Some integral inequalities of Simpson type for GA-ε-convex functions

Feng Qi and Bo-Yan Xi

Abstract. We introduce a new concept “GA-ε-convex function” and establish some integral inequalities of Simpson type for GA-ε-convex functions.

Keywords. Integral inequality of Simpson type, GA-ε-convex function, integral identity.

2010 Mathematics Subject Classification. 26A51, 26D15, 41A55.

1 Introduction

Let us recall some definitions of several kinds of convex functions.

Definition 1.1. A function $f : I \subseteq \mathbb{R} = (-\infty, \infty) \rightarrow \mathbb{R}$ is said to be convex if the inequality

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$$

holds for all $x, y \in I$ and $t \in [0, 1]$.

Definition 1.2. Let $f : I \subseteq \mathbb{R}^+ = (0, \infty) \rightarrow \mathbb{R}$. If the inequality

$$f(x^t y^{1-t}) \leq tf(x) + (1-t)f(y)$$

is valid for $x, y \in I$ and $t \in [0, 1]$, then $f(x)$ is said to be GA-convex on I.

Definition 1.3 ([7]). Let X be a real linear space, the set $D \subseteq X$ be convex, and $f : D \rightarrow \mathbb{R}$ be a mapping. For some constant $\varepsilon \geq 0$, if

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) + \varepsilon$$

holds for all $x, y \in D$ and $t \in [0, 1]$, then $f(x)$ is said to be ε-convex on D.

This work was partially supported by the NNSF of China under Grant No. 11361038 and by the Foundation of the Research Program of Science and Technology at the Universities of the Inner Mongolia Autonomous Region under Grant No. NJZY13159, China.
It is well known that the classical inequalities for usually convex functions defined by Definition 1.1 are due to Hermite–Hadamard, which can be stated as the following theorem.

Theorem 1.4. If \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is a convex function on \([a, b] \) with \(a, b \in I \) and \(a < b \), then we have

\[
\frac{f(a) + f(b)}{2} \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}.
\]

In the literature, Simpson’s inequality may be referred to as Theorem 1.5 below.

Theorem 1.5 ([6]). If \(f : [a, b] \rightarrow \mathbb{R} \) is a four times continuously differentiable function on \((a, b) \) and its fourth derivative on \((a, b) \) is bounded by \(\| f^{(4)} \| = \sup_{x \in (a, b)} |f^{(4)}(x)| < \infty \), then

\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{3} \left[\frac{f(a) + f(b)}{2} + 2f\left(\frac{a + b}{2}\right) \right] \right| \leq \frac{(b - a)^5 \| f^{(4)} \|}{2880}.
\]

Let us reformulate some Hermite–Hadamard and Simpson type inequalities for the above convex functions.

Theorem 1.6 ([5, Theorem 2.2]). Let \(a, b \in I^\circ \) with \(a < b \) and \(f : I^\circ \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I^\circ \). If \(|f'(x)| \) is convex on \([a, b] \), then

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{(b - a) (|f'(a)| + |f'(b)|)}{8}.
\]

Theorem 1.7 ([12, Theorems 1 and 2]). Let \(a, b \in I \) with \(a < b \) and \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be differentiable on \(I^\circ \). If \(|f'(x)|^q \) is convex on \([a, b] \) and \(q \geq 1 \), then

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{4} \left[\frac{|f'(a)|^q + |f'(b)|^q}{2} \right]^{1/q}
\]

and

\[
\left| \frac{f\left(\frac{a + b}{2}\right)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{4} \left[\frac{|f'(a)|^q + |f'(b)|^q}{2} \right]^{1/q}.
\]

Theorem 1.8 ([8, Theorems 2.3 and 2.4]). Let \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be differentiable on \(I^\circ \), \(a, b \in I^\circ \) with \(a < b \), and \(p > 1 \). If \(|f'(x)|^{p/(p-1)} \) is convex on \([a, b] \), then

\[
\left| \frac{1}{b - a} \int_a^b f(x) \, dx - \frac{f\left(\frac{a + b}{2}\right)}{2} \right| \leq \frac{b - a}{16} \left(\frac{4}{p + 1} \right)^{1/p} \left\{ \left[|f'(a)|^{p/(p-1)} + 3|f'(b)|^{p/(p-1)} \right]^{(p-1)/p} + \left[3|f'(a)|^{p/(p-1)} + |f'(b)|^{p/(p-1)} \right]^{(p-1)/p} \right\}.
\]
Some integral inequalities of Simpson type

and

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx - f\left(\frac{a + b}{2} \right) \right| \leq \frac{b-a}{4} \left(\frac{4}{p + 1} \right)^{1/p} \left(|f'(a)| + |f'(b)| \right).
\]

