota and,
thus, improve fertility-related and pregnancy-related disorders (e.g., PCOS, endometriosis
and gestational diabetes mellitus) [321,324,325,328,339,372–375]. A low-carbohydrate diet
has also been proposed in case of leaky gut disfunction and PCOS [339,372]. However,
the central principles of a “leaky gut diet” are low carbohydrates, no/low milk and dairy
products, and no/low gluten, as they all represent the main factors triggering LPS-induced
immune-inflammatory response [376].

4.2.1. Gluten-Free Diet

A gluten-free diet (GFD) has been proposed for the leaky gut diet to attenuate in-
testinal barrier dysfunction and inflammation [372]. A GFD is strictly recommended for
celiac patients; however, it has some limitations [377]. In fact, celiac patients tend to com-
pensate for gluten absence with improper eating habits, which are high in saturated fats,
hypercaloric drinks, sweets, salty snacks, and highglycemic grain products, and low in
dietary fiber and nutrients [377]. In addition to the improperly balanced GFD, the use
of highly processed gluten-free products can further negatively affect celiac health [377].
In fact, many gluten-free foods are characterized by an elevated glycemic index, a high
content of saturated fats and salt, and a reduced amount of minerals and vitamins [378,379].
Thus, a balanced GFD with whole meal GF cereals with high nutritive value (e.g., quinoa,
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buckwheat, teff, and amaranth) should be recommended [378]. Furthermore, some authors
observed differences in the gut microbiota composition (involving mainly Lactobacillus and
Bifidobacterium strains) in people treated with the GFD [377,380], suggesting cause-effect
relationships with dysbiosis [377]. For all these reasons, a structured GFD should be ad-
ministrated only when strictly necessary [381] and should be focused on the consumption
of naturally gluten-free foods, such as quinoa, rice, buckwheat, sorghum, tapioca, millet,
amaranth, teff, etcetera [382].

4.2.2. The Controversial Role of Milk and Dairy Consumption

To reduce the immune-inflammatory response, the leaky gut diet also suggests a diet
free of milk and dairy products [372]. Undigested lactose can induce osmotic load, and
its subsequent fermentation by the GM induces inflammatory processes in the mucosal
surface [383,384]. When lactose indigestion is not due to hypolactasia of genetic origin (see
Section 2.1.4) but is related to an abnormal condition of the intestinal barrier (leaky gut
and/or dysbiosis), it is possible to act with proper dietary intervention. In these patients,
the avoidance of dairy food is not resolutive but can only mitigate their symptoms. In these
cases, it is better to restore their barrier functionality and a physiologic GM. The treatment
includes gluten and lactose-reduced diets, paying particular attention to alternative sources
of calcium, enzyme replacement, and type of food [384,385]. Indeed, certain types of foods,
although derived from milk, seem even beneficial for GM (e.g., yogurt, kefir). In fact, fer-
mented foods, well tolerated also in case of lactose intolerance [385–387], contain relatively
stable microbial ecosystems, composed primarily of lactic acid bacteria (LAB—among the
others, Saccharomyces yeasts and Bifidobacteria spp.), and LAB primary metabolites (e.g.,
lactic acid), which are considered probiotic and help to overcomegut dysbiosis [388,389].
Ghee “clarified” butter is also an important source of butyric acid, or butyrate, a short-chain
fatty acid with well-known nutraceutical anti-inflammatory properties because it increases
concentrations of tight junction proteins and improves intestinal permeability [390,391].

At last, it should be noted that lactose intolerance is not harmful in these patients,
provided it does not exceed the fermentative capacity of the gut flora [385]. For these
reasons, the complete avoidance of dairy foods is no longer necessary, whereas finely
regulated dietary quantity and quality are advisable [386,387,392].