Theorem 1.9 ([14]). Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be differentiable on \(I^\circ \), \(a, b \in I^\circ \) with \(a < b \), and \(f' \in L([a,b]) \), where \(L([a,b]) \) denotes the set of all Lebesgue integrable functions on the interval \([a,b] \). If \(|f'(x)|^q \) for \(q \geq 1 \) is convex on \([a,b] \), then

\[
\left| \frac{1}{6} \left[f(a) + f(b) + 4f\left(\frac{a + b}{2} \right) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{12} \left[\frac{2q+1 + 1}{3(q+1)} \right]^{1/q}
\]

\[
\times \left[\left(\frac{3}{4} |f'(a)|^q + |f'(b)|^q \right)^{1/q} + \left(\frac{1}{4} |f'(a)|^q + 3 |f'(b)|^q \right)^{1/q} \right]
\]

and

\[
\left| \frac{1}{6} \left[f(a) + f(b) + 4f\left(\frac{a + b}{2} \right) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{5(b-a)}{72}
\]

\[
\times \left[\left(\frac{61 |f'(a)|^q + 29 |f'(b)|^q}{90} \right)^{1/q} + \left(\frac{29 |f'(a)|^q + 61 |f'(b)|^q}{90} \right)^{1/q} \right].
\]

For more information on Hermite–Hadamard and Simpson type inequalities for various convex functions, we refer the reader to the recently published articles [1–4, 8–11, 13, 15–25] and the closely related references therein.

In this paper, we will introduce a new concept “GA-\(\varepsilon \)-convex function” and establish some integral inequalities of Simpson type for GA-\(\varepsilon \)-convex functions.

2 A definition and a lemma

The so-called GA-\(\varepsilon \)-convex functions can be defined as follows.

Definition 2.1. Let \(f : I \subseteq \mathbb{R}^+ \to \mathbb{R} \) be a mapping and \(\varepsilon \geq 0 \) be a constant. If the inequality

\[
f(x^t y^{1-t}) \leq t f(x) + (1-t) f(y) + \varepsilon
\]

holds for all \(x, y \in I \) and \(t \in [0,1] \), then \(f(x) \) is said to be a GA-\(\varepsilon \)-convex function on \(I \).

Remark 2.2. If \(f(x) \) is increasing and \(\varepsilon \)-convex on \(I \subseteq \mathbb{R}^+ \), then it is GA-\(\varepsilon \)-convex on \(I \). If \(f(x) \) is decreasing and GA-\(\varepsilon \)-convex on \(I \subseteq \mathbb{R}^+ \), then it is \(\varepsilon \)-convex on \(I \).
Example 2.3. Let \(f(x) = x^r \) for \(x \in I = (0, 1) \) and \(r \neq 0, 1 \). Then

\[
f(x^t y^{1-t}) = (x^r)^t (y^r)^{1-t} \leq tx^r + (1-t)y^r \\
= tf(x) + (1-t)f(y) \leq tf(x) + (1-t)f(y) + \varepsilon
\]

for all \(x, y \in I \) and \(t \in [0, 1] \) and for any constant \(\varepsilon \geq 0 \). This implies that \(f(x) \) is GA-convex and GA-\(\varepsilon \)-convex on \(I \). Furthermore,

(i) when \(r > 1 \) or \(r < 0 \),
 a. the function \(f(x) \) is convex on \(I \),
 b. for any constant \(\varepsilon \geq 0 \), it is \(\varepsilon \)-convex on \(I \);

(ii) when \(0 < r < 1 \),
 a. the function \(f(x) \) is concave on \(I \),
 b. for any constant \(\varepsilon \geq 1 \), it is \(\varepsilon \)-convex on \(I \).

Example 2.4. Let \(f(x) = \frac{1}{2x} \) for \(x \in I = (0, 1) \).

It is easy to see that \(f(x) \) is convex on \(I \).

When putting \(x = 0.1, y = 0.9, \) and \(t = 0.5 \), since

\[
f(0.1^{0.5} \times 0.9^{1-0.5}) - 0.5f(0.1) - (1 - 0.5)f(0.9) > 0.07,
\]

the function \(f(x) \) is not GA-convex on \(I \).

For \(\varepsilon \geq \frac{1}{2} \), the function \(f(x) \) is GA-\(\varepsilon \)-convex on \(I \).

To establish some new Simpson type inequalities for GA-\(\varepsilon \)-convex functions, we need the following lemma.

Lemma 2.5. Let \(f : I \subseteq \mathbb{R}_+ \to \mathbb{R} \) be a differentiable function on \(I^o \) and \(a, b \in I^o \) with \(a < b \). If \(f' \in L([a, b]) \), then

\[
\frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx = \frac{\ln b - \ln a}{4} \\
\times \int_0^1 \left(t - \frac{1}{3} \right) \left[a^{1-t/2} b^{t/2} f'(a^{1-t/2} b^{t/2}) - a^{t/2} b^{1-t/2} f'(a^{1/2} b^{1-t/2}) \right] \, dt.
\]

Proof. Integrating by parts and letting \(x = a^{1-t/2} b^{t/2} \) for \(0 \leq t \leq 1 \) lead to

\[
\frac{\ln b - \ln a}{2} \int_0^1 \left(t - \frac{1}{3} \right) a^{1-t/2} b^{t/2} f'(a^{1-t/2} b^{t/2}) \, dt \\
= \int_0^1 \left(t - \frac{1}{3} \right) d \left[f(a^{1-t/2} b^{t/2}) \right]
\]
\[
\begin{align*}
&= \left(t - \frac{1}{3} \right) f(a^{1-t/2}b^{1/2}) \bigg|_{t=0}^{t=1} - \int_0^1 f(a^{1-t/2}b^{1/2}) \, dt \\
&= \frac{2}{3} f(\sqrt{ab}) + \frac{1}{3} f(a) - \int_0^1 f(a^{1-t/2}b^{1/2}) \, dt \\
&= \frac{1}{3} f(a) + \frac{2}{3} f(\sqrt{ab}) - \frac{2}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx.
\end{align*}
\]

Similarly, we have
\[
\begin{align*}
\frac{\ln b - \ln a}{2} & \int_0^1 \left(t - \frac{1}{3} \right) a^{t/2}b^{1-t/2} f'(a^{t/2}b^{1-t/2}) \, dt \\
&= - \int_0^1 \left(t - \frac{1}{3} \right) d\left(f(a^{t/2}b^{1-t/2}) \right) \\
&= - \left(t - \frac{1}{3} \right) f(a^{t/2}b^{1-t/2}) \bigg|_{t=0}^{t=1} + \int_0^1 f(a^{t/2}b^{1-t/2}) \, dt \\
&= - \frac{2}{3} f(\sqrt{ab}) - \frac{1}{3} f(b) + \int_0^1 f(a^{t/2}b^{1-t/2}) \, dt \\
&= - \frac{2}{3} f(\sqrt{ab}) - \frac{1}{3} f(b) + \frac{2}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx. \quad \Box
\end{align*}
\]

3 Some new integral inequalities of Simpson type

Now we start out to establish some new integral inequalities of Simpson type for GA-ε-convex functions.

Theorem 3.1. Let $f : I \subseteq \mathbb{R}^+ \rightarrow \mathbb{R}$ be differentiable on I°, $a, b \in I^\circ$ with $a < b$, and $f' \in L([a,b])$. If $|f'|^q$ is GA-ε-convex on $[a,b]$ for some constant $\varepsilon \geq 0$ and $q \geq 1$, then

\[
\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \right| \leq \frac{\ln b - \ln a}{4} \\
\times \left\{ M_1^{(q-1)/q}(a,b)[(M_1(a,b) - M_2(a,b))|f'(a)|^q + M_2(a,b)|f'(b)|^q \right. \\
+ \varepsilon M_1(a,b) \bigg]^{1/q} + M_1^{(q-1)/q}(b,a)\left[M_2(b,a)|f'(a)|^q \\
+ (M_1(b,a) - M_2(b,a))|f'(b)|^q + \varepsilon M_1(b,a) \bigg]^{1/q} \right\},
\]
where