4.3. Alcohol and Gut-Associated Inflammation

Many studies reported a link between alcohol and adverse consequences on fertility,
such as reduced fertilization rates [393], increased risk of miscarriage [394], premature birth,
low birth weight, and fetal alcohol spectrum disorder, including fetal alcohol syndrome
[258]. The mechanisms by which alcohol affects female fertility include the HPG axis
dysregulation [395]. Indeed, alcohol alters estrogen and progesterone levels suppressing
folliculogenisis, causing anovulation and luteal phase dysfunction [253,258]. Furthermore,
alcohol is a potent calorigenic agent, also unfitted for the control and maintenance of normal
weight [259]. However, another important mechanism by which alcohol may interfere
with fertility is by inducing intestinal inflammation. Indeed, it has been demonstrated that
alcohol and its metabolites lead to intestinal inflammation, increasing the permeability of
the intestinal lining, altering intestinal microbiota composition and function as well, thus,
affecting the intestinal immune homeostasis [396,397]. Therefore, alcohol consumption
should be avoided not only during pregnancy for its proven negative effects [398] but also
during the periconceptional period for women seeking a pregnancy since no recommended
safe limit of alcohol intake exists [399].

4.4. The Key Role of Vitamin D for Intestinal Homeostasis

Vitamin D (cholecalciferol) is pivotal for intestinal homeostasis, ensuring appropriate
levels of antimicrobial peptides in the mucus, maintaining epithelial integrity by strength-
ening intercellular junctions, and thus preventing LGS [400]. Indeed, vitamin D deficiencies
are responsible for altered integrity of the gut epithelial barrier. Furthermore, vitamin D,
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by binding its receptor VDR, influences both the innate and the adaptive immune sys-
tems representing an important suppressor of the inflammatory response [400]. Indeed,
vitamin D can (i) regulate the expression of genes generating proinflammatory mediators,
(ii) interfere with transcription factors, such as NF-kB, that regulate the expression of in-
flammatory genes, and (iii) activate the signaling cascades, such as MAP kinases, which
mediate inflammatory responses [401].

A large body of evidence suggests that vitamin D is involved in the modulation
of women’s fertility. VDR is found in reproductive tissues such as the ovary, uterus,
placenta, pituitary, and hypothalamus [402]. Moreover, vitamin D might have beneficial
effects on metabolic/hormonal parameters of PCOS and endometriosis and perhaps IVF
outcomes [403]. However, no cause-effect relationship has yet been established. Probably,
altered vitamin D concentrations, rather than exerting a direct role on fertility, is a sign
of defective intestinal homeostasis, with subsequent consequences on immune balance in
patients [400]. Therefore it is of utmost importance either to adopt nutritional intervention
to ensure a correct intake of vitamin D (e.g., consumption of salmon, mushrooms, sardines,
eggs) [404], eventually also using vitamin D supplements, or to investigate the integrity of
the intestinal barrier of the patient [405] in order to ensure correct intestinal homeostasis.

5. Other Strategies Aimed at Managing Chronic Low-Grade Inflammation in
Infertile Patients
5.1. Dietary Caloric Restriction (Intermittent Fasting) and Its Anti-Inflammatory Properties

Dietary caloric restriction (CR), without severe nutritional deprivation, has been
shown to exert an anti-inflammatory effect by modulating mitochondrial metabolism and
autophagic flux, protecting the intestinal barrier, dampening inflammation, and inhibiting
the transcription of critical genes such as NF-kB [406]. Increasing evidence suggests po-
tential benefits from intermittent fasting and caloric restriction on markers of health and
longevity [407,408]. During CR, there is a decline in glycolytic rates in favor of respiratory
metabolism as the main energy source. These alterations change the equilibrium of the
reduced/oxidized forms of NAD toward NAD+, which works as a coenzyme in many
biological processes and energy production. NAD+ is absolutely required in the reaction
catalyzed by sirtuins, class III histone deacetylases that act as energy sensors [409]. Thus,
CR is believed to reduce inflammation and aging by boosting the activity of some sirtuins.
Activities of sirtuins toward several transcription factors and cytoplasmic protein sub-
strates, beyond histone deacetylation, make them master regulators of cellular homeostasis,
oxidative stress, inflammation, metabolism, and senescence. Although SIRT1, the most
studied member of the sirtuin family, plays an important regulatory role in reproductive
physiology [410], positive and negative effects of CR on female reproduction have been
demonstrated. In mice, CR increases reproductive capacity and prolongs fertility lifespan.
In humans, CR results in hypothalamic amenorrhea but exerts beneficial effects on PCOS
in obese women [411].