\[
M_1(u, v) = \frac{2}{3(\ln v - \ln u)} \left[u^{5/6} L(u^{1/6}, v^{1/6}) + u^{1/2}(2v^{1/2} - u^{1/2}) - 2u^{1/2}v^{1/6}L(u^{1/3}, v^{1/3}) \right],
\]

\[
M_2(u, v) = \frac{2u^{1/2}}{3(\ln v - \ln u)^2} \left[4v^{1/6}L(u^{1/3}, v^{1/3}) + v^{1/2}(\ln v - \ln u) - 2u^{1/3}L(u^{1/6}, v^{1/6}) - 5v^{1/2} + 2u^{1/3}v^{1/6} + u^{1/2} \right],
\]

and

\[
L(u, v) = \begin{cases}
\frac{u-v}{\ln u - \ln v}, & u \neq v, \\
u, & u = v
\end{cases}
\]

(*)

is the logarithmic mean.

Proof. Since \(|f'|^q\) is a GA-\(\varepsilon\)-convex function on \([a, b]\), by Lemma 2.5 and by Hölder’s integral inequality, we have

\[
\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \right| \\
\leq \frac{\ln b - \ln a}{4} \left\{ \left(\int_0^1 \left| t - \frac{1}{3} \right| a^{1-t/2} b^{t/2} \left| f'(a^{1-t/2} b^{t/2}) \right| \, dt \right)^{(q-1)/q} \\
+ \left(\int_0^1 \left| t - \frac{1}{3} \right| a^{t/2} b^{1-t/2} \left| f'(a^{t/2} b^{1-t/2}) \right| \, dt \right)^{(q-1)/q} \right\} \\
\leq \frac{\ln b - \ln a}{4} \left\{ \left(\int_0^1 \left| t - \frac{1}{3} \right| a^{1-t/2} b^{t/2} \left| f'(a^{1-t/2} b^{t/2}) \right|^q \, dt \right)^{1/q} \\
+ \left(\int_0^1 \left| t - \frac{1}{3} \right| a^{t/2} b^{1-t/2} \left| f'(a^{t/2} b^{1-t/2}) \right|^q \, dt \right)^{1/q} \right\}
\]

Note 2: We deleted all formula labels except for this one.
Some integral inequalities of Simpson type

\[+ \left(\int_{0}^{1} \left| t - \frac{1}{3} a^{t/2} b^{1-t/2} \right|^{(q-1)/q} dt \right) \]

\[\times \left(\int_{0}^{1} \left| t - \frac{1}{3} a^{t/2} b^{1-t/2} \left[\frac{t}{2} |f'(a)|^q + \left(1 - \frac{t}{2}\right) |f'(b)|^q + \varepsilon \right] dt \right)^{1/q} \right).\]

where

\[\int_{0}^{1} \left| t - \frac{1}{3} a^{t/2} b^{1-t/2} \right| dt \]

\[= \int_{0}^{1/3} \left(\frac{1}{3} - t \right) a^{t/2} b^{1-t/2} dt + \int_{1/3}^{1} \left(t - \frac{1}{3} \right) a^{t/2} b^{1-t/2} dt \]

\[= \frac{2[\ln b - \ln a)(2\sqrt{ab} - a) - 6(a^{1/2}b^{1/2} - 2a^{5/6}b^{1/6} + a)]}{3(\ln b - \ln a)^2} \]

\[= M_1(a, b), \]

\[\int_{0}^{1} \left| t - \frac{1}{3} a^{t/2} b^{1-t/2} \right| dt = M_1(b, a), \]

\[\int_{0}^{1} \left| t - \frac{1}{3} a^{t/2} b^{1-t/2} \right| \left[\left(\frac{t}{2} |f'(a)|^q + \left(1 - \frac{t}{2}\right) |f'(b)|^q + \varepsilon \right] dt \]

\[= (M_1(a, b) - M_2(a, b)) |f'(a)|^q + M_2(a, b) |f'(b)|^q + \varepsilon M_1(a, b), \]

and

\[\int_{0}^{1} \left| t - \frac{1}{3} a^{t/2} b^{1-t/2} \right| \left[\left(\frac{t}{2} |f'(a)|^q + \left(1 - \frac{t}{2}\right) |f'(b)|^q + \varepsilon \right] dt \]

\[= M_2(b, a) |f'(a)|^q + (M_1(b, a) - M_2(b, a)) |f'(b)|^q + \varepsilon M_1(b, a). \]

The proof of Theorem 3.1 is thus complete.

\[\Box \]

Corollary 3.2. Under the conditions of Theorem 3.1, when \(q = 1 \), we have

\[\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_{a}^{b} \frac{f(x)}{x} dx \right| \]

\[\leq \frac{\ln b - \ln a}{4} \left\{ \left[M_1(a, b) - M_2(a, b) + M_2(b, a) \right] |f'(a)| + \left[M_1(a, b) - M_2(b, a) \right] |f'(b)| + \varepsilon \left[M_1(a, b) - M_1(b, a) \right] \right\}. \]
Theorem 3.3. Let $f : I \subseteq \mathbb{R}^+ \rightarrow \mathbb{R}$ be differentiable on I°, $a, b \in I^\circ$ with $a < b$, and $f' \in L([a, b])$. If $|f'|^q$ for $q > 1$ is GA-ε-convex on $[a, b]$ for some constant $\varepsilon \geq 0$, then

$$\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \right|$$

$$\leq \frac{\ln b - \ln a}{4} \left(\frac{q - 1}{2q - 1} \left[\left(\frac{2}{3} \right)^{(2q-1)/(q-1)} + \left(\frac{1}{3} \right)^{(2q-1)/(q-1)} \right] \right)^{1-1/q}$$

$$\times \left\{ \left[a^{q/2} L(a^{q/2}, b^{q/2}) - M_3(a^{q/2}, b^{q/2}) \right] |f'(a)|^q$$

$$+ M_3(a^{q/2}, b^{q/2}) |f'(b)|^q + \varepsilon a^{q/2} L(a^{q/2}, b^{q/2}) \right\}^{1/q}$$

$$+ \left[M_3(a^{q/2}, b^{q/2}) |f'(a)|^q + \left[b^{q/2} L(a^{q/2}, b^{q/2})$$

$$- M_3(b^{q/2}, a^{q/2}) \right] |f'(b)|^q + \varepsilon b^{q/2} L(a^{q/2}, b^{q/2}) \right\}^{1/q} \right\},$$

where $L(u, v)$ is defined by (*) and

$$M_3(u, v) = \frac{u[v - L(u, v)]}{2(\ln v - \ln u)}$$

for positive numbers $u \neq v$.

Proof. By Lemma 2.5, Hölder’s inequality, and the GA-ε-convexity of $|f'|^q$ on $[a, b]$, we derive

$$\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \right|$$

$$\leq \frac{\ln b - \ln a}{4} \int_0^1 \left| t - \frac{1}{3} \left[a^{1-t/2} b^{t/2} f'(a^{1-t/2} b^{t/2}) \right] \right|$$

$$+ a^{t/2} b^{1-t/2} |f'(a^{t/2} b^{1-t/2})| \, dt$$

$$\leq \frac{\ln b - \ln a}{4} \left(\int_0^1 \left| t - \frac{1}{3} \left[\frac{q}{q-1} \right] \right| \, dt \right)^{1-1/q}$$

$$\times \left\{ \left[\int_0^1 a^{q(1-t/2)} b^{qt/2} f'(a^{1-t/2} b^{t/2})^q \, dt \right]^{1/q}$$

$$+ \left[\int_0^1 a^{qt/2} b^{q(1-t/2)} f'(a^{t/2} b^{1-t/2})^q \, dt \right]^{1/q} \right\}.$$
\[\frac{1}{4} \ln b - \ln a \left(\int_0^1 \left| t - \frac{1}{3} \right|^{q/(q-1)} \, dt \right)^{1-1/q} \times \left\{ \int_0^1 a^{q(1-t/2)} b^{qt/2} \left[\left(1 - \frac{t}{2} \right) |f'(a)|^q + \frac{t}{2} |f'(b)|^q + \epsilon \right] \, dt \right\}^{1/q} + \left\{ \int_0^1 a^{qt/2} b^{q(1-t/2)} \left[\frac{t}{2} |f'(a)|^q + \left(1 - \frac{t}{2} \right) |f'(b)|^q + \epsilon \right] \, dt \right\}^{1/q}, \]