Since CR seems to act mainly by enhancement of mitochondrial function, and the
key role of mitochondria for oocyte and embryo competence is well known [412–414], this
strategy deserves future investigations also in relation to reproductive processes.

5.2. Ways of Cooking and Advanced Glycation End-Products

The method of cooking foods dramatically affects inflammatory processes. When
cooking with high heat under dry conditions, such as grilling, or during thermal pro-
cessing of foods such as the ones occurring in industrial food production, dangerous
compounds named advanced glycation end-products (AGEs) may form [415]. AGEs are
also formed endogenously as by-products of metabolic processes. With their prolonged
half-life, they gradually accumulate under oxidative stress and inflammation, becoming
implicated in aging-related dysfunctions, diabetic complications, and pathogenesis of nu-
merous diseases [416], including female reproductive dysfunctions [417]. AGEs appear
to affect cell function through two main mechanisms: (i) crosslinking proteins, directly



Nutrients 2022, 14, 1918 22 of 41

altering their structure and function; (ii) activating different cell receptor-mediated and
receptor-independent mechanisms, which lead to increased oxidative stress and release of
proinflammatory cytokines [418]. Moreover, the majority of food AGEs escape digestion
and absorption, ending up directly in the colon, where they seem to modify local microbiota
metabolism and modulate gut integrity and inflammation [419]. Unfortunately, western-
type dietary patterns include ultra-processed foods and refined carbohydrates [420], and
even if some “healthy dietary pattern” exists, such as the MedDiet, which is mainly based
on the consumption of vegetables, fruits, cereals, nuts, and legumes, most of them are
cooked by adding substantial amounts of olive oil. When “high-AGE” ways of cooking
are applied (e.g., avoiding olive oil for caloric issues), the anti-inflammatory effect can
be partially lost. As a result, a certain food of the same caloric content but exposed to
different cooking methods during the same period would have very different AGE content.
Therefore, since AGEs represent exogenous boosters of inflammation, it is important to
guide patients on the correct cooking technique. In the last decade, the negative impact
of AGEs on female fertility has gained a great deal of attention. From current literature
emerges that altered AGE deposition represents a common feature in all PCOS pheno-
types [417]. Moreover, intraovarian AGE represents key factors in the vicious circle centered
on oxidative stress underlying reproductive aging [421]. Therefore, in addition to applying
correct cooking, nutritional strategies to limit AGE-damage focus on patterns, foods, and
compounds that limit hyperglycemia, a diet rich in antioxidants and anti-inflammatory
foods and antiglycation medicinal plants are advised [422].

5.3. Nutritional Management of Blood Glucose Homeostasis

The proinflammatory and pro-oxidant effect of unbalanced dietary carbohydrates,
acting via both lipotoxicity and hyperinsulinemia, has been discussed in Section 2.1.6.
Appropriate dietary interventions for the management of blood glucose include reduced
intake of simple sugars, especially from sweet drinks, sweets, and fruit juice, in favor of
complex, low-glycemic-index carbohydrates (e.g., whole grain or ancient grains rich in
dietary fiber) [423,424]. Particular attention should be given to the management of the
postprandial glycemic and insulinemic response. Therefore, it is not only important to
consider the glycemic index of single foods included in a meal, but also to calculate the
total carbohydrate content, namely the glycemic load and the relative composition of the
meal, evaluating the proportion of the other three macronutrients (fat, protein, fiber), as
well as the way of cooking, the use of spices and meal timing [425–428].