where

\[\int_0^1 \left| t - \frac{1}{3} \right|^{q/(q-1)} \, dt = \frac{q - 1}{2q - 1} \left[\frac{2}{3} \left(\frac{2q - 1}{q - 1} \right) \right] + \frac{1}{3} \left(\frac{2q - 1}{q - 1} \right). \]

\[\int_0^1 a^{q(1-t/2)} b^{qt/2} \, dt = a^{q/2} L(a^{q/2}, b^{q/2}), \]

\[\int_0^1 a^{qt/2} b^{q(1-t/2)} \, dt = b^{q/2} L(a^{q/2}, b^{q/2}), \]

and

\[\int_0^1 a^{q(1-t/2)} b^{qt/2} \left[\left(1 - \frac{t}{2} \right) |f'(a)|^q + \frac{t}{2} |f'(b)|^q \right] \, dt = \frac{a^{q/2}}{q(\ln b - \ln a)} \left\{ \left[L(a^{q/2}, b^{q/2}) + (b^{q/2} - 2a^{q/2}) \right] |f'(a)|^q + [b^{q/2} - L(a^{q/2}, b^{q/2})] |f'(b)|^q \right\} = [a^{q/2} L(a^{q/2}, b^{q/2}) - M_3(a^{q/2}, b^{q/2})] |f'(a)|^q + M_3(a^{q/2}, b^{q/2}) |f'(b)|^q, \]

\[\int_0^1 a^{qt/2} b^{q(1-t/2)} \left[\frac{t}{2} |f'(a)|^q + \left(1 - \frac{t}{2} \right) |f'(b)|^q \right] \, dt = \frac{b^{q/2}}{q(\ln b - \ln a)} \left\{ \left[L(a^{q/2}, b^{q/2}) - a^{q/2} \right] |f'(a)|^q + \left[(2b^{q/2} - a^{q/2}) - L(a^{q/2}, b^{q/2}) \right] |f'(b)|^q \right\} = M_3(b^{q/2}, a^{q/2}) |f'(a)|^q + [b^{q/2} L(a^{q/2}, b^{q/2}) - M_3(b^{q/2}, a^{q/2})] |f'(b)|^q. \]

This completes the proof of Theorem 3.3.
Theorem 3.4. Let \(f : I \subseteq \mathbb{R}_+ \rightarrow \mathbb{R} \) be differentiable on \(I^\circ \), \(a, b \in I^\circ \) with \(a < b \), and \(f' \in L([a, b]) \). If \(|f'|^q \) for \(q > 1 \) is GA-\(\varepsilon \)-convex on \([a, b]\) for some constant \(\varepsilon \geq 0 \), then

\[
\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \right| \leq \frac{\ln b - \ln a}{4} \left(\int_0^1 \left(3^{-q+2} \frac{1}{(q + 1)(q + 2)} \right)^{1/q} \left[a^{q/(2q-1)} L(a^{q/(2q-1)}, b^{q/(2q-1)}) \right]^{1-1/q} \times \left[(2^{q+1} (3q + 8) + (6q + 11)) \right]^{1/q} + \left[b^{q/(2q-1)} L(a^{q/(2q-1)}, b^{q/(2q-1)}) \right]^{1-1/q} \times \left[(2^{q+1} (3q + 4) + 1) \right]^{1/q} + \left[b^{q/(2q-1)} L(a^{q/(2q-1)}, b^{q/(2q-1)}) \right]^{1-1/q} \times \left[(2^{q+1} (3q + 8) + (6q + 11)) \right]^{1/q} \right) \}
\]

where \(L(u, v) \) is defined by (*)..

Proof. By Lemma 2.5, Hölder’s inequality, and the GA-\(\varepsilon \)-convexity of \(|f'|^q \) on \([a, b]\), we obtain

\[
\left| \frac{f(a) + 4f(\sqrt{ab}) + f(b)}{6} - \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \right| \leq \frac{\ln b - \ln a}{4} \left(\int_0^1 \left(3^{-q+2} \frac{1}{(q + 1)(q + 2)} \right)^{1/q} \left[a^{q/(2q-1)} b^{q/(2q-1)} \right]^{1-1/q} \right)
\]

\[
\times \left[\int_0^1 \left| t - \frac{1}{3} \right|^q |f'(a^{1-t/2}b^{t/2})|^q dt \right]^{1/q} + \left[\int_0^1 a^{q/(2q-1)} \right]^{1/q} \left[\int_0^1 \left| t - \frac{1}{3} \right|^q |f'(a^{t/2}b^{1-t/2})|^q dt \right]^{1/q} \}
\]