The personalization of the nutritional support for the infertile patient is crucial when
it comes to glucose homeostasis. It is generally suggested to “eat at least five portions of
fruit and vegetables daily”. However, these general guidelines do not suit all patients,
particularly those with abnormal glucose homeostasis, who are highly represented in the
infertile population. Indeed, fructose, when consumed alone and far from the main meals
(as often suggested), leads to a rapid increase in glycemia since it is readily absorbed
and rapidly metabolized by the liver [429]. On the one hand, this results in increased
food-seeking and sugar cravings, while on the other hand, it increases both fat production
and storage [430]. Although fructose does not acutely increase insulin levels, a chronic
exposure indirectly causes hyperinsulinemia and obesity [429]. Chronic exposure seems
associated with hepatic inflammation and cellular stress (oxidative and endoplasmic) [431]
and with increased cortisol production [432], all affecting fertility.

Another general suggestion about glucose homeostasis is to “avoid pasta at dinner”,
especially when weight loss represents a goal of the nutritional program. However, some
studies support the notion that consuming carbohydrates at dinner is beneficial for individ-
uals suffering from insulin resistance. In these subjects,“pasta at dinner” promotes greater
weight loss and more favorable changes in leptin, ghrelin, and adiponectin concentrations,
as well as greater improvements in C-reactive protein, tumor necrosis factor-alpha, and
IL-6 levels [433,434]. This is a further indication that nutritional suggestions/guidelines
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should always be tailored to the specific case and always consider the endocrine status of
the patient.

5.4. Consumption of Foods with Antioxidant Properties

A large body of evidence suggests that an antioxidant status can be modulated by
diet. Luckily enough, several foods exert both antioxidant and anti-inflammatory activ-
ities [435]. A balanced consumption of whole grains, supporting a low glycemic index,
and meals [436] enriched with polyphenols (e.g., quercetin, naringenin, epigallocatechin
gallate, resveratrol) [437], flavonoids (e.g., silymarin) [438] and carotenoids (found in plant
foods, herbs, and spices), represents the best diet [435,439,440]. Furthermore, it is possible
to support the activity of antioxidant enzymes with an appropriate intake of selenium,
zinc, and vitamins (particularly E and C), which act as cofactor for those enzymes [441].
Furthermore, both anti-inflammatory and antioxidant properties have been associated with
the intake of omega-3 fatty acids [442,443], EVOO [444], garlic [445], fermented milk, and
oilseeds [436,446]. Some other important bioactive compounds exerting a strong protective
antioxidant effect are curcumin [447,448] and capsaicin [449]. Finally, the supplemen-
tation with probiotics and vitamin D [442], α-lipoic acid [450], and melatonin could be
beneficial for women’s fertility, as also demonstrated by a study investigating pregnancy
outcomes [451].

6. Conclusions and Future Perspectives

Growing evidence unveils how both healthy lifestyle habits and dietary patterns
favor reproductive success. However, a specific “fertility diet” has not been yet identified
and probably never will be. This is because each person is a unique individual, with its
own genome, proteome, metabolome, microbiome, and exposome. This should always
be addressed when choosing a nutritional approach, as for any therapy in medicine. In
line with the concept of personalized medicine, nutritional support for the infertile patient
should be tailored to the individual, aiming at “precision nutrition”. Since several diseases
linked to infertility are related to a proinflammatory state, with the dysregulation of
important markers of inflammation (e.g., CRP, TNF-α, NF-kB, and IL-6), this aspect should
always be considered in the nutritional management of infertile patients, elaborating
diets with a marked anti-inflammatory signature [80]. These diets, for a more complete
anamnesis, should be based on the assessments of various parameters such as self-reported
dietary and lifestyle habits and anthropometric data and should be combined with the
genetic profile and gut status as assessed via microbiomics and metabolomic approaches
(Figure 2). Only a comprehensive view of all these aspects and their integration in the
full picture could allow a more effective nutritional intervention in the management of
female infertility. Although the genotype may predispose to nutrition-related disease,
dietary factors may influence gene expression via their epigenetic activity, thereby affecting
proteins and metabolites [26]. In our view, the nutritional management of infertile patients
should be tailored to each patient’s characteristics, keeping in mind the strong relationship
between infertility and common chronic noncommunicable diseases (NCDs). Infertile
women are, in fact, more subject to premature mortality due to cancer (i.e., digestive
organs, genito-urinary organs, and lymphatic and hematopoietic tissue) and non-malignant
diseases of the gastrointestinal system [452]. Therefore, nutritional support in infertile
patients is even more important due to its potential long-term protective effect [453,454].
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drofolate Reductase (MTHFR); Fatty Acid Desaturase 1 (FADS 1); peroxisome proliferator-activated
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Polyunsaturated Fatty Acids (PUFA).

This paper summarized some of the strategies to tailor personalized nutritional sup-
port in infertile women, mainly focusing on the management of chronic low-grade inflam-
mation, a condition that characterizes different reproductive disorders. Of note, infertility
affects men as well, and male factor infertility accounts for 50% of causes [455]. Therefore,
a limit of this paper is that it considers only the nutritional management of the female
counterpart, yet mounting evidence demonstrates that personalized nutritional support
would be useful also for the male counterpart [456–458].

Considering the evidence at hand, the personalized nutritional support for female
fertility should always:

• Consider the -omic characteristics of each patient (e.g., genotype, microbiome);
• Deepen the patient’s life choices (e.g., vegetarianism) to outline a more appropriate

supplementation;
• Combine several nutrients with anti-inflammatory nutrigenomics properties as they

may establish synergies and/or modulate several cellular and molecular pathways
at once;

• Exclude proinflammatory foods or habits (e.g., harmful cooking methods) because
often it is not only a question of “what to eat” but also “what to avoid”;

• Monitor the postprandial glycemic and insulinemic response, which figure among the
main mechanisms by which diet can affect fertility;

• Carefully manage the glycemic load of each meal, the combination of the foods together
with the way of cooking, the use of spices, and meal timing.

Personalized nutrition is a tool to preserve health rather than treat a condition. Since
infertility is a social problem and an emerging priority for public health [459], we think that
a change in the cultural mindset is required and that healthier and personalized nutrition
shall be suggested earlier and be continued throughout life in order to prevent infertility,
rather than to treat it [253].
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186. Janiszewska, J.; Ostrowska, J.; Szostak-Węgierek, D. Milk and Dairy Products and Their Impact on Carbohydrate Metabolism and
Fertility—A Potential Role in the Diet of Women with Polycystic Ovary Syndrome. Nutrients 2020, 12, 3491. [CrossRef]

187. Sochol, K.M.; Johns, T.S.; Buttar, R.S.; Randhawa, L.; Sanchez, E.; Gal, M.; Lestrade, K.; Merzkani, M.; Abramowitz, M.K.;
Mossavar-Rahmani, Y.; et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of
Randomized Clinical Trials. Nutrients 2019, 11, 2237. [CrossRef]

188. Bordoni, A.; Danesi, F.; Dardevet, D.; Dupont, D.; Fernandez, A.S.; Gille, D.; dos Santos, C.N.; Pinto, P.; Re, R.; Rémond, D.; et al.
Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2497–2525. [CrossRef]

189. Misselwitz, B.; Butter, M.; Verbeke, K.; Fox, M.R. Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and
clinical management. Gut 2019, 68, 2080–2091. [CrossRef]

190. Szilagyi, A.; Ishayek, N. Lactose Intolerance, Dairy Avoidance, and Treatment Options. Nutrients 2018, 10, 1994. [CrossRef]
191. Bersaglieri, T.; Sabeti, P.C.; Patterson, N.; Vanderploeg, T.; Schaffner, S.F.; Drake, J.A.; Rhodes, M.; Reich, D.E.; Hirschhorn, J.N.

Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene. Am. J. Hum. Genet. 2004, 74, 1111–1120. [CrossRef]
192. Di Costanzo, M.; Canani, R.B. Lactose Intolerance: Common Misunderstandings. Ann. Nutr. Metab. 2018, 73, 30–37. [CrossRef]

[PubMed]
193. Mulcare, C.A.; Weale, M.E.; Jones, A.L.; Connell, B.; Zeitlyn, D.; Tarekegn, A.; Swallow, D.M.; Bradman, N.; Thomas, M.G. The T