\[
\leq \frac{\ln b - \ln a}{4} \left(\int_0^1 \left(3^{-q+2} \frac{1}{(q + 1)(q + 2)} \right)^{1/q} \left[a^{q/(2q-1)} b^{q/(2q-1)} \right]^{1-1/q} \times \left[\int_0^1 \left| t - \frac{1}{3} \right|^q |f'(a^{1-t/2}b^{t/2})|^q dt \right]^{1/q} + \left[\int_0^1 \left| t - \frac{1}{3} \right|^q \left((1 - t/2) |f'(a)|^q + t/2 |f'(b)|^q - 1 \right) dt \right]^{1/q} \}
\]
Some integral inequalities of Simpson type

\[+ \left[\int_0^1 a^{qt/(2(q-1))} b^{q(1-t/2)/(q-1)} \, dt \right]^{1-1/q} \times \left[\int_0^1 \left| t - \frac{1}{3} \right|^q \left(\frac{t}{2} f'(a) \right|^q + \left(1 - \frac{t}{2} \right) \left| f'(b) \right|^q + \varepsilon \right) \, dt \right]^{1/q}, \]

where

\[\int_0^1 \left| t - \frac{1}{3} \right|^q \, dt = \frac{3^{-(q+1)}}{q + 1} \left(2^q + 1 \right), \]
\[\int_0^1 a^{q(1-t/2)/(q-1)} b^{q(1-t/2)/(q-1)} \, dt = a^{q/(2(q-1))} L(a^{q/(2(q-1))}, b^{q/(2(q-1))}), \]
\[\int_0^1 a^{t/2(q-1)} b^{(1-t/2)/(q-1)} \, dt = b^{q/(2(q-1))} L(a^{q/(2(q-1))}, b^{q/(2(q-1))}), \]
\[\int_0^1 \frac{t}{2} \left| t - \frac{1}{3} \right|^q \, dt = \frac{3^{-(q+2)}}{2(q+1)(q+2)} \left[2^q + 1 \right] (3q + 4) + 1], \]
\[\int_0^1 \left(1 - \frac{t}{2} \right) \left| t - \frac{1}{3} \right|^q \, dt = \frac{3^{-(q+2)}}{2(q+1)(q+2)} \left[2^q + 1 \right] (3q + 8) + (6q + 11). \]

The proof is complete. □

Theorem 3.5. Let \(f : [a, b] \subseteq \mathbb{R}_+ \to \mathbb{R}_0 \) be GA-e-convex on \([a, b]\) and \(f \in L([a, b]). \) Then

\[\frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \leq \frac{f(a) + f(b)}{2} + \varepsilon \]

and

\[\int_a^b f(x) \, dx \leq [L(a, b) - a] f(a) + [b - L(a, b)] f(b) + \varepsilon (b - a), \]

where \(L(u, v) \) is defined by (\(*\))

Proof. Letting \(x = a^{1-t} b^t \) for \(0 \leq t \leq 1 \) gives

\[\frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx = \int_0^1 f(a^{1-t} b^t) \, dt \leq \int_0^1 \left[(1-t) f(a) + t f(b) + \varepsilon \right] \, dt = \frac{f(a) + f(b)}{2} + \varepsilon \]
and
\[
\int_a^b f(x) \, dx = (\ln b - \ln a) \int_0^1 a^{1-t} b^t f(a^{1-t}b^t) \, dt \\
\leq (\ln b - \ln a) \int_0^1 a^{1-t} b^t [(1-t)f(a) + tf(b) + \varepsilon] \, dt \\
= [L(a,b) - a]f(a) + [b - L(a,b)]f(b) + \varepsilon(b - a).
\]

Theorem 3.5 is thus proved.

Acknowledgments. The authors wish to express their thanks to the anonymous referee for his/her careful corrections to and valuable comments on the original version of this paper.

Bibliography

Received April 4, 2013; revised June 23, 2013; accepted July 9, 2013.

Author information

Feng Qi, College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China.
E-mail: qifeng618@hotmail.com

Bo-Yan Xi, College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China.
E-mail: baoyintu78@qq.com