Allele of a Single-Nucleotide Polymorphism 13.9 kb Upstream of the Lactase Gene (LCT) (C−13.9kbT) Does Not Predict or Cause
the Lactase-Persistence Phenotype in Africans. Am. J. Hum. Genet. 2004, 74, 1102–1110. [CrossRef] [PubMed]

194. Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a variant associated with adult-type
hypolactasia. Nat. Genet. 2002, 30, 233–237. [CrossRef] [PubMed]

195. Dzialanski, Z.; Barany, M.; Engfeldt, P.; Magnuson, A.; Olsson, L.A.; Nilsson, T.K. Lactase persistence versus lactose intolerance:
Is there an intermediate phenotype? Clin. Biochem. 2016, 49, 248–252. [CrossRef] [PubMed]

196. Azcarate-Peril, M.A.; Ritter, A.J.; Savaiano, D.; Monteagudo-Mera, A.; Anderson, C.; Magness, S.T.; Klaenhammer, T.R. Impact of
short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl. Acad. Sci. USA 2017,
114, E367–E375. [CrossRef]

197. Riccio, P.; Rossano, R. Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases:
A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients 2019, 11, 2714. [CrossRef]

198. Shaukat, A.; Levitt, M.D.; Taylor, B.C.; MacDonald, R.; Shamliyan, T.A.; Kane, R.L.; Wilt, T.J. Systematic Review: Effective
Management Strategies for Lactose Intolerance. Ann. Intern. Med. 2010, 152, 797–803. [CrossRef]

199. Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1675–1683.
[CrossRef]

200. Fassio, F.; Facioni, M.S.; Guagnini, F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a
Focus on Current Management and Future Perspectives. Nutrients 2018, 10, 1599. [CrossRef]

201. Di Rienzo, T.; D’Angelo, G.; D’Aversa, F.; Campanale, M.C.; Cesario, V.; Montalto, M.; Gasbarrini, A.; Ojetti, V. Lactose intolerance:
From diagnosis to correct management. Eur. Rev. Med Pharmacol. Sci. 2013, 17, 18–25.

202. Santos, A.L.; Preta, G. Lipids in the cell: Organisation regulates function. Cell Mol. Life Sci. 2018, 75, 1909–1927. [CrossRef]
[PubMed]

203. Calder, P.C. Long chain fatty acids and gene expression in inflammation and immunity. Curr. Opin. Clin. Nutr. Metab. Care 2013,
16, 425–433. [CrossRef] [PubMed]

204. Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological
Advances. Nutrients 2016, 8, 23. [CrossRef] [PubMed]

205. Chiang, N.; Serhan, C.N. Specialized pro-resolving mediator network: An update on production and actions. Essays Biochem.
2020, 64, 443–462. [CrossRef] [PubMed]

206. Serhan, C.N.; Chiang, N.; Dalli, J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution.
Semin. Immunol. 2015, 27, 200–215. [CrossRef] [PubMed]

207. Regidor, P.-A.; Mueller, A.; Sailer, M.; Gonzalez Santos, F.; Rizo, J.M.; Egea, F.M. Chronic Inflammation in PCOS: The Potential
Benefits of Specialized Pro-Resolving Lipid Mediators (SPMs) in the Improvement of the Resolutive Response. Int. J. Mol. Sci.
2020, 22, 384. [CrossRef] [PubMed]

208. Unfer, V. A Deeper Assessment of omega3-Poly-Unsaturated Fatty Acids in Polycystic Ovary Syndrome Management. Comment
on Regidor et al. Chronic Inflammation in PCOS: The Potential Benefits of Specialized Pro-Resolving Lipid Mediators (SPMs) in
the Improvement of the Resolutive Response. Int. J. Mol. Sci. 2021, 22, 10114. [CrossRef]

209. Kumar, R.; Clerc, A.-C.; Gori, I.; Russell, R.; Pellegrini, C.; Govender, L.; Wyss, J.-C.; Golshayan, D.; Canny, G.O. Lipoxin
A4 Prevents the Progression of De Novo and Established Endometriosis in a Mouse Model by Attenuating Prostaglandin E2
Production and Estrogen Signaling. PLoS ONE 2014, 9, e89742. [CrossRef]

http://doi.org/10.3945/ajcn.111.014209
http://www.ncbi.nlm.nih.gov/pubmed/21562092
http://doi.org/10.3945/jn.112.172585
http://doi.org/10.3390/nu12113491
http://doi.org/10.3390/nu11092237
http://doi.org/10.1080/10408398.2014.967385
http://doi.org/10.1136/gutjnl-2019-318404
http://doi.org/10.3390/nu10121994
http://doi.org/10.1086/421051
http://doi.org/10.1159/000493669
http://www.ncbi.nlm.nih.gov/pubmed/30783042
http://doi.org/10.1086/421050
http://www.ncbi.nlm.nih.gov/pubmed/15106124
http://doi.org/10.1038/ng826
http://www.ncbi.nlm.nih.gov/pubmed/11788828
http://doi.org/10.1016/j.clinbiochem.2015.11.001
http://www.ncbi.nlm.nih.gov/pubmed/26601570
http://doi.org/10.1073/pnas.1606722113
http://doi.org/10.3390/nu11112714
http://doi.org/10.7326/0003-4819-152-12-201006150-00241
http://doi.org/10.1080/10408398.2018.1425977
http://doi.org/10.3390/nu10111599
http://doi.org/10.1007/s00018-018-2765-4
http://www.ncbi.nlm.nih.gov/pubmed/29427074
http://doi.org/10.1097/MCO.0b013e3283620616
http://www.ncbi.nlm.nih.gov/pubmed/23657154
http://doi.org/10.3390/nu8010023
http://www.ncbi.nlm.nih.gov/pubmed/26742061
http://doi.org/10.1042/ebc20200018
http://www.ncbi.nlm.nih.gov/pubmed/32885825
http://doi.org/10.1016/j.smim.2015.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25857211
http://doi.org/10.3390/ijms22010384
http://www.ncbi.nlm.nih.gov/pubmed/33396555
http://doi.org/10.3390/ijms221810114
http://doi.org/10.1371/journal.pone.0089742


Nutrients 2022, 14, 1918 33 of 41
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448. Jabczyk, M.; Nowak, J.; Hudzik, B.; Zubelewicz-Szkodzińska, B. Curcumin in Metabolic Health and Disease. Nutrients 2021,
13, 4440. [CrossRef]

449. Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.-T. Capsaicin—the major bioactive ingredient of chili
peppers: Bio-efficacy and delivery systems. Food Funct. 2020, 11, 2848–2860. [CrossRef] [PubMed]

450. Formoso, G.; Baldassarre, M.P.A.; Ginestra, F.; Carlucci, M.A.; Bucci, I.; Consoli, A. Inositol and antioxidant supplementation:
Safety and efficacy in pregnancy. Diabetes/Metabolism Res. Rev. 2019, 35, e3154. [CrossRef] [PubMed]

451. Xu, K.; Liu, G.; Fu, C. The Tryptophan Pathway Targeting Antioxidant Capacity in the Placenta. Oxidative Med. Cell. Longev. 2018,
2018, 1054797. [CrossRef] [PubMed]

452. Ahrenfeldt, L.J.; Möller, S.; Wensink, M.J.; Eisenberg, M.L.; Christensen, K.; Jensen, T.K.; Lindahl-Jacobsen, R. Impaired fecundity
as a marker of health and survival: A Danish twin cohort study. Hum. Reprod. 2021, 36, 2309–2320. [CrossRef]

453. Bruins, M.J.; Van Dael, P.; Eggersdorfer, M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during
Aging. Nutrients 2019, 11, 85. [CrossRef]

454. Requena, T.; Martínez-Cuesta, M.C.; Peláez, C. Diet and microbiota linked in health and disease. Food Funct. 2018, 9, 688–704.
[CrossRef]

455. Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility.
Lancet 2021, 397, 319–333. [CrossRef]

456. Skoracka, K.; Eder, P.; Łykowska-Szuber, L.; Dobrowolska, A.; Krela-Kaźmierczak, I. Diet and Nutritional Factors in Male
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